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Abstract: The rapid expansion of 5G networks has revolutionized mobile communication by offering 
unprecedented speed, low-latency connections, and the ability to support vast numbers of connected 
devices. However, these advancements bring new challenges in maintaining consistent and reliable 
signal strength, critical for ensuring optimal Quality of Service (QoS). Traditional models, such as 
ARIMA, Random Forest (RF), and K-means clustering, struggle to capture the complex, nonlinear, and 
dynamic behaviour of 5G networks, leading to suboptimal prediction accuracy. In this study, we propose 
a novel hybrid model, Clustered Temporal Memory Networks (CTMN), which integrates DBSCAN 
clustering with Long Short-Term Memory (LSTM) networks to improve signal strength prediction in 
mobile networks. The CTMN model combines DBSCAN's ability to handle spatial variability and 
outliers in 5G data, combined with LSTM's capacity for modelling long-term dependencies and 
nonlinear time-series patterns. Our empirical analysis demonstrates that CTMN outperforms traditional 
methods, achieving up to a 20.82% improvement in prediction accuracy across key performance metrics, 
including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error 
(RMSE). These findings indicate that CTMN provides a scalable, robust solution for enhancing signal 
strength prediction and optimizing network performance in next-generation mobile networks. 
Keywords: Clustering, Hybrid techniques, Mobile networks, Prediction model, Time-series analysis. 

 
1. Introduction  

The continuous evolution of mobile networks has driven significant advancements in global 
communication and connectivity. Starting with the first-generation (1G) networks and progressing 
through to 4G, each new generation has introduced transformative improvements that reshape how 
people interact with information and each other. From basic voice services in 1G to high-speed data 
transfer in 4G, mobile networks have expanded their capabilities, enabling a wide range of applications 
and services. The unveiling of fifth generation (5G) networks represents the latest dive forward in this 
development, promising ultra-fast speeds, low-latency communication [1]-[3], and the capacity to 
connect vast numbers of devices simultaneously [4]. These advancements are expected to drive 
innovations in industries such as intelligent cities, manufacturing, and the Internet of Things (IoT) [5], 
[6]. However, with the rollout of 5G comes new challenges, particularly in maintaining consistent and 
reliable Quality of Service (QoS) across diverse and complex environments. 

Accurate signal strength prediction is essential for ensuring reliable QoS in mobile networks. 
Effective prediction is critical for network planning, resource allocation, and optimizing user 
experiences [7]. However, the increasing complexity of mobile networks, especially with the dense and 
variable environments of 5G, presents challenges that traditional models struggle to address. Methods 
such as ARIMA, Support Vector Regression (SVR), Random Forest (RF), and even simpler clustering 
models like K-means have demonstrated some predictive power [8] - [10] but fall short in 
environments characterized by high variability, large data volumes, and intricate spatial dependencies. 
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These traditional models are typically linear in nature and struggle with capturing the temporal and 
spatial dynamics inherent in 5G networks. ARIMA, while effective for linear time-series data, cannot 
adequately model the nonlinear and stochastic behaviour of modern network traffic [11]. Similarly, 
Random Forest and SVR, though successful in some scenarios, lack the ability to generalize well in 
highly dynamic and fluctuating environments like those of 5G. Current clustering approaches, such as 
K-means, often result in suboptimal clusters that fail to account for spatial dependencies [12], making 
the model less effective in heterogeneous mobile environments. As a result, the prediction accuracy and 
reliability of these models can be significantly reduced in real-world 5G applications. 

To tackle these challenges, we suggest a novel hybrid framework called Clustered Temporal 
Memory Networks (CTMN). The CTMN model integrates clustering techniques with advanced time-
series modelling to enhance both prediction accuracy and reliability. By segmenting the data into 
clusters that capture the diverse conditions of mobile environments and applying specialized time-series 
models (such as Long Short-Term Memory (LSTM)) to each cluster, CTMN aims to overcome the 
limitations of traditional methods. The objective of this study is to offer a more resilient approach for 
signal strength prediction in modern advanced mobile networks, particularly in the complex 5G 
environment. 

Several existing hybrid methods have been explored to assess the effectiveness of machine learning 
systems in predicting QoS in mobile networks. For instance, in [13], a simple K-means clustering 
model was employed to group the data, followed by a decision tree to predict potential network 
anomalies. While this approach demonstrated high accuracy in simulated environments, it lacked the 
ability to handle real-world data, failing to account for actual traffic volumes and active users. In [14], 
logistic regression and Random Forest models have shown better performance in certain cases, but they 
still struggle with the nonlinearity and variability present in 5G networks. Deep learning (DL) has 
attested to be exceptionally successful in prediction jobs [15]-[17]. However, the study in [14] did not 
compare the results to deep learning techniques 

Even more advanced models like Recurrent Convolutional Neural Networks (R-CNN) and Long 
Short-Term Memory (LSTM) architectures [18], [19] have demonstrated promise, but their 
effectiveness is limited when applied to real-world data without proper spatial clustering. 

The literature suggests that LSTM-based techniques, particularly when combined with other 
machine learning models, show great potential for handling time-series data in mobile networks. 
However, studies have shown that clustering methods like K-means often lead to less effective models 
compared to more spatially aware approaches like DBSCAN. Moreover, while traditional models have 
achieved acceptable performance metrics such as RMSE and MSE, they have not been optimized for the 
large-scale and highly variable data sets characteristic of modern mobile networks. 

This research introduces the Clustered Temporal Memory Networks (CTMN) model to address 
these limitations. CTMN integrates clustering with time-series analysis, improving the accuracy and 
reliability of signal strength prediction. By segmenting the data into meaningful clusters and applying 
tailored time-series models within each cluster, CTMN significantly outperforms traditional methods. 
Our empirical analysis shows that CTMN improves prediction accuracy by up to 20.82% across 
performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean 
Squared Error (RMSE). 

In the following sections, we present the dataset and provide a detailed comparison of commonly 
used machine learning methods for signal strength prediction, followed by a thorough introduction to 
the CTMN model. These findings demonstrate the potential of CTMN as a robust solution to the 
complex challenges of signal strength prediction in modern mobile networks, especially in the 5G era. 
 
2. Dataset 

The dataset replicates the hardware configuration using a Valve Steam Deck gaming system 
running DragonOS Focal, a BB60C spectrum analyzer powered by an external USB3 hub, a srsRan 
software-defined radio (SDR) device, and a BladeRFxA9 software-defined radio (SDR) device. Data 
collection was performed across 20 Bihar’s locations, with measurements taken every 3 minutes and 7 
seconds, totaling 1926 time periods. The dataset encompasses various parameters, including timestamp, 
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latitude, longitude, signal strength (dBm) taken from numerous devices of the like of BB60C, srsRAN, 
as well as the data throughput (Mbps), latency (ms), and network type. This dataset provides realistic 
signal metrics for LTE, 3G, 4G, and 5G, and it is publicly available on Kaggle.  
 
3. Methodology 

In this section, we begin by outlining the common machine learning (ML) methodologies used for 
modeling and predicting signal strength in mobile networks. Finally, we present a methodology for the 
hybrid model and conclude the study.  
 
3.1. Models’ Prediction 

Predicting the mobile network communication traffic in terms of signal strength is a crucial element 
in maintaining optimal network performance and ensuring user satisfaction. Accurate signal strength 
predictions enable network operators to proactively manage and optimize their networks, ensuring that 
users enjoy reliable connectivity and high-quality service. Signal strength, typically measured in 
decibels (dBm), is a key indicator of the connection quality between a mobile device and the base station 
of the network. It directly affects data throughput, quality of communication, and user experience. 

By accurately predicting the signal strength, mobile network specialists can further network 
capacity, increase user experience, plan network expansions, and improve capacity management. This 
process can be effectively accomplished through ML, a branch of artificial intelligence (AI) focuses on 
the use of algorithms and data analysis. Recently, ML has become more popular in mobile network 
applications [20], [21], proving to be more adept than traditional deterministic prediction models for 
handling complex data [22] - [26]. 

Signal strength prediction in mobile networks can be approached through three primary ML 
techniques: classical machine learning, time series methods, and hybrid models, each offering unique 
strengths for different types of data and prediction challenges.  
 
3.1.1. Classical Machine Learning 

Classical machine learning refers to a set of foundational algorithms and techniques that have been 
widely used in artificial intelligence (AI) and data computation for decades. These algorithms serve as 
the foundation for various predictive modeling tasks, including regression, classification, clustering, and 
dimensionality reduction. Classical machine learning techniques are often contrasted with more modern 
approaches such as deep learning, which relies on neural networks with many layers. These models are 
not fundamentally designed to handle time-based dependencies, which are key aspects of time series 
data. Many traditional machine learning methods have been employed, including logistic regression, 
random forests, decision trees, support vector machines (SVM), and linear regression. 

 
3.1.1.1. Decision Tree 

Decision trees are fundamental techniques used in classical ML for classification and regression 
assignments. They operate by sequentially dividing data into subgroups founded on feature values, 
creating a model of outcomes and their potential effects that resemble a tree. The construction of a 
decision tree involves choosing the best feature at each node to split the data, which is performed by 
minimizing the impurity or maximizing the information gain. The most common impurities used are 
Gini Impurity, and Entropy. 
 
3.1.1.2. Logistic Regression 

Logistic regression (LR) is a foundational machine learning algorithm commonly applied to binary 
classification applications. Regardless of the denomination suggesting regression, LR is a classification 
technique. It works by approximating the probability that a known input fits into a particular class, 
typically represented as binary outcomes such as 1 or 0, Yes or No, or True or False. The algorithm 
completes this by using a logistic (or sigmoid) code to a linear combination of the input features, 
converting the result into a probability score. The process starts by calculating a linear combination of 
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the input features, which is then passed through a sigmoid function to predict the likelihood of an input 
being classified into a specific category. 

𝑧 =  β0 +  β1𝑥1 + β2𝑥2 + ⋯ +  β𝑛𝑥𝑛       (1) 

where xi is the feature values, βi is the coefficient of the features, and β0 is the intercept. The output 
z is transformed into a probability using the sigmoid function: 

σ(z) =  
1

1+ 𝑒−𝑧                                (2) 

The sigmoid function converts any real-valued number into a value between 0 and 1, which 
represents the probability that a given instance belongs to the positive class. When the output of the 
sigmoid function is 0.5, the instance is assigned to positive class (1). If the output is less than 0.5, the 
instance is assigned to the negative class (0). 

3.1.1.3. Linear Regression 
Linear regression was used to predict a continuous dependent variable using one or more 

independent variables. It assumes a linear correlation between the dependent variable z and the 
independent variable x. 
 
3.1.1.4. Random Forest 

Random Forest is a machine learning method used for both classification and regression tasks. It 
operates by building multiple decision trees during training and then providing either the mode of the 
classes for classification or the average prediction for regression from the individual trees. Random 
Forest is highly valued for its ability to improve prediction accuracy and reduce overfitting, making it 
more reliable than a single decision tree. In classification, the model predicts the class that receives the 
majority vote from all trees. 

𝑦̂ = 𝑚𝑜𝑑𝑒 (𝑦1,   𝑦2, … , 𝑦𝑛)             (3) 

where yi is the class predicted by the ith tree. 

For regression, Random Forest predicts the average of the outputs from all trees: 

𝑦̂ =
1

𝑛
∑ 𝑦𝑖                            

𝑛

𝑖=1

(4) 

Where yi is the output predicted by the ith. 
 
3.1.1.5. Support Vector Machine 

The Support Vector Machine (SVM) is a highly effective and flexible supervised learning algorithm 
commonly used for classification, although it can also handle regression problems. The fundamental 
concept of SVM is to find the ideal hyperplane that divides distinct sets in the feature space, boosting 
the margin between them. This makes SVM particularly powerful in high-dimensional spaces, and it has 
applications in fields such as text classification, image recognition, and bioinformatics. SVM aims to 
solve the following optimization problem: For a linear SVM, the optimization problem is: 

 
1

2𝑤,𝑏
𝑚𝑖𝑛  ‖𝑊‖2                                 (5) 

Subject to: 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖 

where b is the bias term, w is the weight vector, and (xi,yi) are the data points and their labels. 
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For non-linearly separable data, slack variables ξi  are introduced to allow for misclassifications, 
leading to a soft-margin SVM: 

 
1

2𝑤,𝑏,ξ,
𝑚𝑖𝑛  ‖𝑊‖2 + 𝐶 ∑ 𝜉𝑖 

𝑛

𝑖=1

                             (6) 

Subject to: 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, ∀𝑖 

where C is a regularization constraint that controls the trade-off between maximizing the margin 
and minimizing classification error. 

3.1.2. Time Series Analysis 
Time series models are specifically designed to analyze and forecast sequential and time dependent 

data. These models naturally consider the order and chronological structure of data points, making 
them particularly suited for tasks in which the timing and sequence of events are crucial. Suitable time 
series models, such as auto regressive integrated moving average (ARIMA), seasonal ARIMA 
(SARIMA), holt-winters (Exponential Smoothing), Prophet, and advanced models like Long Short-
Term Memory (LSTM) networks, are used to capture long-term dependencies. 
 
3.1.2.1. ARIMA 

ARIMA, which stands for the Autoregressive Integrated Moving Average, is a commonly used 
statistical technique for forecasting time series data. It works particularly well with data that exhibit 
trends and can be transformed into a stationary series through differencing. The ARIMA model 
integrates three key elements: autoregressive (AR), integration (I), and Moving Average (MA). The 
final model equation incorporates the following components:  

ARIMA(p, d, q): 

Yt = c + ϕ1Yt − 1 + ϕ2Yt − 2 + ⋯ + ϕpYt − p + εt + θ1εt − 1 + θ2εt − 2 + ⋯ + θqεt − q               
(7) 

where Yt represents the differenced data and incorporates both the autoregressive and moving 

average terms. Fitting an ARIMA model involves estimating the parameters ϕ and θ using techniques 
such as the maximum likelihood estimation. Once the model is fitted, it can be applied to forecasts based 
on historical data to provide insights into future trends. 

3.1.2.2. Holt-Winters, and Prophet 
The Holt-Winters model is a classical approach that is best suited for time series data with regular 

seasonal patterns and trends. This method is simple and effective for short-term forecasting. The 
Prophet model, on the other hand, is a flexible, modern approach that employs complex time series data 
with multiple seasonality’s and holiday effects. It provides an intuitive interface for capturing and 
forecasting time series with robust handling of the missing data and outliers. Both models are valuable 
tools in time series forecasting toolkits, each with their strengths and applicable use cases. Prophet 
models the time-series data as an additive combination of the following components: 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜀t                     (8) 

Where: g(t) is the piecewise linear for trend: 

𝑔(𝑡) =  𝑔(𝑡) = (𝑘 + 𝑎(𝑡)𝑇𝛿)𝑡 + (𝑚 + 𝑎(𝑡)𝑇𝛾)        (9) 
or logistic growth model for trend: 

𝑔(𝑡) =  
𝐶

1 + exp (−𝑘(𝑡 − 𝑚))
                    (10) 



6630 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 6625-6643, 2024 
DOI: 10.55214/25768484.v8i6.3415 
© 2024 by the author; licensee Learning Gate 

 

With C the carrying capacity. 

The periodic component for seasonality modeled using Fourier series is:  

𝑠(𝑡) =  ∑ (𝑎𝑛𝑐𝑜𝑠 (
2𝜋𝑛𝑡

𝑃
) + 𝑏𝑛𝑠𝑖𝑛 (

2𝜋𝑛𝑡

𝑃
))

𝑁

𝑛=1

    (11) 

where P is the period of seasonality, and an and bn are coefficients learned from the data. 

𝜀𝑡: 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚Forest performance. 
a) LSTM:  

LSTM networks offer a robust solution for learning and estimating the complex multi-dimensional 
characteristics of dataset. Their architecture, characterized by gating mechanisms, enables them to 
effectively maintain and update information over long sequences effectively [27], [28].  
These gates, forget, input, update, and output gates or layers learn when provided with both new inputs, 
xt and previous output connections ht-1 from multiple time intervals.  

• Forget: controls which data from the memory cell (pipeline) must be chopped off. 

ft= σ (wf ht-1 + wf xt)         (12) 

• Input: decides what new data to retain in the memory pipe.  

it= σ (wi ht-1 + wi xt)         (13) 

A tanh layer follows, creating a vector of fresh contender values, Čt, which may be included in the 
state. 

Čt = tanh (wČ ht-1+ wČ xt)       (14) 

• Update: In this procedure, the forget vector is first multiplied pointwise by cell state. After the 
return of the input gate is acquired, a pointwise additive is executed to amend the cell state with 
fresh parameters that the machine learning algorithm judges important. 

Ct = ftCt-1 + it* Čt              (15) 

• Output: Concludes what would make the next hidden state. 

ot = σ (wo ht-1 + wo xt)        (16) 
ht = ot*tanh(Ct)         (17) 

This architecture makes LSTMs a fundamental tool in modern machine learning for tasks that need 
to understand and predict sequences and capture patterns that span across different time scales.  
 
3.1.3. Hybrid Approaches 

Classical machine learning models and traditional time-series approaches struggle to handle the 
complexities of advanced mobile networks of the likes of 5G networks due to their inability to capture 
nonlinear relationships, limited temporal understanding, inefficiency with high-dimensional data, and 
poor adaptability to real-time conditions In modern mobile network planning, hybrid-based prediction 
models are considered game changers because they often produce more accurate results than classical or 
time-series models alone. Hybrid approaches combine the strengths of different models while mitigating 
their limitations. For instance, time series models can extract features such as trends and seasonality, 
which are then fed into classical machine learning models for further analysis and prediction. 
Additionally, regression can be combined with classification techniques, and ensemble approaches can 
blend the predictions from both time series models and ML models to boost precision and robustness. 

The hybrid methodology employed in this study follows several key stages: data processing and 
feature extraction, clustering technique development, preparation of data for LSTM, training of LSTM 
models for each cluster, and evaluation of model performance. The pseudocode below provides a detailed 
overview of the steps involved in the proposed method. 
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BEGIN 

// 1_IMPORT REQUIRED LIBRARIES & 
DATASET 

INPUT : GET LIBRARIES 

  GET DATASET 

      Load dataset '/path/data.excel' into 
DataFrame (df) 

      Convert 'Timestamp' column to 
datetime 

      Sort DataFrame (df) by 'Timestamp' 

      Extract features 'hour', 'dayofweek', 
'month' from 'Timestamp' 

      Extract 'Signal Strength (dBm)' 
column into variable (signal_data) 

END 

// 2_PRE-PROCESSING 

For each feature in dataset 

       IF missing_value_count (feature) is less than 
threshold  

                 Call fill_missing_value(mean) 

       ELSE 

                 Call remove_records 

ENDIF 

ENDFOR 

// 3_ SCALE  

    Initialize StandardScaler 

    Scale features 'Signal Strength (dBm)', 'hour', 
'dayofweek', 'month' 

    Store scaled features in variable (df_scaled) 

// 4_DBSCAN CLUSTERING 

    Initialize DBSCAN with eps and min_samples 
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    Apply DBSCAN clustering to (df_scaled) 

    Assign cluster labels to DataFrame (df['Cluster']) 

    Filter DataFrame to remove records where cluster 
== -1 (noise points) 

    Display cluster distribution in DataFrame 

// 5_ SEQUENCE PREPARATION FOR LSTM 

    Function create_sequences (data, time_steps): 

        Initialize empty lists X, y 

        For each index from 0 to len(data) - time_steps: 

            Append time_step sequence to X 

            Append next value to y 

        Return X, y 

END FUNCTION 

    Set time_steps variable (e.g., 10) 

    Initialize dictionary 'cluster_data' for sequences 

    For each unique cluster in DataFrame 
(df['Cluster']): 

        Filter data points for the cluster 

        Create sequences using create_sequences 

        Store sequences in 'cluster_data' 

    ENDFOR 

// 6_ TRAIN – TEST SPLIT 

    Initialize dictionary 'train_test_data' 

    For each cluster in 'cluster_data': 

        Split sequences into training (80%) and testing 
(20%) sets 

        Store training and test data in 'train_test_data' 

    ENDFOR 

// 7_ BUILD AND TRAIN LSTM MODEL 
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    Function build_lstm_model (input_shape): 

        Initialize Sequential model 

        Add LSTM layer with 50 units, 
return_sequences=True 

        Add Dropout layer with 20% dropout 

        Add LSTM layer with 50 units, 
return_sequences=False 

        Add Dropout layer with 20% dropout 

        Add Dense layer with 25 units 

        Add Dense output layer with 1 unit 

        Compile model with 'adam' optimizer and 
'mean_squared_error' loss 

        Return model 

    END FUNCTION 

    Initialize dictionary 'models' 

    For each cluster in 'train_test_data': 

        Get X_train, X_test, y_train, y_test for the 
cluster 

        Build LSTM model using input shape from 
training data 

        Train LSTM model on training data for 
specified epochs (e.g., 10) 

        Store trained model in 'models' 

    ENDFOR 

// 8_ MODEL EVALUATION 

    For each cluster in 'models': 

        Get X_test and y_test for the cluster 

        Use the LSTM model to predict on X_test 

        Calculate performance metrics: 

            MAE, MSE, RMSE, R2 score 

        Print performance metrics for the cluster 
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        Plot actual vs predicted signal strength for the 
cluster 

ENDFOR 

 
3.2. Performance Metrics 

Regression analysis and classification analysis are two different techniques that can be used to 
predict the signal strength in mobile networks. In this study, the focus was on predicting the exact 
numerical value of the signal strength at a specific location or time, rather than categorizing it into 
discrete classes. Consequently, the problem was framed as a regression task, and the performance of the 
models was evaluated using metrics such as the Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and R-squared (R²). 

MAE computes the average of the absolute differences between anticipated and actual values. In this 
context, y^ represents the model’s forecasts, y represents the actual values of the data points, and n is 
the total number of samples. MAE offers an intuitive measure of the error in the same units as the 
target variable, with lower MAE values indicating better model accuracy. 

𝑀𝐴𝐸 =
1

𝑛
  ∑ |

𝑛

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)|           (18) 

Conversely, MSE calculates the average of the squared differences between the predicted and actual 
values. Similar to the MAE, lower MSE values indicate better model performance. 

𝑀𝑆𝐸 =
1

𝑛
  ∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
          (19) 

The RMSE is the square root of the MSE, which aligns the error metric with the unit of the target 
variable. Lower RMSE values suggest that the model fits the data more accurately.  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
  ∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
                   (20) 

Finally, R-squared (R²) quantifies the proportion of variance in the dependent variable that can be 
predicted based on the independent variables. The values span from 0 to 1, with higher values which 
implies that the model accounts for a larger share of the variance in the target variable. An R² value of 1 
represents a perfect fit, whereas an R² value of 0 indicates that the model explains none of the variances. 
If R² is negative, it indicates that the model performs worse than the horizontal line representing the 
mean of the data. 
 
4. Results and Analysis 

An Acer TravelMate laptop equipped with an Intel® Core™ i7 8th Gen processor and 16 GB RAM 
was used to preprocess the data and train the models. Additionally, Jupyter Notebook via Anaconda, 
running on Windows 10, was employed to implement the machine learning framework using Python 
libraries such as NumPy [29], Pandas [30], Matplotlib [31], Seaborn [32], and Scikit-learn [33], 
[34]. The performance of the different models was compared using the evaluation metrics mentioned 
earlier. It is also important to ensure that the test data are representative of the training data, which can 
be visualized by mapping the distributions of the key features and comparing them between the training 
and test sets. For all models, 80% of the data were used for training, whereas the remaining 20% were 
reserved for testing. 
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Figure 1.   
Signal strength distribution. 

 
When looking at the distributions in Fig. 1, the test set appears to be a subset of the training set, 

precisely what is needed for ML to work. 
 
4.1. Classical Machine Learning Results and Analysis 

In classical machine learning, the performances of various ML models (Decision Tree, Linear 
Regression, Random Forest, and Support Vector Machine) across various network technologies (3G, 
4G, 5G, and LTE) can be interpreted based on the subsequent metrics: Mean Absolute Error (MAE), 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R2). 
 

Table 1.  
3G. 

Model MAE MSE RMSE R2 
Decision Tree 3.43944 18.44601 4.29488 -1.11043 
Linear Regression 2.38735 8.73654 2.95576 0.00043 
Random Forest 2.90180 13.25067 3.64015 -0.51603 
Support V. Machine 2.38946 8.77671 2.96255 -0.00415 

 

Table 2.  
4G. 

Model MAE MSE RMSE R2 
Decision tree 4.51068 31.48664 5.61130 -0.96177 
Linear regression 3.23185 16.13102 4.01634 -0.00504 
Random forest 3.91765 23.32881 4.82999 -0.45350 
Support V. machine 3.22228 16.09559 4.01193 -0.00283 

 
Table 3.  
5G. 

Model MAE MSE RMSE R2 
Decision Tree 5.52770 49.30279 7.02159 -0.93657 
Linear Regression 4.04576 25.44547 5.04435 0.00052 
Random Forest 4.78050 36.71026 6.05890 -0.44195 
Support V. Machine 4.04390 25.43296 5.04311 0.00101 
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Table 4.  
LTE. 

Model MAE MSE RMSE R2 
Decision Tree 4.49545 31.79257 5.63849 -1.01762 
Linear Regression 3.15644 15.78044 3.97246 -0.00145 
Random Forest 3.80503 22.42947 4.73598 -0.42342 
SVM 3.16611 15.81356 3.97663 -0.00356 

 
Across all the network technologies analyzed, 3G, 4G, 5G, and LTE, Linear Regression steadily 

emerged as the best performing model for predicting signal strength. It provided the most accurate 
predictions with the lowest error metrics and the least negative (or slightly positive) R2 scores. In 
contrast, Decision Tree models demonstrate poor performance across the board, indicating that they are 
not well-suited for this particular task. Random Forest and Support Vector Machine models show 
moderate performance, falling somewhere between the effectiveness of Linear Regression and the 
inadequacy of the Decision Trees.  

 

 
Figure 2.   
LTE Linear Regression signal strength prediction. 

 
Figure 3.  
LTE Decision Tree signal strength prediction. 

 
This analysis indicates that for tasks involving the prediction of signal strength, Linear Regression 

is the most reliable model to use across different network types. 
 
4.2. Time Series Results and Analysis 

For the time-series, the results in Tables V through VIII present a comparative analysis of the 
performance of several time-series models: ARIMA, Holt-Winters, Prophet, and LSTM across various 
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network technologies: 3G, 4G, 5G, and LTE. These tables provide insights into how well each model 
predicts signal strength in different types of mobile networks. 
 

Table 5.  
3G. 

Model MAE MSE RMSE R2 
Arima 1.96226 7.81095 2.79481 -0.09629 
Holt-Winters 2.74906 11.90074 3.44974 -0.30255 
Prophet 5.1e+11 3.4e+23 5.8e+11 -3.7e+22 
LSTM 2.47426 9.16039 3.02661 -0.01619 

 
Table 6. 
4G. 

Model MAE MSE RMSE R2 
Arima 3.08521 16.88186 4.10875 -0.18446 
Holt-Winters 3.52352 19.22481 4.38461 -0.17002 
Prophet 3.25537 16.41435 4.05146 0.00102 
LSTM 3.28256 16.91177 4.11239 -0.04093 

 
Table 7. 
5G. 

Model MAE MSE RMSE R2 
Arima 4.73714 34.10862 5.84026 0.00045 
Holt-Winters 4.18916 27.15697 5.21123 -0.15387 
Prophet 3.87824 23.61668 4.85970 -0.00345 
LSTM 3.93363 24.22849 4.92224 -0.00014 

 

Table 8. 
LTE. 

Model MAE MSE RMSE R2 
Arima 3.69090 18.07970 4.25202 -0.03518 
Holt-Winters 5.03822 39.69271 6.30021 -1.46259 
Prophet 3.28218 16.29148 4.03627 -0.01074 
LSTM 3.11807 15.65761 3.95697 -0.01598 

 

Across all networks, no model consistently performs the best, but LSTM generally shows a more 
stable performance compared to the others, particularly in the LTE and 5G networks. Prophet 
performance is inconsistent, with very poor results in 3G networks and better performance in 4G and 
5G networks. ARIMA shows a slightly better performance in 5G and LTE networks, with only a 
positive R2 score in 5G. Holt-Winters consistently underperforms, particularly in LTE networks. The 
R2 scores were predominantly negative across all models and networks, indicating that the models 
struggled to explain the variance in the signal strength data effectively. This implies potential 
overfitting or underfitting issues, depending on the model and the network. The MAE and RMSE 
values further highlight that the model predictions differ significantly from the actual signal strengths, 
particularly for more complex network technologies such as 5G and LTE.  
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Figure 4.   
LSTM signal strength prediction for LTE. 

 

 
Figure 5.  
Prophet signal strength prediction for LTE. 

 

These results highlight the challenges of predicting the signal strength across different network 
technologies and underscore the need for careful model selection and tuning to achieve better 
performance. 

4.3. Hybrid Approach Results and Analysis 
In the context of mobile networks, signal strength is a critical parameter that reflects the quality of 

the connection between a mobile device and cell tower. Accurately predicting signal strength over time 
is essential for optimizing network performance, enhancing user experience, and efficiently managing 
network resources. This study’s hybrid prediction approach combines clustering and a time-series model 
which make it better suited for the dynamic and variable environments of advanced mobile networks 
like 5G networks. This approach begins with clustering, where we group areas or time periods with 
similar signal strength patterns, then apply a time series model to each cluster.  
 
4.3.1. Clustering 

Clustering, as an unsupervised ML technique, is mostly used for discovering patterns in dataset 
rather than for making predictions as supervised ML algorithms do. However, clustering can still play a 
role in prediction in an indirect manner, often by enhancing other ML models or enabling certain types 
of predictions. K-means, DBSCAN, and agglomerative clustering are three commonly used clustering 
procedures, respectively suited to different types of data and applications. K-means is ideal for large 
datasets where the number of clusters is known in advance and the clusters are spherical in shape. 
DBSCAN is excellent for identifying clusters of arbitrary shapes and handling noise, making it useful 
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for applications involving complex or noisy data. Agglomerative clustering provides a hierarchical 
approach, that offers flexibility and interpretability, particularly in smaller datasets or scenarios where 
the cluster hierarchy is of interest. Clustering facilitates the identification of various patterns and data 
segments. Figure 6 illustrates the distribution of clusters based on the latitudes and longitudes in this 
research. 
 

 
Figure 6.   
Signal strength clusters distribution. 

 
To assess the effectiveness of the cluster models, various evaluation metrics are employed, including 

the Silhouette score, Davies-Bouldin index, and Calinski-Harabasz Index. The Silhouette score 
quantifies the similarity of an object to its own cluster in relation to other clusters. A higher Silhouette 
score indicates well-defined clusters, meaning that the data points are well-matched within their 
assigned clusters and are clearly distinct from those in other clusters.  

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
                        (21) 

The Davies-Bouldin index metric evaluates the quality of clustering by assessing the average ratio 
of intra-cluster distance to inter-cluster separation. Equation (18) shows how to calculate it. 

𝐷𝐵 =  
1

𝑛
∑ max 

𝑖≠𝑗 
(
𝑠𝑖 + 𝑠𝑗

𝑑𝑖𝑗
)

𝑛

𝑖=1

                     (22) 

Lower values indicate better clustering performance. The Calinski-Harabasx indicator is employed 
to assess the clustering algorithms, particularly when the goal is to maximize the separation between 
clusters while minimizing the spread within clusters. This is particularly useful when comparing the 
performance of different clustering algorithms or the same algorithm with different numbers of clusters. 
A higher value implies that the clusters are well-separated and compact, indicating that the clustering 
solution is effective, and lower values indicate that the clusters may overlap significantly or that the data 
points within clusters are not well-grouped, indicating a less effective clustering solution. 

TABLE IX contrasted the most used clustering models across all networks, and the result shows 
that DBSCAN outperforms the other models in terms of Silhouette Score across all network types (3G, 
4G, 5G, and LTE), indicating it creates more distinct and well-separated clusters. 
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Table 9. 
Silhouette score index. 

Model 3G 4G 5G LTE 
K-Means 0.3599 0.3644 0.3600 0.3585 
DBSCAN 0.4960 0.5128 0.5304 0.5080 
Agglomerative 0.2855 0.3025 0.3068 0.3088 

 
The increasing scores from 3G to 5G suggest that DBSCAN may be particularly well-suited for 

clustering data as network technology advances. Therefore, in this study, to address the temporal and 
spatial dynamics inherent in modern mobile networks, particularly in 5G networks, we used the 
DBSCAN clustering model to construct the hybrid model. 

 
4.3.2. The Clustered Temporal Memory Networks (CTMN) 

By applying a powerful time series to each cluster, the model can make accurate predictions based 
on the specific characteristics of each cluster. This research hybrid method, CTMN, combines the 
benefits of unsupervised learning, through DBSCAN clustering, and supervised learning, via LSTM 
networks, to produce more accurate and insightful predictions. The process began with clustering. Once 
clustering has grouped the data into these segments, each cluster can be considered a more 
homogeneous subset of the overall dataset. For each cluster, an LSTM model was trained. By training 
separate LSTM models for each cluster, the model learns the unique historical patterns that characterize 
energy consumption within that cluster. The output shown in TABLE X consists of LTE performance 
metrics for LSTM, and CTMN in its various clusters. 
 

Table 10. 
CTMN clusters VS. LSTM. 
Model MAE MSE RMSE R2 
CTMN_0 3.08798 13.97205 3.73792 -0.16728 
CTMN_1 2.69463 10.71239 3.27298 -0.03094 
CTMN_3 3.08843 14.43108 3.79882 -0.06563 
CTMN_5 2.60127 10.40344 3.22544 -0.00596 
LSTM 3.11807 15.65761 3.95697 -0.01598 

 
This is further visualized in the chart in Figure 7, which offers a clearer understanding of the reader. 
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Figure 7.  
Comparison of LSTM and CTMN clusters. 

 
The chart visually demonstrates that the CTMN clusters, particularly CTMN_1 and CTMN_5, 

outperform the LSTM model across these metrics, highlighting the significant improvements achieved 
by the CTMN model. 
 
5. Conclusion 

In conclusion, this study effectively addressed the prediction shortcomings of traditional models by 
integrating clustering with time-series analysis. By combining DBSCAN's ability to manage spatial 
variability and outliers in 5G data with LSTM's strength in capturing long-term dependencies and 
nonlinear time-series patterns, the hybrid model significantly improved prediction accuracy compared to 
conventional methods, offering a scalable solution for next-generation mobile networks. The 
methodology can also be applied to other areas dealing with heterogeneous data, such as energy 
consumption forecasting, financial market analysis, and customer behaviour prediction. 

However, while this approach has clear advantages, it also introduces challenges. The quality of the 
clustering process is crucial, as poor clustering can hinder LSTM performance. Additionally, the 
complexity of this method requires expertise in both clustering techniques and time-series modelling. 
LSTM models also rely on sufficient data within each cluster, often necessitating extensive data 
collection. 

Future research should focus on addressing sequential bias in cluster averaging, mitigating the 
computational overhead of the hybrid DBSCAN-LSTM model, and optimizing LSTM hyperparameters 
to further improve prediction accuracy. 
 
Copyright:  
© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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