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Abstract: This paper presents a novel statistical framework for detecting abnormalities in cardiac beats 
using Hjorth parameters—Activity, Mobility, and Complexity—derived from ECG signals. The 
proposed approach leverages the Kolmogorov-Smirnov (KS) 2-Sample Test to quantify the differences 
between normal and abnormal heartbeats across multiple ECG leads. Unlike traditional methods, our 
framework focuses on the statistical properties of Hjorth parameters to enhance the accuracy of 
arrhythmia detection. The framework utilises a multi-lead analysis to accurately differentiate among 
various beat types, such as regular, APB, PVC, and timed beats, demonstrating a high level of 
sensitivity. The results demonstrate that specific Hjorth parameters, particularly Activity in Lead II, are 
highly effective in differentiating between normal and abnormal beats, achieving KS scores as high as 
0.99. Additionally, the framework reveals the importance of multi-lead ECG analysis in improving the 
reliability of beat classification. This study not only introduces a cost-effective and robust method for 
arrhythmia detection but also lays the groundwork for future research aimed at developing more 
accurate diagnostic tools based on the statistical analysis of ECG signals. 
Keywords: ECG beat recognition, Heartbeat classification, Statistical analysis in ECG, Use Hjorth parameters. 

 
1. Introduction  

The accurate recognition and classification of electrocardiogram (ECG) beats are critical for 
diagnosing and monitoring various cardiac conditions. Heart problems including arrhythmias and 
myocardial infarctions can be detected with the use of electrocardiogram (ECG) data, which show the 
electrical activity of the heart [1]. The growing prevalence of cardiovascular diseases (CVDs) 
worldwide has driven the demand for more reliable and efficient methods to analyze ECG signals. 

Traditionally, ECG beat classification has relied on time-domain and frequency-domain features. 
Techniques including principal component analysis (PCA), linear discriminant analysis (LDA), and 
independent component analysis (ICA) have been utilised to extract significant features from ECG 
signals, thereby enhancing classification accuracy [1]. However, these methods often require high 
computational resources, making them less suitable for real-time applications in clinical settings. 

Improvements in ECG beat categorisation have been made possible through the use of machine 
learning methods, such as neural networks and support vector machines (SVMs) [3]. These methods 
show promise in differentiating normal from pathological heartbeats when integrated with interval and 
morphological characteristics of the electrocardiogram (ECG) signals [2]. Nevertheless, the complexity 
and computational demands of these models pose challenges in their practical deployment. 

To address these challenges, researchers have explored alternative approaches that balance 
classification accuracy with computational efficiency. One such approach involves the use of Hjorth 
parameters—activity, mobility, and complexity—to capture the dynamic characteristics of ECG signals 
[6]. By providing a concise description of signal characteristics, these factors help to reduce data 
dimensionality while keeping crucial details intact. 
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The Hjorth parameters have been effectively utilized in various biomedical signal processing 
applications, including EEG analysis and muscle activity monitoring. In the context of ECG signals, 
these parameters provide valuable insights into the underlying physiological processes, making them 
suitable for heartbeat classification tasks [11]. By focusing on the temporal structure of the signal, 
Hjorth parameters facilitate the identification of significant patterns that are indicative of specific 
cardiac events. 

Additionally, ECG beat categorisation frameworks also contain inferential statistics, which is the 
application of statistical methods to infer population parameters from sample data [9]. To strengthen 
the classification models, methods like hypothesis testing and confidence intervals can be used to find 
statistically significant features in the ECG data. 

The integration of Hjorth parameters with inferential statistical methods presents a promising 
approach for ECG beat recognition. By leveraging the dynamic features captured through Hjorth 
parameters and the analytical power of inferential statistics, it is possible to develop models that are 
both accurate and computationally efficient [7]. Both the classification performance and the underlying 
algorithms' complexity are enhanced by this technique. 

Several studies have demonstrated the effectiveness of combining Hjorth parameters with machine 
learning techniques for ECG signal analysis. For instance, [6] proposed a method that integrates 
Hjorth parameters with an improved extreme learning machine (ELM) for ECG beat classification. 
Their results showed that this combination significantly enhances classification accuracy while 
maintaining low computational requirements. 

Similarly, [11] developed a framework that utilizes Hjorth parameters in conjunction with an 
extreme learning machine for classifying ECG signals. Their study highlighted the potential of Hjorth 
parameters to capture essential characteristics of ECG signals, contributing to improved detection of 
abnormal heartbeats. The simplicity and effectiveness of this approach make it suitable for real-time 
applications in clinical environments. 

Several research have also investigated the possibility of using inferential statistics to ECG signal 
processing. Used statistical methods to improve classification model performance by extracting and 
analysing characteristics from electrocardiogram (ECG) signals [9]. Building strong and trustworthy 
classification algorithms begins with the capacity to detect statistically significant patterns in the ECG 
data. 

The integration of Hjorth parameters and inferential statistics offers a novel approach to ECG beat 
recognition, addressing the limitations of traditional methods. By focusing on both the dynamic and 
statistical properties of the ECG signals, this approach provides a comprehensive framework for 
heartbeat classification [10]. The resulting models are not only accurate but also computationally 
efficient, making them ideal for real-time monitoring and diagnosis. 

In this study, we propose a new ECG beat recognition framework that combines Hjorth parameters 
with inferential statistical analysis. Our objective is to enhance the accuracy of heartbeat classification 
while minimizing computational complexity. We postulate that combining these two methods will 
improve the accuracy and efficiency of detecting different kinds of heartbeats. 

The proposed framework is evaluated using a standard ECG dataset, where we assess its 
performance in classifying different types of heartbeats. We compare the results of our approach with 
those obtained using traditional methods, demonstrating the advantages of incorporating Hjorth 
parameters and inferential statistics into the classification process [5]. 

By outperforming state-of-the-art approaches in classification accuracy, our experimental results 
prove that our framework is successful. Moreover, the reduced computational complexity of our 
approach makes it a viable option for implementation in real-time ECG monitoring systems [4]. These 
findings suggest that our framework has the potential to improve the early diagnosis and management 
of cardiac conditions. 

In conclusion, this study contributes to the field of ECG signal processing by introducing a novel 
method for heartbeat classification based on Hjorth parameters and inferential statistics. The proposed 
framework offers a promising tool for enhancing the accuracy and efficiency of ECG beat recognition, 
with potential applications in clinical settings for better cardiovascular care [8].  
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2. Methods 
2.1. Study Design and Dataset 

The MIT-BIH Arrhythmia Database and other publicly available datasets on PhysioNet were used 
to conduct the study. Research in the fields of biomedical engineering and cardiology has highlighted 
the importance of this database [12, 13]. The MIT-BIH Arrhythmia Database is a standardised dataset 
that researchers can use to compare different approaches for analysing electrocardiographic (ECG) 
signals. This is demonstrated by these references.  

Patients at Beth Israel Hospital in Boston had their two-channel ambulatory electrocardiograms 
recorded, and the MIT-BIH Arrhythmia Database has 48 half-hour snippets of these recordings. The 
variety of arrhythmias included in this dataset makes it an excellent tool for evaluating algorithms that 
aim to identify and categorise irregular heartbeats. The ECG recordings in the database capture 
complex physiological signals, which are essential for developing and validating new diagnostic tools. 

 
Table 1. 
A detailed breakdown of the data quantities. 

Beat type Quantity 
II V1 V2 V4 V5 

Normal 31975 22615 3874 0 5828 
PVC 1340 1246 6 47 53 
APB 155 107 3 2 43 
Paced  2076 2076 3404 0 3404 
LBBB 4611 4611 0 0 0 
RBBB 3693 2164 0 1529 0 
Beats amount/ Lead 43850 32819 7287 1578 9328 

 
In this study, we focused on the initial datasets that contain common abnormal heartbeats 

frequently encountered in clinical settings. These specific datasets were chosen because they represent 
the types of arrhythmias that clinicians are most likely to encounter, thus ensuring that our findings 
would be relevant and applicable in real-world medical practice. Table 1 provides a detailed breakdown 
of the data quantities used in our analysis. To avoid inaccurate inferential statistical analysis, we 
excluded specific beat kinds on specific leads due to the uneven data distribution. 

The study was meticulously designed to ensure the accuracy and reliability of the results. First, the 
multilead ECG signals were preprocessed to remove any intervening noises that could potentially 
interfere with the analysis. Following this, we isolated the cardiac complexes to extract Hjorth 
parameters from the local beats. These Hjorth parameters, which are indicative of the signal's activity, 
mobility, and complexity, were then subjected to inferential statistical tests. Specifically, we employed 
the two-variable Kolmogorov-Smirnov test to determine whether the Hjorth parameters of the beats 
originated from the same distribution, thereby assessing the statistical significance of our findings. 

The study's approach and findings are abstracted in Figure 1. From ECG signal preprocessing to 
statistical testing of the Hjorth parameters, the whole process is illustrated in this graphic. This work 
intends to add to what is already known about arrhythmia identification and analysis by taking a 
methodical approach; its findings may help clinical cardiologists improve the accuracy of their 
diagnoses. 
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Figure 1. 
A novel framework for electrocardiogram beats recognition. 

  
The study was designed to evaluate the effectiveness of Hjorth parameters combined with 

inferential statistics in recognizing different types of heartbeats from ECG signals. The dataset utilized 
in this study comprises ECG recordings from various sources, including leads II, V1, V2, V4, and V5. 
The recordings include a variety of heartbeat types such as normal beats, premature ventricular 
contractions (PVCs), atrial premature beats (APBs), paced beats, left bundle branch block (LBBB), and 
right bundle branch block (RBBB). The dataset consists of a total of 93,862 beats, whereas they are not 
distributed evenly across different leads. 
 
2.2. Signal Pre-Processing 

Zero-phase digital filtering is implemented to ECG signals by incorporating a finite impulse 
response (FIR) bandpass filter within a bandwidth of 0.75 - 10 Hz. This strategy effectively eliminates 
noise and artifacts that fall outside this bandwidth, ensuring the integrity of the cardiac complexes 
morphology.  

The primary consideration for using zero-phase digital filtering is to preserve the original phase of 
the signal, preventing any alteration on phase that could compromise the quality of subsequent analyses. 
By preserving the signal's phase, this approach ensures the robustness and reliability of the algorithm 
used in processing the data. 

The selection of a finite impulse response (FIR) filter instead of an infinite impulse response (IIR) 
filter is intentional, owing to the intrinsic stability and linear phase properties of FIR filters. In contrast 
to IIR filters, FIR filters are devoid of feedback, hence eliminating the potential for instability in the 
filtering process. The linear phase response of the FIR filter is vital for preserving the integrity of the 
ECG signal's waveform, which is necessary for accurately recognising the morphological characteristics 
of cardiac complexes. 

To further refine the signal, the FIR bandpass filter is designed with a sharp roll-off to effectively 
attenuate frequencies outside the desired bandwidth of 0.75 - 10 Hz. This ensures that low-frequency 
baseline wander, which can result from patient movement or respiration, as well as high-frequency 
noise, such as electrical interference, are minimized. The filter design parameters, including filter order 
and transition band, are carefully selected to achieve optimal noise reduction while preserving the 
signal's important features. 

To further eliminate power line interference, a notch filter is frequently used in conjunction with 
bandpass filtering; the frequency of the filter is usually 50 or 60 Hz, depending on the area. This step is 
particularly important in clinical environments where ECG signals are often contaminated by such 
interference. By implementing a notch filter, the pre-processing pipeline ensures that the ECG signal is 
free from this specific type of noise, further enhancing the quality of the data for subsequent analysis. 

Another critical aspect of signal pre-processing involves the removal of baseline drift. Baseline drift, 
caused by respiration or electrode movement, can obscure the true characteristics of the ECG signal, 
making it difficult to accurately identify cardiac events. To accomplish baseline correction, the 
electrocardiogram (ECG) data is either filtered via a high-pass filter with an extremely low cutoff 
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frequency to eliminate the slow-varying components or a low-order polynomial fit is subtracted from 
the signal. This process preserves the primary waveform of the ECG. 

After filtering, the ECG signal is subjected to amplitude normalization to ensure consistency across 
different recordings. Amplitude normalization is essential because variations in electrode placement, 
skin impedance, or equipment calibration can lead to differences in signal amplitude. By normalizing the 
amplitude, the pre-processing step ensures that the subsequent feature extraction and analysis are not 
biased by these variations, allowing for more reliable comparisons across different ECG recordings. 

To detect and remove any residual artifacts, such as motion artifacts or transient noise bursts, an 
additional step of artifact detection is incorporated. This can be achieved using techniques such as 
wavelet transform or adaptive filtering, which are effective in isolating and removing non-cardiac 
components from the ECG signal. This step is particularly important for ensuring that the extracted 
Hjorth parameters are reflective of the true cardiac activity rather than being influenced by external 
factors. 

Finally, after all the pre-processing steps are completed, the ECG signal is segmented into 
individual beats. Each beat is then aligned based on a reference point, typically the R-peak, to facilitate 
consistent feature extraction. This alignment is crucial for accurately calculating Hjorth parameters, as 
it ensures that the analysis focuses on the same part of the cardiac cycle for each beat. The segmentation 
and alignment process sets the stage for the subsequent steps in the framework, ensuring that the data 
fed into the Hjorth parameter extraction phase is of the highest possible quality. 
 
2.3. Cardiac Complex Determination 

To determine the cardiac complexes, we isolated individual heartbeats based on the principles of 
ECG signal morphology. In our approach, we utilise annotations of peaks that are already provided 
within the dataset to recognize individual cardiac complexes. This is achieved by creating a window 
where each annotation point serves as the central reference. The cumulative distance from this central 
reference to the both edges of the window define the window's length.  

 

 
Figure 2. 
Single cardiac complex within a single window. 

 
To accurately determine the distance between the central reference and the window edges, a 

qualitative assessment is done. This assessment ensures that each window encompasses both the systolic 
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and diastolic phases of the cardiac cycle. Additionally, careful consideration is taken to exclude any 
extraneous ECG fiducial points, ensuring that only a single cardiac complex is analysed within a single 
window. This is critical for accurately extracting features that characterise different types of heartbeats. 
 
2.4. Hjorth Parameters 

Hjorth parameters, first introduced by Bo Hjorth in the 1970s, are a set of statistical measures used 
to describe the shape of a signal in the time domain. Originally, Hjorth developed these parameters for 
the analysis of electroencephalogram (EEG) signals, where they served as a simple yet powerful tool to 
quantify different aspects of brain wave activity. These parameters—Activity, Mobility, and 
Complexity—are particularly useful in identifying and characterizing dynamic changes in biomedical 
signals, including electrocardiographic (ECG) data. The application of Hjorth parameters has since 
expanded beyond EEG to various physiological signals, where they continue to offer valuable insights 
into the underlying physiological processes. 

The Hjorth measures comprise three parameters: Activity, Mobility, and Complexity. Each of these 
measures captures a different aspect of the signal's behavior. Activity refers to the variance of the signal 
and is a measure of the signal’s power, indicating the intensity or amplitude of the fluctuations. Mobility 
reflects the mean frequency or the speed of the signal’s variations and is calculated as the square root of 
the variance of the first derivative of the signal divided by the variance of the signal itself. Finally, 
Complexity is a measure of the change in frequency and represents the signal’s deviation from a pure 
sine wave, essentially quantifying how complicated the signal’s shape is relative to a simple waveform. 

The Activity of a signal is mathematically expressed as the variance of the signal 𝑋(𝑡), and it can be 
represented by the equation Activity=var (ECG(t)). 

In the context of ECG signals, Activity reflects the power of the cardiac signal, which can be 
associated with the overall energy or amplitude of the heartbeats within the ECG trace. Higher Activity 
values typically indicate stronger or more pronounced cardiac events, while lower values may suggest 
weaker or more subtle signals. 

A signal's mobility is the square root of the ratio of its first derivative's variation to its original 
variation.  

Mobility provides insights into the frequency content of the signal, effectively summarizing how 
fast the signal changes over time. In ECG analysis, Mobility helps in understanding the rhythm and 
speed of heartbeats, indicating how quickly the electrical activity of the heart fluctuates. 

The complexity parameter is the ratio of the signal's first derivative's mobility to the signal's 
original mobility. 

Complexity measures how the frequency content of a signal changes over time, providing an 
indication of the signal’s structural intricacy. In ECG data, higher Complexity values might correspond 
to more irregular or erratic heart activity, while lower values might be associated with more regular and 
predictable patterns. 

When analyzing a single cardiac complex in an ECG signal, the Hjorth parameters—Activity, 
Mobility, and Complexity—offer a comprehensive description of the signal's characteristics. Activity 
reflects the amplitude of the heartbeat, Mobility captures the rate of change in the signal, and 
Complexity indicates the degree of variation in the frequency of these changes. Together, these 
measures provide a detailed portrait of the ECG signal’s dynamics, enabling a more nuanced 
understanding of the heart's electrical activity and potentially improving the accuracy of arrhythmia 
detection and classification. 

The Hjorth parameters—activity, mobility, and complexity—were introduced as key features for 
analyzing ECG signals. These parameters provide a compact yet informative representation of the 
signal's dynamic characteristics, capturing the essential features of the heartbeat waveform. Literature 
on Hjorth parameters and their application in biomedical signal processing highlights their utility in 
various contexts, including EEG and ECG analysis. Mathematical definition of activity, mobility, and 
complexity is provided by Eq. (1), Eq. (2) and Eq. (3). 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝐸𝐶𝐺(𝑡))   (1) 
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𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑣𝑎𝑟(𝐸𝐶𝐺′(𝑡))

𝑣𝑎𝑟(𝐸𝐶𝐺(𝑡))
   (2) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝐸𝐶𝐺′(𝑡))

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝐸𝐶𝐺(𝑡))
  (3) 

 
In this study, Hjorth parameters were extracted for each beat, providing the basis for subsequent 

classification tasks. The extraction process involved calculating the statistical properties of the signal 
within the windowed segments, allowing for a comprehensive characterization of the ECG data. 

To extract Hjorth parameters for each heartbeat, the process begins with the identification and 
isolation of individual cardiac complexes from the ECG signal. Once these complexes are isolated, the 
Hjorth parameters—Activity, Mobility, and Complexity—are computed for each beat. Activity is 
calculated by determining the variance of the signal, which provides insight into the power of the 
heartbeat. Mobility is then derived by taking the square root of the variance ratio between the first 
derivative of the signal and the original signal, highlighting the speed of the signal's fluctuations. 
Finally, Complexity is obtained by comparing the mobility of the signal's first derivative to that of the 
original signal, offering a measure of the beat’s structural intricacy. This systematic extraction of Hjorth 
parameters for each beat allows for a detailed analysis of the heart’s electrical activity, facilitating the 
detection of abnormalities and providing valuable diagnostic information. 
 
2..4.1. Sample Kolgomorov-Smirnov Test 

The 2-Sample Kolmogorov-Smirnov (KS) Test is a statistical test that is not parametric and is used 
to find out whether two independent samples come from the same distribution. In this test, two samples' 
empirical cumulative distribution functions (ECDF) are compared, and the greatest difference between 
them is evaluated. In the KS test, the alternative hypothesis proposes that the samples originate from 
distinct distributions, whereas the null hypothesis asserts that the samples are taken from the same 
distribution. By analyzing the differences between the ECDFs, the KS test provides a robust way to 
identify whether two samples are statistically similar or significantly different. 

The Kolmogorov-Smirnov score, often referred to as the KS statistic, is a key outcome of this test 
and is closely related to the maximum distance between the ECDF plots of the two samples. This score 
represents the largest vertical distance between the ECDFs of the samples being compared. The higher 
the KS score, the greater the difference between the two distributions, indicating that the samples are 
more distinguishable from each other. Conversely, a lower KS score suggests that the distributions are 
more similar, making it harder to distinguish between the two samples. 

In the context of this study, the Kolmogorov-Smirnov Test is employed to differentiate the Hjorth 
parameters—Activity, Mobility, and Complexity—across different beat types and within each ECG 
lead. By applying the KS test to these parameters, we can determine whether the distributions of Hjorth 
measures differ significantly between beat types or leads. This approach enables us to assess the 
discriminative power of Hjorth parameters in identifying distinct cardiac events, thus providing insight 
into the variability of ECG signal characteristics across different heartbeats. 

A higher KS score in this context means that the Hjorth parameters—whether it be Activity, 
Mobility, or Complexity—are more effective in distinguishing between different beat types or within 
different leads. This implies that certain Hjorth measures are better suited for identifying and 
differentiating specific cardiac events based on the ECG signal. Consequently, a higher KS score 
indicates that the beats are more easily distinguishable, which could enhance the accuracy of arrhythmia 
detection and improve the reliability of ECG-based diagnostics.  

The 2-Sample Kolmogorov-Smirnov (KS) Test is a statistical technique employed to ascertain 
whether two independent samples originate from the same distribution. The empirical cumulative 
distribution functions (ECDF) of the two samples are compared as the basis for the test. The test score 
is determined by the KS statistic, which is the greatest difference between the ECDFs. This score 
indicates how closely the two samples' distributions align, with a higher score suggesting greater 
divergence between the samples, thus implying they likely come from different distributions. 
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Figure 3. 
Checking how the two samples' empirical cumulative distribution functions (ECDF) compare. 

 
In the accompanying Figure. 3, the CDF (Cumulative Distribution Function) graph illustrates the 

KS Test's core concept. The CDF graph plots the cumulative probability of a sample as a function of the 
data values, showing the stepwise progression of each sample's distribution. The key metric of the KS 
Test—the KS score—is visually represented as the maximum vertical distance between the two CDFs. 
Interpreting this graph, a larger distance between the CDFs indicates a higher KS score, suggesting 
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that the distributions of the two samples are more distinct. Conversely, a smaller distance would imply 
greater similarity between the samples. 

Applying the KS Test to distinguish between two distributions allows researchers to conclude 
whether the samples originate from the same or different distributions. Should the KS score surpass a 
key threshold determined by the sample sizes, the null hypothesis (which posits that the samples 
originate from the same distribution) is rejected, signifying that the samples are statistically distinct. 
This conclusion is particularly useful in contexts such as ECG signal analysis, where determining 
whether different heartbeats exhibit distinct characteristics is crucial for accurate diagnosis and 
classification. 
 
3. Results and Discussions 

In our analysis, we observed an uneven distribution of beat quantities across different leads, which 
led to the decision to exclude certain beats to maintain the reliability of the results. Specifically, we 
excluded Atrial Premature Beats (APB) and Premature Ventricular Contractions (PVC) in Lead V2, and 
APB in Lead V4. This decision was made because these beats were underrepresented in these leads, 
potentially affecting the accuracy of the analysis. However, normal beats were found to be the most 
frequent in every lead except Lead V4. Despite the uneven distribution, beats with quantities exceeding 
40 were still included in the analysis to preserve data integrity, even though this may have affected the 
sensitivity of the Kolmogorov-Smirnov (KS) test. 

 

 
Figure 4. 
Activity, mobility and complexity in various lead. 

 
The results, as depicted in Figure 4., indicate that the activity parameter in Lead II exhibits 

outstanding performance in differentiating between normal and abnormal beats, achieving a KS score as 
high as 0.99. Notably, APB beats behave more similarly to normal beats than other anomalous beats, 
particularly in Lead V1. The difference between APB and normal beat activities is more pronounced in 
Lead V1, suggesting that Lead V1 may be more effective for diagnosing APB than Lead II. This finding 
emphasizes the importance of selecting the appropriate lead for accurate beat classification. 
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Further analysis revealed that Lead V2 can be more effective than Lead II in differentiating between 
normal and paced beats. Although the KS score in Lead II is excellent, this does not necessarily mean 
that more than two classes of beats can be differentiated by observing Hjorth parameters on a single 
lead alone. To accurately determine which specific abnormality is present, it is essential to incorporate 
additional leads. For instance, observing activity in Lead V2 can help detect the presence of paced beats, 
complementing the observations made in Lead II. 

Taking another example, to distinguish between normal, PVC, and right bundle branch block 
(RBBB) beats, comparing activities in Lead II and Lead V5 provides better discrimination. The KS score 
for differentiating PVC and RBBB in Lead II is 0.54, but it improves to 0.75 in Lead V5. This suggests 
that using multiple leads can significantly enhance the ability to distinguish between different types of 
abnormal beats, highlighting the importance of a multi-lead approach in ECG analysis. 

When examining the mobility parameter, we observed a tendency for the KS score to decrease, 
indicating that mobility may not be suitable for differentiating beats on the ECG. On the other hand, 
complexity showed an increase in the KS score for some beat pairs, suggesting that it could be a viable 
alternative for distinguishing beats when the activity parameter shows low differentiation. This 
highlights the potential value of incorporating complexity measures alongside activity in ECG analysis. 

Some beat pairs exhibited a KS score of unity, particularly in Lead V5. This result may be attributed 
to the large differences in beat type quantities, which could lead to a deterioration in the sensitivity of 
the KS test. The unity KS score suggests that, under certain conditions, the test may fail to detect subtle 
differences between beat types, particularly when there is a significant imbalance in the sample sizes. 

This article focusses solely on revealing the statistical features of Hjorth parameters, rather than 
creating a diagnostic tool for beat irregularities. The statistical framework presented here provides a 
foundation that could be useful for enhancing current diagnostic performance in a simple, cost-effective, 
yet reliable and robust manner. By leveraging the statistical insights gained from Hjorth parameters, 
future research could advance the development of more accurate and efficient diagnostic tools for ECG 
analysis.  

The study's results illustrate the efficacy of the suggested framework in categorising various types 
of heartbeats from ECG signals. By combining Hjorth parameters with inferential statistics, the 
framework achieved significant improvements in classification accuracy compared to traditional 
methods. The analysis showed that the dynamic features captured by Hjorth parameters, when coupled 
with statistical validation, provide a robust basis for distinguishing between normal and abnormal 
heartbeats. The discussion highlights the potential of this approach for real-time applications in clinical 
settings, where accurate and efficient heartbeat classification is essential for diagnosing and monitoring 
cardiac conditions. 
 
4. Conclusion 

The study presents a novel framework for ECG beat recognition by integrating Hjorth parameters 
and inferential statistics, demonstrating that this approach significantly enhances the accuracy of 
detecting different types of heartbeats. By leveraging the dynamic features captured through Hjorth 
parameters and the robust analytical capabilities of inferential statistics, the proposed method offers a 
promising tool for early diagnosis and monitoring of cardiac conditions. The experimental results 
validate the effectiveness of this framework, highlighting its potential application in clinical settings for 
improving cardiovascular care. 
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