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Abstract: Precise prediction of EC is crucial for planning, managing, and cost-effective operation of 
power grids, as it is a time series problem. In recent years, numerous studies have analyzed the behavior 
and quality of time series forecasts in different areas, including the EC. New models or variants of 
traditional algorithms have also been proposed, usually taking advantage of the increasing amount of 
data available and of today's computing power, such as LSTMs. One of the most important 
characteristics in the selection of a forecasting method is the number of variables that must be taken into 
account in the prediction of the time series since most of these variables are subject to external 
influences. EC is dependent on a number of external factors, such as climatic factors, economic factors, 
and the spot price of electricity. The EC dataset may be either univariate or multivariate. When dealing 
with univariate time series data, it's important to utilize specific methods that take only the historical 
values of the variable into consideration for accurately estimating its pattern. Prediction methods that 
analyze dependencies and correlations between variables to predict future values are also suitable for 
multivariate time series. Nevertheless, these approaches usually need more time to compute and train, 
and they might not even be the most appropriate way to go, because the increased complexity of the 
model used could outweigh any possible improvement in prediction accuracy. In this paper, a thorough 
comparison study was conducted to analyze the effectiveness of univariate and multivariate predictive 
analysis on two separate sets of EC data at hourly and daily intervals. To accomplish this, the LSTM 
algorithm was utilized, which has recently been widely used and recognized as the best-performing 
algorithm in EC forecasting studies. The comparative analysis is complemented by a comprehensive 
literature review, meticulously presented in a tabular format, to offer a comprehensive understanding of 
the univariate and multivariate forecasting methodologies and their respective outcomes. This study 
stands out due to its incorporation of an extensive literature review to support the experimental 
research, ensuring a thorough evaluation. Based on experimental studies, univariate forecasting analysis 
outperformed multivariate forecasting analysis for both hourly and daily interval data sets. 
Furthermore, the R-squared results of the univariate and multivariate predictive analyses conducted 
with the hourly data set are significantly higher than those of the same predictive analyses in the daily 
interval. 

Keywords: Electricity consumption, LSTM, Time-series forecasting, Univariate, Multivariate. 

 
1. Introduction  

Electricity demand forecasting, which helps to balance the future electricity needs of different 
electricity-consuming sectors, is a critical element in the planning, management, and development of the 
electricity sector. As the power market becomes increasingly deregulated, it is more important than ever 
for utilities to produce more accurate EC predictions [1]. In competing energy sectors, EC is 
characterised by linear or non-linear long-term tendencies, different periodicity, non-stationary mean 
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and variance, peaks or troughs (extremes), high volatility and calendar effects. The literature contains a 
large number of models, among which are statistical, ML, econometric and hybrid models, designed to 
forecast EC. These models differ in their methodology, complexity, and performance. The 
comprehensive list of linear (AR, ARMA, ARIMA, SARIMA, and ARIMAX) and non-linear time series 
models (ARCH, GARCH, SGARCH, TGARCH, and EGARCH) for electricity demand forecasting 
provides a wide range of options to choose from in conducting forecasting. It's constructive to include 
parametric and non-parametric regression-type models, as well as models based on exponential 
smoothing, as they offer diverse approaches for addressing specific requirements in electricity demand 
forecasting [2]. While neural networks have many advantages over these conventional time series 
models for dealing with nonlinear and nonnormally distributed data, which are often encountered in real 
problems, their disadvantage is that they assume that all of the inputs and outputs are independent, even 
for continuous data. The assumption being made neglects the predictive potential offered by the 
dependency relationship between energy consumption and sequential data. It's essential to consider the 
role of DL architectures, which are adept at tackling the specific challenges encountered in LF, 
including non-linearity, periodicity, and seasonality, as well as the sequential dependency between 
sequences of consumption data. LSTM networks, a variant of DL introduced by Hochreiter and 
Schmidhuber, are specifically engineered to grasp the long-term dependencies inherent in sequential 
data. By leveraging internal memory to store long-term dependencies, LSTMs are well-suited for 
addressing problems characterized by sequence-dependent behavior, such as electricity demand 
forecasting [3]. 

When selecting a forecasting method, it's crucial to consider the variable numbers that will be 
involved in the time series prediction, given that most variables are influenced by external factors. For 
univariate series, there are specific methods that consider only the past values of the variable itself to 
estimate its evolution. Other forecasting algorithms analyze dependencies and interactions with other 
variables to predict future values and are more suitable for multivariate time series. Since most variables 
can be influenced by external factors, these are the most commonly used in real-world applications. 
However, these methods usually require longer computation and training times, and may not always be 
the best solution because the improvement in prediction accuracy is not offset by increased model 
complexity [4]. On the other hand, given the lack of multivariate data (such as temperature) in many 
practical datasets, we need better univariate prediction models for time series LF [5]. Although models 
can differ dramatically among univariate and multivariate systems, most ML and DL models can handle 
both indistinctly [6]. 

In this paper, we perform a detailed comparative study to evaluate how effective both univariate and 
multivariate predictive analysis methods are on two different EC datasets. We examine the impact of 
these methodologies at both hourly and daily intervals, aiming to provide a richer understanding of 
their effectiveness in predicting EC patterns. In order to accomplish our goal, we applied the LSTM 
algorithm. This algorithm has garnered significant recognition due to its effectiveness in various studies 
focusing on EC forecasting within the existing literature. The comparative analysis is enhanced by a 
thorough literature review, meticulously presented in a tabular format, to provide a comprehensive 
understanding of univariate and multivariate forecasting methodologies and their respective outcomes. 
On the contrary, due to the likelihood of the pattern and behavior of EC recurring in the future, 
forecasts for EC are established upon past observations. Consequently, when conducting time series 
forecasting, it is crucial to meticulously select the most appropriate past observations that can 
effectively serve as predictors of expected future values. This process involves identifying historical data 
points or patterns that have the most significant impact on forecasting future values and ensuring that 
they are accurately incorporated into the predictive model. In this study, we determined the lag periods 
by carefully examining the time intervals established in previous relevant research studies. We 
specifically considered the data characteristics studied in the literature to ensure that the chosen lag 
periods were appropriate for our analysis [3]. The length of the prediction is crucial for its accuracy. It 
determines how many future data points the forecast should cover. If the predicted length is zero, the 
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autoregressive model focuses on forecasting just one step ahead. However, a predicted length greater 
than zero indicates a multi-step forecasting problem. This paper uses one-step-ahead forecasting for 
clarity [7]. 

The structure of the sections of the paper is as follows: first, a relevant and necessary technical 
details for time series electricity forecasting is presented. Section 3 presents a review of LSTM 
approaches for univariate and multivariate electricity time series forecasting. Section 4 provides details 
on the experimental study and presents the plots and experimental results concerning a common 

performance measure, coefficient of determination (𝑅-square), obtained from this study, along with 
comments and discussions. Finally, the last section will focus on drawing conclusions and outlining 
future work. 
 

2.Technical Details 
2.1. Forecasting of Time Series 

Time series consists of a sequence of data points, typically measurements taken at successive points 
within a time period. These data points are usually taken at regular intervals, and the order of the points 
is crucial. Time series forecasting is a predictive modeling technique that consists of analyzing time 
series historical data in order to make informed predictions about future values. This analytical 
approach is indispensable for informed decision-making across a wide range of fields, including finance, 
weather forecasting, and resource planning. By identifying patterns and trends within the historical 
data, time series forecasting allows for the anticipation of future outcomes, enabling businesses and 
organizations to make strategic and proactive decisions. From predicting stock prices and sales trends 
to anticipating weather patterns and demand for resources, the application of time series forecasting 
plays a vital role in optimizing planning and resource allocation. Despite time being a continuous 
variable, in a time series, the values are discrete and sampled at fixed intervals, enabling analysis and 
forecasting based on these specific data points [7]. 

Time series models can handle either single-variable (involving only one time-dependent variable, 
like temperature over time) or multi-variable (involving multiple time-dependent variables, such as 
temperature, humidity, and air pressure over time) data. Most ML and DL models are capable of 
working with both types of time series data. However, it's important to note that the models can vary 
significantly in their implementation and performance depending on whether they are applied to a 
univariate or multivariate system. 
 
2.1.1. Forecasting of Univariate Time Series 

Forecasting univariate time series creates extrapolations for a single variable based on past time 
series observations of the same variable. Despite the geometric increase in data availability, univariate 
forecasting is still the basis for decision-making in many organizations. Improving the performance of 
such forecasts is critical to reducing operational, tactical, and strategic planning costs [9]. Univariate 
modeling's primary advantage is that it predicts future events based on historical data points and how 
they have behaved [10]. 

Given y = y(t-L), ..., y(t-1), y(t), y(t+1), ..., y(t+h) is a univariate series of ‘L’ the past data values, 
where every y(t-i), for i = 0, ..., L, indicates the stored values of the variable y for the time t - i. 

Forecasting consists in predicting the future value of the y(t+1), indicated by ŷ(t+1), in order to 

minimize the error, which is usually given as a function of y(t+1)-ŷ(t+1).  
This forecast is also possible if the horizon of the forecast, h, is greater than 1, i.e. if the aim is to 

forecast the h subsequent values after y(t), i.e. y(t+i), with i = 1, ..., h. When the following function is 
minimized, the best forecasting is achieved here [6]. 

∑(𝑦(𝑡 + 𝑖) − ŷ(𝑡 + 𝑖))

ℎ

𝑖 = 1
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2.1.2. Forecasting of Multivariate Time Series 
Multivariate time series forecasting has wide applications such as traffic flow prediction, electricity 

demand forecasting, stock market forecasting, etc., and a large number of forecasting models have been 
developed [11]. Multivariate time series forecasting models have transitioned from classical statistical 
methods to DL methods over the past several decades [12]. The Multivariate time series forecasting 
problem is very common in real-life applications. Intuitively, it is more complex since it has two or more 
variables [13]. Multivariate time series may be expressed in matrix form in the following way,  

(

 
 

𝑦1
𝑦2
⋮
𝑦𝑛
𝑦𝑇)

 
 
= (

𝑦1(𝑡 − 𝐿) ⋯ ⋯
⋮ ⋮ ⋮

𝑦𝑛(𝑡 − 𝐿) ⋯ ⋯
    
𝑦1(𝑡 − 1)  𝑦1(𝑡)  𝑦1(𝑡 + 1)

⋮ ⋮ ⋮
𝑦𝑛(𝑡 − 1) 𝑦𝑛(𝑡) 𝑦𝑛(𝑡 + 1)

  
⋯ ⋯ 𝑦1(𝑡 + ℎ)
⋮ ⋮ ⋮
⋯ ⋯ 𝑦𝑛(𝑡 + ℎ)

) 

where yi(t-m) shows time series set, with i = 1, 2, 3, …, n being m = 0, 1, 2, …, L the past data and 
current sample, and m = -1, -2, ... , -h the future value of h. In time series analysis, it is customary to 
designate one series as the target time series and the others as independent time series [6]. 

 
2.2. LSTM Approach 

Sequential data, such as word sequences in machine translation, audio data in speech recognition, or 
time series in forecasting, all exhibit a common characteristic: they possess a temporal dependency. 
Traditional FFNNs are unable to accommodate these dependencies, a problem that RNNs are 
specifically designed to address. RNNs handle this issue by incorporating both past and current data in 
their architecture. Furthermore, in time series methods, the data must be analyzed to determine whether 
it is stationary or not. In contrast, LSTM can give good results regardless of whether the data is 
stationary or not. The configuration of data inputs and outputs in a network can be classified into 
different categories based on the relationships between them. These categories include one-to-one 
(where there is one input and one output), one-to-many (where there is one input and multiple outputs), 
many-to-one (where there are multiple inputs and one output), and many-to-many (where there are 
multiple inputs and multiple outputs). These classifications are important for understanding how 
information is processed and transmitted within the network. 

Standard basic RNNs suffer from the vanishing gradient problem, where the gradient decreases 
with the increasing quantity of layers. When neural networks have a large number of layers, the 
gradient becomes very small, which stops the network from learning effectively. As a result, these 
networks have short-term memory and struggle with learning from long sequences that require 
remembering all the information in the sequence. To address this issue, LSTM recurrent networks have 
been developed. LSTMs use three gates to retain important information for a longer time and filter out 
irrelevant information. These gates are the forgetting gate (ft), the updating gate (it), and the output 
gate (ot). The ft decides which of the information needs to be excluded. or stored. Any value near zero 
indicates that past information has been forgotten, while a value that is very close to 1 means that it will 

be kept. The it decides which new information the ct̃ should be used for updating the 𝑐𝑡 memory state. 
Thus, the ct is updated using both ft and it. The final step involves the ot determining the input for the 
next hidden unit. Finally, the ot decides which output will be the next hidden unit's input. 

After passing through the sigmoid activation function (σ), the current input and xt values are used 

to compute all the gate values. The tanh activation function is then applied to calculate the ct̃, which is 
used for updating. The equations defining an LSTM unit are: 

𝑐�̃� = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 
𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 
𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 
𝑐𝑡 = (𝑖𝑡 × 𝑐�̃�) + (𝑓𝑡 × 𝑐𝑡−1) 
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ℎ𝑡 = 𝑜𝑡 × tanh (𝑐𝑡) 
where Wi, Wf, and Wo represent the weights that drive the behavior of the input gate, forget gate, and 
output gate respectively. Similarly, bi, bf, and bo are the biases corresponding to the input gate, forget 
gate, and output gate. Additionally, Wc and bc denote the weight and bias of the memory cell candidate 

(𝑐�̃�). 
 
3. The Literature Survey 

This part of the paper gives an overview of the literature on univariate and multivariate predictive 
analysis studies that estimate the EC using LSTM-based approaches. As part of the literature review, 
the Google Scholar database was searched using the keywords 'Univariate time series electricity load 
demand consumption forecasting LSTM' and 'Multivariate time series electricity load demand 
consumption forecasting LSTM'. From the publications obtained as a result of the search, we review 
recent studies and the most prominent studies in indexed journals. The literature outlines various input 
parameters used for electricity forecasting, resulting in the development of complex models with an 
expanded number of variables. Additionally, particular studies focus on utilizing a single input variable 
for prediction of future values on the basis of its actual values [15].  

In this context, three separate tables have been created: Table 1 presents multivariate time-series 
models, the second table presents univariate time-series models, and the last table presents studies that 
include both of these topics. The tables include the forecast models used in the study, a summary of the 
study, the lagged time steps used in the forecast models, how many steps ahead the forecasts are made, 
and the results obtained from the study. All the papers mentioned in the table have been analyzed in 
detail and the information not mentioned in these papers is indicated as 'unspecified' in the table. 
Various forecasting designs and methods for multivariate and univariate time series EC forecasting 
using LSTM-based approaches have been introduced in numerous studies. Looking at Table 1, EC 
forecasts as multivariate time-series models are mostly short-term forecasts, but at the residential level. 
In these studies, the simple LSTM model was used in comparison with other ML-based models or 
statistical models. Apart from this model, LSTM models such as variations of the LSTM model (Bi-
LSTM, LSTM encoder-decoder, etc.), deep LSTM, and hybrid or ensemble models created by 
combining the LSTM model with other ML-based models have been applied. In the residential level 
studies, data sets of a single building or multiple buildings are studied and the correlation of external 
factors with EC is analyzed. Although the results vary according to the dynamics of each data set, the 
results of these forecasting studies with LSTM-based approaches are quite successful. Looking at Table 
2, EC forecasts as univariate time-series models are realized in short and medium-term periods, but at 
the aggregated system level. In these studies, as in multivariate time-series models, the simple LSTM 
model was used in comparison with other ML-based models or statistical models, and as LSTM models 
other than this model, LSTM model variations (Bi-LSTM, LSTM encoder-decoder, etc.), deep LSTM 
and hybrid or ensemble models created by combining the LSTM model with other ML-based models 
were applied. Table 3 shows the papers in which both multivariate and univariate time-series models 
were studied together. In some of these papers, it is stated that LSTM-based forecasting models are 
more successful on multivariate models. In multivariate models, it has been observed that more 
successful results are obtained with features that are determined by feature selection and have a high 
correlation with EC forecast.  
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Table 1.  
Multivariate time-series EC forecasting papers. 

Ref. Model Summarize  Lagging 
steps 

Forecasting 
horizon 

Results 

[16] A single scalable 
LSTM 

A single but complex LSTM model was 
proposed, capturing key features of 
individual consumption and household 
information. 

24 hrs 24 hrs The model achieves promising results against 
competitive benchmarks, outperforming them on 
average by more than 20% over all test periods and 
all test measures in their back-testing experiment. 

[17]  ARIMA, 
SARIMA and 
LSTM 

Analyzing the collected smart meter data 
to predict the daily EC using ARIMA, 
SARIMA, and LSTM provides insights 
into factors influencing EC to support 
decision-making. 

lags up to 
7 days,  for 
hrs 12 lags 
distributed 
in quarter 

1 step The results indicate a strong positive correlation 
between EC and humidity, and a significant 
negative correlation between EC and temperature. 
Dew point and UV index, as well as cloud cover 
and visibility index, show multicollinearity with 
temperature and humidity respectively. Overall, 
LSTM outperforms ARIMA and SARIMA with an 
average MAE of 0.23. 

[18] CNN-LSTM The performance using a CNN-LSTM 
model to predict residential EC was 
benchmarked against LSTM, GRU, Bi-
LSTM, and Attention LSTM models. 

60 min. 60 min. The CNN-LSTM model achieved the highest 
performance with the MSE of 0.37, outperforming 
LSTM, GRU, Bi-LSTM, and Attention LSTM 
across minute, hour, day, and week unit 
resolutions. 

[19] A CNN-LSTM 
model 

Developed a CNN-LSTM model using 
multivariate augmentation. Conducted 
state-level analysis and training to 
demonstrate forecasting accuracy for 
regional energy consumption. 

30 days 1 day The pooling layer of the 1D CNN reduced noise, 
lowering RMSE and MAPE values. The LSTM 
layer, receiving inputs for each time step, was ideal 
for processing time series data. Extensive 
experiments and ablation studies were conducted 
to showcase the advantages of the proposed CNN-
LSTM architecture coupled with multivariate 
augmentation for provincial EC time series 
forecasting. 

[20] DLSTM For big data, a DL-based price and 
demand forecasting model was proposed. 
The suggested DLSTM was 
benchmarked against traditional ANN 
models:: NARX Variables and ELM. 

unspecified unspecified The DLSTM network was trained with monthly 
data and outperformed other methods in accuracy. 
The DLSTM has an MAE of 2.9, while the 
benchmark method has an MAE of 9.7. The 
proposed method's NRMSE is 0.087, compared to 
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the benchmark's MAPE of 0.2. 
[21] LSTM A time series forecasting model utilizing 

LSTM with social and weather-related 
variables was proposed.  The 
performance of the LSTM model was 
benchmarked against the SVR, ANN, 
ARIMA and MLR models. 

24 months 24 months The LSTM model outperformed four benchmark 
models in MAPE. 

[22] CEEMDAN-SE 
and LSTM 

This study developed a model called 
CEEMDAN-SE-LSTM to forecast ultra-
short-term electricity load in Changsha, 
China. The model takes into account 
meteorological and holiday factors. 

2, 4, 6, 8, 
10, 12, 24, 
36, 48, 60, 
and 72 hrs 

4 & 8 hrs The CEEMDAN-SE-LSTM model demonstrated 
superior performance compared to the ARMA, 
LSTM single-prediction, EEMD-LSTM, and 
CEEMDAN-LSTM models, with significantly 
lower RMSE, MAE, and MAPE values of 62.102, 
47.490, and 1.649% respectively. 

[23] Bi-LSTM-based 
encoder-decoder 
with an attention 
mechanism 

A DL structure using Bi-LSTM layers 
and a temporal attention mechanism is 
proposed to learn long-term 
dependencies and hidden correlation 
features in multivariate temporal data. 

Arbitrary 
lengths 

from 1 to 6 
steps 

The experiment results from five multivariate time 
series datasets provided compelling evidence that 
the proposed model has the capability to accurately 
forecast multi-step time series values, irrespective 
of short-term or long-term time step conditions. 

[24] SVR, LSTM, 
GRU, CNN-
LSTM, CNN-
GRU 

SVR, LSTM, GRU, CNN-LSTM, and 
CNN-GRU models were compared to 
predict energy consumption data of smart 
homes. 

1 step 1 step As the data amount increases, SVR's performance 
degrades more than DL techniques, indicating that 
ML techniques may not be suitable for the task. 
The CNN-GRU architecture performed best for 
daily granularity, while the LSTM was best for 
hourly granularity. The LSTM outperformed the 
CNN-GRU architecture by 0.4% in terms of MAE, 
while the CNN-GRU outperformed the LSTM by 
17.4% for daily granularity. 

[25] LSTM encoder–
decoder 

A day-ahead forecasting technique for 
individual residential load demand based 
on the LSTM encoder-decoder 
architecture with both past and future 
exogenous inputs was presented.  

48 steps 
(half an 
hour) 

48 
steps (half 
an hour) 

The proposed model outperformed three selected 
benchmark methods NARX, ANN, Block LSTM, 
and Naïve Seasonal by reducing the mean absolute 
scaled error by up to 8%. 

[26] LSTM, Bi-LSTM 
and GRU 

LSTM, Bi-LSTM, and GRU were 
compared for the prediction of 
Miscellaneous Electric Loads (MEL). 

unspecified 1 day and 
1 week 

The study's results indicated that both the Bi-
LSTM and GRU models outperformed the LSTM 
model, especially for longer prediction horizons. 

https://www.sciencedirect.com/topics/computer-science/attention-machine-learning
https://www.sciencedirect.com/topics/computer-science/attention-machine-learning
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[27] CNN-LSTM An STLF integrated the LSTM and 
CNN models, taking into account each's 
advantages. The suggested CNN-LSTM 
approach was benchmarked against the 
LSTM, RBFN, and XGBoost models. 

7 days 24 hrs, 48 
hrs, 1 week, 
1 month 

The CNN-LSTM approach outperformed the 
LSTM, RBFN, and XGBoost models in terms of 
MAE, RMSE, and MAPE values. It is observed 
that the CNN-LSTM approach effectively handles 
long-sequence EC data and predicts future EC for 
a substantial period of time. 

[28] Parallel 
DLSTM- CNN 

The LSTM-CNN combination has 
enabled the development of an advanced 
approach for short-term load forecasting, 
known as PLCNet, which has promising 
potential for accurately predicting load 
dynamics. 

Malaysian 
case: 72 
hrs, 4 
days, 
10 days. 
German 
case: 7 
days, 10 
days, 30 
days. 

Next 24 and 
48 hrs, and 
next 10 days 
(Malaysian 
case). 
Next 7, 10, 
and 30 days 
(German 
case). 

The PLCNet model demonstrated notable 
improvements in accuracy across different time 
horizons, boosting performance from 82.49% to 
91.31% for the German data and from 94.16% to 
98.14% for the Malaysian data. 

[29] LSTM The LSTM model was used to predict 
residential EC by aggregating loads from 
an optimized selection of households by 
the OPTICS algorithm. The proposed 
method was compared with SVR-based 
and BPNN-based methods. 

6  steps (3 
hrs) and 
48 steps  
(24 hrs) 

half an hour The results showed that the proposed method 
performed the best in terms of the MAPE metric 
among the benchmarking methods in all cases. 
Moreover, the resulting MAPE value is less than 
10%, which is quite sufficient for microgrid 
dispatch. 

[30] LSTM network 
with transfer 
learning 

The authors utilized the LSTM network 
with XCORR transfer learning for LF. 
They cross-correlated the time series to 
determine the training data set and used 
transfer learning to predict a new 
dataset.  

1 step (15-
minute) 

1 step (15-
minute) 

The RMSE, MAPE and MAE scores indicated 
that, compared to the RF, XGB and LGBM 
models, the LSTM with transfer learning was 
successful in predicting EC in buildings with the 
least amount of energy data.. 

[31] LSTM, RF, and 
XGBoost 

LSTM, RF and XGBoost were 
investigated to predict energy 
consumption in Korea. These methods 
were employed on a time series prior to 
and following the COVID-19 pandemic. 

unspecified unspecified The results indicated that the LSTM model had 
lower RMSE and MAPE in the first period, while 
RF had lower RMSE and MAPE in the second 
period. In summary, LSTM performed best in the 
first period while RF performed best in the second 
period. 

[32] DNN, Bi-GRU- This study explored the STLF of five 1hr, and 1 hr The test results indicate achieving a MAPE of 
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FCL, GRU-FCL, 
Bi-LSTM-FCL, 
and CNN 

aggregation levels (3, 10, 30, 100, and 
479) of a dataset of 479 residential 
dwellings. The sample sizes per level 
were 159, 47, 15, 4, and 1. Five DL 
approaches were used for each 
aggregation level. 

24, 48, 72 
and 96 hrs 

2.47-3.31% close to the country level at the highest 
aggregation and maintaining less than 10% at 30 
aggregated dwellings. The DNN showed the 
highest performance, followed by the Bi-GRU-
FCL with nearly 15% faster training time and 40% 
fewer learnable parameters. 

[33] 

 
CNN and Bi-
LSTM 

The proposed model called EECP-CBL 
combines CNN and Bi-LSTM to predict 
EC. Two CNNs extract information from 
household variables, followed by a Bi-
LSTM module making predictions. 

Un-
specified 

Un- 
specified 

The EECP-CBL framework outperformed LR and 
LSTM approaches in predicting EC across various 
time periods and performance metrics. 

 
Table 2.  
Univariate time-series EC forecasting papers. 

Ref. Model Summarize  Lagging 
steps 

Forecasting horizon Results 

[34] 
 

ML and 
LSTM-
based 
neural 
network 

ML- and LSTM-based 
approaches in different 
formations were used to 
develop predictive methods 
for short to medium term LF. 

From 1 to 
99 steps 

For the short term: 
from a couple of days to 
2 weeks, 
For the medium term: a 
couple of weeks to a 
couple of months 

The use of only optimised time-lagged features in an 
LSTM model effectively captured the intricacies of the 
complex time series and resulted in reduced MAE and 
RMSE in medium to long-term prediction for a large 
metropolitan area. 

[35] 
 

LSTM, 
GRU, 
TCN 

An innovative approach using 
ensemble learning has been 
implemented to forecast 
monthly EC. This method 
combines three successful 
models in the field: LSTM, 
GRU, and TCN. 

12 months 1 month The proposed ensemble learning models significantly 
improved the prediction performance compared to the 
different models separately in terms of MAE and 
MAPE. However, TCN obtained the best results in 
terms of RMSE due to the low variance of the errors. 

[36] 
 

ARIMA
-LSTM, 
ARIMA
-GRU 

Peak EC was forecasted using 
a hybrid approach that 
combined traditional time 
series forecasting (ARIMA) 
with DL methods (LSTM, 
GRU). ARIMA modeled the 

24 months 1 month The hybrid approach, ARIMA-LSTM, gave the most 
accurate predictions with an RMSE value of 7.35, 
outperforming the hybrid ARIMA-GRU approach with 
an RMSE value of 9.60. In comparison, the individual 
models (GRU, LSTM and ARIMA) obtained higher 
RMSE values (18.11, 18.74 and 49.90 respectively). 
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trend, while LSTM and GRU 
interpreted fluctuations. The 
combined outputs provided 
the final prediction. 

This highlights the superior performance of the hybrid 
approaches over the single approaches. 

[37] 
 

Seq2Seq 
LSTM 

A time-series clustering 
approach using a multi-stage 
Seq2Seq LSTM LF strategy 
for households was proposed 
to improve the efficiency of 
the demand response 
programme. 

from 1 to 
200 steps 

1 step The proposed model performed best when clustering 
was combined with Seq2Seq EC prediction at 60, 120 
and 180 steps, outperforming the other models. 

[38] 
 

LSTM, 
Bi-
LSTM 

The comparison between the 
LSTM model and the Bi-
LSTM for a univariate time 
series STLF model involved 
the utilization of four 
different datasets with 
varying contexts and scales 
to comprehensively assess the 
robustness of the models. 

1 step 1 step BLSTM performed better than LSTM models in 
predicting time series EC, despite requiring a longer 
training time for better results. 

[39] 
 

LSTM An LSTM neural network is 
proposed for STLF. Optimal 
hyperparameter values were 
obtained using random search 
and the Coronavirus 
Optimization Algorithm. The 
LSTM model was then used 
to predict electricity demand 
for a 4-hour forecast horizon. 

168 steps 
(10-minute) 

24 steps (10-minute) The results show highly accurate predictions, with a 
MAPE of less than 1.5. The smallest errors were found 
when comparing different models, including LR, DT, 
ensembles of trees, and two DNNs: a D-FFNN with 
optimized random search and a temporal fusion 
transformer with optimized sampling algorithm. 

[40] 
 

LSTM, 
GRN, 
and 
CNN 

LSTM, GRN and CNN 
models were benchmarked to 
forecast 1-7 days ahead of 
daily EC. 

7, 14, 21, 
28, 182, 
364, 546, 
728 days 

1 to 7 days The LSTM algorithm achieved the best forecasting 
performance. In the test set results, it had an R-squared 
of 0.94 for one-day forecasting, dropping to 0.73 for 
seven-day forecasting. 

[41] 
 

LSTM An LSTM-based LF 
framework was proposed for 

2, 6, 12 
steps 

unspecified The suggested LSTM model outperformed the other 
benchmarking models in the STLF problem for 
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individual household LF, and 
its performance was 
compared with various 
benchmarks, which include 
the state of the art in LF. 

(half an 
hour) 

individual households by an average MAPE of 44.06% 
and for aggregated households by an average MAPE of 
8.58%. 

[3] 
 

Multi-
Sequenc
e 
LSTM-
RNN 
tuned 
by the 
MSA 

Metaheuristic search-based 
algorithms were utilized to 
optimize the tunable LSTM 
hyperparameters for EC. GA 
and PSO were used to 
optimize hyperparameters for 
predicting EC in big data 
applications. 

From 1 step 
to 2880 
steps (half 
an hour) 

unspecified Upon conducting statistical analysis of the results, it 
was revealed that the multi-sequence DL model, fine-
tuned by metaheuristic search algorithms, yielded 
significantly more accurate results compared to the 
benchmark ML models (SVR, RF, and ANN) and the 
manually configured LSTM.. 

[42] 
 

An 
ensembl
e LSTM 
combine
d with 
SWT 

A hybrid DL model was 
created by combining an 
ensemble LSTM model with 
the SWT approach. Multiple 
SWTs made the original EC 
data stationary, and LSTM 
was applied to produce 
prediction results. 

5, 10, 20, 
and 30 
minutes 
step sizes 

unspecified Compared to other advanced methods, including the 
persistent method, SVR, LSTM neural network, and 
CNN-LSTM, the proposed method demonstrated 
superior performance across three error metrics 
(RMSE, MAPE, and MBE). 

[43] 
 

Central 
Energy 
Authori
ty 
trend-
based 
model, 
SARIM
A, 
LSTM, 
Faceboo
k 
Prophet 

Four time-series models were 
compared to predict total and 
peak monthly EC in India: the 
existing trend-based model of 
India's Central Energy 
Authority, SARIMA, LSTM, 
and Facebook Prophet. 

108 months 24 months LSTM predictions are found to be unreliable due to 
large prediction errors, and predictions tend to become 
highly unstable after 24-time steps. Facebook Prophet 
predictions performed best in reproducing the temporal 
features present in the observed data. Therefore, it is 
suggested that the Facebook Prophet model should be 
preferred over others in demand forecasting. 

[44] ARIMA ARIMA and CNN-Bi-LSTM unspecified 1 month The results indicated that only the CNN-LSTM 
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 and 
CNN-
Bi-
LSTM 

methods were proposed to 
predict medium-term EC. 
Hyperparameters were tuned 
for ARIMA and neural 
network models to enhance 
model accuracy. 

combination did not perform well. On the other hand, 
the ARIMA model produced accurate results and can be 
used in real-world scenarios where data patterns 
remain relatively consistent. Additionally, the 
combination of CNN and Bi-LSTM yielded favorable 
results with lower MSE and RMSE for medium-term 
EC prediction following the implementation of 
ARIMA. 

[45] 
 

ICMD-
ANN- 
Encoder
-
Decoder
-based 
LSTM 
hybrid 
model 

A hybrid multi-algorithm 
framework is developed by 
incorporating ANN, Encoder-
Decoder Based LSTM, and 
ICMD. This model was 
compared with single models 
(ANN, RFR, LSTM), hybrid 
models, and three 
decomposition-based hybrid 
models. 

From 1 to 
15 days 

1 day According to statistical score metrics, the hybrid 
ICMD-ANN-EDLSTM model performed better than 
other benchmark models. Furthermore, the results 
showed that the hybrid ICMD-ANN- Encoder-Decoder 
Based LSTM model can not only detect seasonality in 
electricity demand data but also predict and analyze 
electricity market demand. 

 
Table 3.  
Multivariate time-series EC forecasting papers. 

ef. Model Summarize  Lagging steps Forecasting 
horizon 

Results 

[46] 

 
DNN, RNN, 
CNN, and 
LSTM models 
with  
forecasting 
error 
correction 

This study proposed the use of 
DL techniques to predict EC in 
two industrial buildings that have 
varying usage profiles. It analyzed 
the correlation between EC and 
meteorological data per season for 
the related buildings. 

1 hr 24 hrs DNN, RNN, and LSTM outperformed by 
utilizing two years of EC and weather data 
instead of one year of EC. 

[47] 

 
XGBoost, 
LSTM, and 
SARIMA 

Three essential techniques 
(univariate, multivariate, and 
multistep) were investigated to 
predict EC using three leading 
methods: XGBoost, LSTM, and 

1 step 1 step for  
multivariate 
and 72 steps 
for  univariate 

XGBoost performed well for univariate 
and multistep predictions compared to 
ARIMA variations, which performed better 
on multivariate. Nevertheless, LSTM 
exhibited the most unfavorable 
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SARIMA. performance of all three strategies in terms 
of the sMAPE metrics. 

[48] 

 
LSTM and 
GRU 

The forecasting of day-ahead EC 
in a hospital involved the use of 
LSTM and GRU networks with 
and without EMD and Complete 
Ensemble EMD preprocessing for 
both univariate and multivariate 
approaches. 

24 hrs 24 hrs In the comparison between LSTM and 
GRU models, both showed similar 
performance. However, incorporating 
EMD and Complete Ensemble EMD 
consistently enhanced results in the 
multivariate case. Notably, the best 
outcomes were achieved by LSTM with 
preprocessing in the multivariate scenario. 

[49] 
 

ERNN, 
seq2seq 
models, and 
temporal CNN 

Aimed to bridge the gap by 
reviewing and experimentally 
evaluating four real-world 
datasets on the latest electric LF 
trends. Contrasting DL 
architectures (RNN, seq2seq 
models, and temporal CNN 
together with architectural 
variants) for STLF. 

4 days 1 day The Elman RNN performed comparably to 
GRU and LSTM when used for 
aggregated LF. Seq2seq models proved to 
be quite efficient in LF tasks, although 
they seem to fail to outperform RNNs. The 
temporal CNNs showed convincing 
performance in LF tasks. The LSTM 
performed best in multivariate aggregated 
LF. It is found that short-term LF at the 
customer level is also an extremely 
challenging task for DL models. 
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4. Data and Methodology 
This section provides information on each dataset and discusses the forecasting stu-dies and results 

of these datasets as separate cases. The chapter concludes with a compa-rative discussion of the LSTM 
model's predictive results based on the datasets being con-sidered. 
 
4.1.  Common Methodology for All Cases  

This study employed two distinct datasets with different structural characteristics for univariate 
and multivariate predictions. The forecasting process incorporated the use of the widely utilized LSTM 
model, known for its high forecasting performance potential. Prior to analysis, the datasets underwent 
data preprocessing, a technique for the transformation of raw data into a more relevant and clearer 
form. This involved data cleaning to remove missing values, and data transformation techniques to 
normalize the variables within a common interval, using a min-max scaler. 

The data values range from 0 to 1. Outliers are values in a data set that significantly differ from the 
others. For electricity demand data, outliers could be due to public holidays like Christmas Day, or 
special events where energy demand is higher than usual. In this study, since we estimate the energy 
consumption for normal days during forecasting, the Z-score of such datasets is extracted using the Z-
score technique, a technique widely used by researchers. After the data pre-processing phase is 
completed, the data is now ready to be transferred to the forecasting phase [15]. For the analysis of the 
data sets, the LSTM model employed the Keras DL library in the Python language [50]. The LSTM 
model is used to train on a specified sequence of EC, univariate input, at an interval that differs 
according to the datasets, and to forecast the output vector of the next step EC, which also differs 
according to the dataset. In multivariate input scenarios, the multivariate input is used to predict the 
next step's power consumption, which varies depending on the data set. The number of LSTM layers 
may vary for each case study in this study. To avoid overfitting, the number of hidden layers has been 
increased and followed by a dropout layer using a proper learning rate value for regularization [13]. 
The ReLU activation is used as it is the most effective with return sequences equal to true so that data 
can be passed from one layer to another [50]. The MSE is being utilized as the loss function for our 
specific DL model. We have opted for the Adam optimizer algorithm due to its status as an extension of 
stochastic gradient descent. Notably, the Adam optimizer has gained increased popularity in the realm 
of DL applications, particularly in fields such as CV and NLP. This wider adoption of the Adam 
optimizer is attributed to its effectiveness in training DL models. Finally, to assess the performance of 

the experimental study, we utilize the overall 𝑅-squared metric. 𝑅-squared represents the amount of 
variance in a dependent variable that's explained in a regression model by one or more independent 
variables. It provides insight into the goodness of fit of the model, with values ranging from 0 to 1. A 
score of 1 shows the model fits the data perfectly. This means that the closer this score is to 1, the better 
the prediction. 
 
4.2.  Case Studies and Forecasting Results 
4.2.1. Data Case I 
4.2.1.1. Data Set Description 

The data set consists of aggregated data for Australia from January 1, 2006, to January 1, 2011, at a 
half-hourly interval. This dataset is resampled to daily intervals to avoid overtraining and consists of six 
time-dependent variables including electricity demand, electricity price, dew point temperature, 
humidity, dry bulb temperature, and wet bulb temperature. The EC values for the LSTM prediction 
model are used as the target variable. 
 
4.2.1.2. LSTM Parameters 

 In the univariate case, a 64-unit LSTM layer is followed by 32-unit fully connected layers and an 
output layer. In the multivariate case, in contrast to the univariate case, a dropout layer that is 
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regularized by a learning rate of 0.001 is followed by fully connected layers of 32 units. In both cases, 
the batch size is 57 and the training time is 40 epochs. 
 
4.2.1.3. Learning Curves 

The data set is divided into 80% for the training and 20% for the test. A good model fit is achieved 
when the model performs well on both training and validation sets without overfitting. The learning 
curve plots in Figure 1, Figure 2 depict the decreasing loss function over time and provide reliable 
forecasts for the model, which looks back 28 days for univariate and 14 days for multivariate. In this 
study, the blue-colored curves are the model training learning curves and the orange-colored curves are 
the model testing learning curves for each graph. When analyzing the training and testing datasets, 
these curves serve as a valuable tool for determining if the model is overfitted, underfitted, or fits 
appropriately. Upon observing the plots, it becomes evident that the loss function decreases swiftly to a 
low value, especially given the large training set. Losses decrease and stabilize around the same point 
during training and validation. Thus, the model successfully captures EC patterns. 
 

 
Figure 1. 
Loss function decay of the training sets and testing sets for time series forecasting LSTM models of the 
univariate case by lagging 28 days.  
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Figure 2. 
Loss function decay of the training sets and testing sets for time series forecasting LSTM 
models of the multivariate case by lagging 14 days. 

 

4.2.1.4. Forecasting results; 
Table 4 below shows the estimation results obtained with this dataset. The values shown as steps in 

the table are historical lags, i.e. how many steps back (historical values) we look at when estimating the 
next value. For the daily time series data type, these values are often considered in the literature. In the 
LSTM forecasting model, the R-squared value is 0.7708 with the univariate time series dataset going 
back 7 days, while this value is 0.8209 with the multivariate time series data set, which is 6.5% higher 
than this value.   
However, the R-squared values for the univariate and multivariate datasets are very close when looking 
at the 7, 14, 21, and 28 days back values. It is also noteworthy that while there is a significant increase 
in improving the R-squared scores for the predictive results obtained by looking back 7 and 14 days, 
there is no significant increase in predictive performance as the number of lagged days increases. In 
addition, we can determine which case has the best performance results by comparing the univariate and 
multivariate cases from 28 and 14 days ago.  
 

Table 4.  
LSTM model R-squared results for Data case I.  

Lag period (day) Univariate model  Multivariate model 
7 0.7708 0.8209 
14 0.8368 0.8534 
21 0.8406 0.8487 
28 0.8450 0.8519 

 
Figure 3 and Figure 4 shows the actual power consumption curves and their prediction curves. It is 

evident from the figure that the accuracy increases in line with the test data.  
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Figure 3. 
The actual EC curves and its predictive curves of LSTM forecasting models by looking back 
periods of 28 days for univariate case. 

 

 
Figure 4. 
The actual EC curves and its predictive curves of LSTM forecasting models by looking back 
periods of 14 days for multivarate case.  
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4.2.2. Data Case II 
4.2.2.1. Dataset Description 

For the typical evaluation procedure, a real dataset is used from the ISO New England control area 
and its eight wholesale load records for the year 2023. The wholesale records comprise Boston, 
Bridgeport, Burlington, Concord, Portland, Providence, Windsor Locks, and Worcester. This dataset 
has hourly intervals and three time-dependent variables: electricity demand, the dry bulb temperature, 
and the dew point temperature. The target variable is the EC values for the LSTM forecasting model. 
 
4.2.2.2. LSTM Parameters 

In the univariate case, an LSTM layer with 64 units is followed by a fully connected layer with 32 
units each, a dropout layer regularized by 0.2, and an output layer. In the multivariate case, an LSTM 
layer with 64 units is followed by four fully connected layers with 32 units each followed by a separate 
layer of dropout regularized by 0.2, and an output layer. The batch size is set to 57 and the model is 
trained for 40 epochs for all cases.  
 
4.2.2.3. Learning Curves 

For training and testing, the data set is divided into 70% and 30% respectively. The graphs of the 
learning curves in Figure 5 and Figure 6 show the decrease of the loss function with epochs. These 
curves belong to the best predictions of the model obtained by looking back 48 hours for the univariate 
and 12 hours for the multivariate, respectively. The training and validation losses show a consistent 
decrease and stabilization at similar points, which indicates that the model has successfully captured the 
intricate patterns related to EC behaviors. 

 

 
Figure 5. 
Loss function decay of the training sets and testing sets for time series forecasting LSTM models of the 
univariate case by lagging 48 hours. 
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Figure 6. 
Loss function decay of the training sets and testing sets for time series forecasting LSTM models of the 
multivariate case by lagging 12 hours. 

 
4.2.2.4. Forecasting Results 

With the hourly univariate and multivariate datasets, the EC value of the next hour is estimated by 
going back 6, 12, 24, and 48 hours. The estimation results obtained with the univariate dataset are high 
up to 48 hours while there is a small decrease in the R-squared score when looking back at 72 hours as 
seen in Table 5. However, R-squared scores of the estimation results obtained with the multivariate 
dataset show an increase up to 12 hours, while there is a significant decrease in this value when looking 
back at 24 and 48 hours. When Table 5 is analyzed in general terms, the R-squared scores of the 
estimation results obtained with univariate and multivariate datasets are quite high, but the R-squared 
scores of the estimation results obtained with univariate data sets are higher for each lag value 
examined. Furthermore, the actual EC curves and their predictive curves are shown in Figure 7 and 
Figure 8 by looking back at periods of 48 and 12 hours of univariate and multivariate cases which have 
the best performance results, respectively. 
 

Table 5.  
LSTM model R-squared results for Data case II. 

Lag period(hr) Univariate model Multivariate model 
6 0.9714 0.9530 
12 0.9745 0.9642 
24 0.9772 0.9365 
48 0.9817 0.8761 
72 0.9755 0.8640 
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Figure 7.   
The actual EC curves and its predictive curves of LSTM forecasting models by looking back at periods 
for 48 hours of univariate case. 

 

 
Figure 8. 
The actual EC curves and its predictive curves of LSTM forecasting models by looking back at periods for 
12 hours of multivarate case. 
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5. Discussion and Conclusion  
According to the literature review, EC forecasts as multivariate time-series models are mostly 

short-term forecasts and are at the residential level, while EC forecasts as univariate time-series models 
are generally realized in short and medium-term periods and EC data is aggregated and at the system 
level. In both multivariate and univariate time series analysis studies, the simple LSTM model has 
shown much better EC forecasting performance compared to other ML-based models or statistical 
models, but its forecasting performance is lower than that of LSTM model variations. In addition, the 
hybrid or ensemble models, which are created by combining the LSTM model with other ML-based 
models, also perform better than the LSTM model variations. It is also noteworthy that hybrid and 
ensemble models are mostly constructed with combinations of LSTM-based approaches and CNN 
algorithms. 

Based on our experimental evaluation, the most accurate forecasting results for each data case using 
LSTM models are summarized in Table 6 below. Upon reviewing the table, it is evident that in data 
case I, the univariate model achieves an R-squared score of 0.8450 with a 28-day lookback, while the 
multivariate model achieves a comparable score of 0.8534 with a 14-day lookback period. In data case II, 
we found R-square values very close to 1 when analyzing the previous 48 hours in the univariate model 
and 12 hours in the multivariate model. It's worth noting that the R-square score is higher in the 
univariate model compared to the multivariate model. The phenomenon occurs due to the way 
supervised learning is implemented in recurrent networks, such as deep LSTMs. In this approach, the 
neurons are randomly initialized, leading to the deactivation of neurons that are essential for accurately 
learning the latent features of the interrelated variables present in the multivariate time series dataset. 
This random initialization process can hinder the network's ability to effectively capture and understand 
the complex interdependencies within the dataset, thereby impacting its learning and predictive 
capabilities [13]. On the other hand, several papers have compared the results of multivariate and 
univariate time series analysis studies. They indicate that LSTM-based models are more effective in 
multivariate forecasting, as shown in Table 3. Nevertheless, it's worth noting that our experimental 
study, which utilized two distinct datasets, did not yield a conclusive determination on this matter. A 
closer assessment of our experimental study, presented in Table 6, reveals that the predictive 
performance of both univariate and multivariate forecasting models using hourly data significantly 
outperforms those using daily data. This suggests that as the time intervals of the datasets decrease, 
there is an observable improvement in LSTM forecasting results.  

 
Table 6.  
LSTM model R-squared results for data case II. 

 
 
 

 
 

Our upcoming research endeavors entail conducting an experimental study focused on the 
prediction of electricity prices, photovoltaic power output, and wind power output. Although there have 
been numerous multivariate and univariate time series analyses for electricity price forecasting in 
existing literature, there remains a noticeable gap in this specific context. Our aim is to bridge this gap 
by integrating these predictive studies with comprehensive power systems planning and management 
research to enhance the understanding of energy market dynamics and improve overall energy 
management strategies. 

 
 
 
 

 
Cases 

Steps R-squared 

Univariate Multivariate Univariate Multivariate 

Data case I 28 days 14 days 0,8450 0,8534 
Data case II 48 hours 12 hours 0,9817 0,9642 
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Appendix 1.  

Nomenclature 
LSTM  Long-short term memory MLR Multiple linear regression 
Bi-LSTM Bi-directional LSTM SVR Support vector regression 
DLSTM  Deep LSTM  FFNN Feed-forward neural network 
DL  Deep learning D-FFNN Deep-FFNN 
EC  Electricity consumption CEEMDAN-

SE-LSTM 
Complete ensemble empirical mode 
decomposition with adaptive noise 
sample Entropy LSTM 
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ML Machine learning PVGIS Photovoltaic geographical 
information system 

ReLU  Rectified linear units RBFN  Radial basis functional network 
CNN  Convolutional neural network XGBoost Extreme gradient boosting 
AR Autoregressive  BPNN Back-propagation neural network 
ARMA AR moving average OPTICS Ordering points to identify the 

clustering structure 
ARIMA AR integrated moving 

average 
XCORR Cross-correlation 

SARIMA Seasonal ARIMA LGBM Light gradient boosting machine  
ARIMAX ARIMA with explanatory 

variables 
GA Genetic algorithm 

NARX Nonlinear AR with exogenous 
inputs 

PSO Particle swarm optimization 

ARCH AR conditional 
heteroskedasticity  

RF Random forest 

GARCH Generalized ARCH DT Decision tree 
SGARCH Symmetric GARCH GDP Gross domestic product  
TGARCH The threshold GARCH FCL Fully connected layers 
EGARCH Exponential GARCH DNN Deep neural network 
ANN Artificial neural network TCN Temporal convolution networks 
LF  Load Forecasting Seq2Seq Sequence-to-sequence 
RNN  Recurrent neural network GRN Gated recurrent network 
ReLU  Rectified linear units MSA Metaheuristic search algorithms 
UV Ultra viole  SWT Stationary wavelet transform 
GRU Gated recurrent unit ICMD Improved complete ensemble 

empirical mode decomposition 
with adaptive Noise 

CNN Convolutional neural network EMD  Empirical mode decomposition 
ELM Extreme learning machine CV Computer vision  
MAE Mean absolute error NLP Natural language processing 
MAPE  Mean absolute percentage 

error 
  

sMAPE Symmetric MAPE   
RMSE Root mean squared error   
NRMSE  Normalized RMSE   

𝑅-squared  Coefficient of determination   

 
 
 


