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Abstract: The PID control algorithm is the most used industrial control method. This is due to its 
simplicity, ease of use, and because it yields stable results. PID parameters vary for each controller; 
therefore, finding the optimal parameters is crucial for obtaining good results. However, tuning PID 
parameters for complex systems is not a trivial task and is also somewhat difficult as conventional 
techniques rely on time and effort manual tuning or rely on simplified statistical estimation techniques 
of the system’s model yielding sub- optimal results. In this project, we propose to use machine learning 
for PID parameter tuning on proprietary historical time series operating process control data. The data 
is processed with the help of computational and machine-learning techniques to better identify the 
process model and predict the optimal PID parameters. The research methodology consists of three 
main steps. First, process-model identification is done by using a Radial Basis Function (RBF) neural 
network. Secondly, Particle Swarm Optimization (PSO) hybrid with Genetic Algorithms (GA) is used 
for finding the optimal PID parameters. The PID values predicted by PSO, will be fed to GA 
optimization process as an initial starting point. The final step consists of integrating the identified 
process model with the PID optimization algorithm in a computer-based simulation environment 
(Simulink). The experimental simulations are done for various study cases. Results showed that the 
predicted PID parameters error rate and standard deviation for PID control and process are decreased, 
which enhances the process controlling and stability. 
Keywords: Control systems, Genetic algorithms, Particle swarm optimization, PID tuning, Radial basis function neural 
networks, System identification. 

 
1. Introduction  

A Proportional–integral–derivative (PID) controller is a feedback-based control loop mechanism 
used in industrial control systems and other application domains requiring continuous control of 
changing system parameters. 

The usage of control systems has increased during the last decades and has become a fundamental 
part of most production environments, as automation has been adopted in almost every production 
environment. Despite recent advances in the control industry, the PID remains the most used 
controller. Control complexity increases with complicated systems with non-linear characteristics that 
cannot be represented using linear models. 

The accuracy of PID controllers is bound to the accurate choice of its parameters. Obtaining the 
optimal PID parameters is one of the big issues in the systems control field [14]. Using predefined 
parameters is impossible for nonlinear process control for different operating circumstances. Also, 
finding the mathematical model for each process is a difficult task due to the complexity of the process 
and the lack of knowledge about the Physics and the Maths of the internal and external system 
reactions and interactions [6]. 

Nowadays, tuning PID parameters requires extensive time and effort because it is done either 
manually on trial and error or by using estimation methods. These two approaches are time- consuming 
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and generally yield sub-optimal results [7,8]. A major reason for the reduced efficiency of the parameter 
estimation methods is that they rely on estimating the system model for tuning PID parameters. 
However, industrial systems nowadays are generally distributed making the interaction with different 
external environments highly complicated and difficult to model. Moreover, these systems involve many 
interdisciplinary processes such as electrical, mechanical, hydraulic, and chemical, with complicated 
interactions. As a result, estimation approaches rely on simplified and sub-optimal system models which 
will affect the PID parameters tuning reliability [6]. 

Encouraged by the success of artificial intelligence methods in solving many complex non-linear 
engineering problems such as Image Processing, Natural Language Processing, and Stock Index 
Prediction [34], in this project we proposed to use Machine Learning (ML) to develop the prediction 
model based on operational data to find the optimal PID controller parameters. 

ML algorithms solve this problem by predicting the best PID parameters that should work well for 
specific measurements of current system status. Control system optimization is not possible in real 
production lines for many reasons such as production loss and safety of the human and machines 
[10,11]. For this, A historical operating dataset containing a set of points, controller outputs, and 
process variables is used to help learn the correct behavior of the control process for a specific system, 
instead of finding a mathematical model that describes the behavior of the system to be controlled. We 
will use the RBF neural network to do system identification. The learned controller behavior (prediction 
model) will then be used to infer new PID parameters for the new system status. 

The remaining of the report is organized as follows. The research methodology is then explained in 
Section 2. Data Collection is explained in Section 3. Section 4 provides a detailed description of the 
proposed solution, and the experimental study is offered in Section 5. Finally, Discussions and 
conclusions are given in Section 6. 
 
2. Methodology 

This Section will provide an overview about the solution methodology, then it will explain the 
system identification idea and ANN benefits comparing to other approaches. and identify the 
optimization technique proposed for tuning PID parameters. Finally, the validation methods and 
evaluation metrics used as performance indicators are discussed. 
 
2.1. Control Tuning 

Since in our case, the mathematical model of the system is not available, in this project, we are 
focusing on model-free data-driven tuning method [37]. We will use machine learning (ML) with 
operating Dataset to predict the PID parameters. Using ML in control systems has become a trend in 
the research control engineering field. A lot of research has been done trying to improve PID tuning by 
using ML algorithms such as ANN, Genetic algorithm, linear regression, and reinforcement learning 
algorithms. 

The proposed prediction model is for adaptive PID tuning. It consists of four main components as 
shown in Figure 1. Building this model will be done through two main steps. 

The first step consists of modeling the system that is to be controlled by PID controller. Identifying 
the model based on the input (u) and measured output (y) data. Neural networks will be used for model 
identification. The model will be trained by a gradient decent algorithm and validated to be ready for 
tuning optimization. 

The second step consists of applying the Particle Swarm Optimization (PSO) algorithm for 
adjusting the controller tuning parameters based on feedback error from NN model until reaching 
minimum error. PID parameter values corresponding to the minimum error will be considered as 
optimum PID parameters [42]. 
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Figure 1. 
Identification and tuning block diagram. 

 
2.2. System Identification 

Control system optimization for the nonlinear process is not possible in the real production lines for 
many reasons such as production loss and safety of the human and machines [10,11]. In practice, 
control design and optimization are only done in the simulated environment. System identification is an 
experimental modeling technique to simulate the actual system. It is based on real input and output 
measured operational data that were extracted from the actual system. Fitness is to estimate 
relationships between input and output data [49]. There are different methods to identify system 
dynamics, Identification can be done by many methods such as using frequency measurement, 
correlation analysis, or neural networks. 

In practice, identification is done by statistical simulation tools such as Maltlab and Labview. These 
tools determine the system model by analyzing the signal frequency, amplitude, and time delay. It can 
be used to validate the NN model or as an alternative identification approach. 
 
2.2.1. Artificial Neural Networks for Identification 

Neural networks are used widely in industrial applications for system identification, pattern 
recognition, and fault detection. In system identification, it plays a significant role in systems modeling. 
It is considered a good alternative to solving mathematical models due to complexity issues [42]. There 
are many reasons for using ANNs instead of another algorithm such as: 

• Their capability to disclose the nonlinear behavior of complex systems without any prior 
knowledge of their physics and math compared to other methods, which rely on theoretically 
derived models. 

• They offer good generalization results and work with incomplete data [43]. 

• They are adaptable to the problem at hand, and many online and offline learning algorithms are 
available for learning. 

• ANN implementation is easy and shows good predictive performance. 
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Figure 2. 
ANN-based system identification block diagram [49]. 

  
Neural network identification processes as illustrated in Figure 2, use the actual system parameters 

to identify the system model, where 𝑢 is the desired PID response, 𝑦 future process output, and 𝑦 − 1 is 

the previous output. �̂� is the prediction output and e is the error value between the actual system output 
and identified model approximation as depicted in the following equation: 

                                                                        �̂�(𝑘) = 𝑓(𝑢(𝑘), 𝑦(𝑘 − 1))                                                                              
(1) 

where 𝑓 is the NN’s transfer function. 
 
2.3. PID Parameters Tuning 

The proposed optimization method is a hybrid method combining particle swarm optimization 
(PSO) algorithm and Genetic algorithm. Optimization processes are done in sequence, first step, PSO 
starts to examine the suggested PID values until the fitness value reaches the targeted function or 
reaches to maximum time without any improvement. Second step, GA continues the optimization after 
the PSO terminates. The GA optimization process starts with the PID values that are optimized by 
PSO as an initial point and tries to find the minimized fitness value. 
 
2.3.1. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is a type of evolutionary algorithm, introduced by Kennedy and 
Eberhart [45]. PSO was proposed for tuning PID controller and finding its optimal parameters (Kp, Ki, 
Kd). It has many advantages such as; requiring few numbers to be assigned, and sorting of fitness values 
output is not required, which is a significant advantage compared to other algorithms. especially for 
large population sizes. Also, it does not require an encoding and decoding process for updating velocity 
and position, just a simple arithmetic operation for real numbers [39–41]. 

It is a population-based optimization method. It contains particles, each particle has a position and 
velocity. As shown in Figure 3, PSO starts by generating an initial swarm of particles with a random 
position and velocity. Each particle is then evaluated for fitness value [39]. Each time a fitness value is 
calculated, it is compared against the previous best fitness value of the particle and the previous best 
fitness value of the whole swarm, and best and global best positions are updated until the stopping 
criterion is met [39–41]. 
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2.3.2. Genetic Algorithm 
GA is proposed as a hybrid function with PSO. It starts an optimization process with PID return by 

PSO as the initial population of individual Chromosomes. GA continues the optimization and tries to 
minimize the fitness function. The steps involved in implementing GA for PID tuning are shown in 
Figure 4. Start with the PID predicted by PSO as an initial population of individual Chromosomes 

(𝐾𝑝, 𝐾𝑖, 𝐾𝑑) with a fixed size, then evaluate the value of the fitness function. Based on fitness values, start 
selection, crossover, and mutation operations and make up the new generation. repeat these processes 
until getting the best value, chromosome with the highest fitness will be considered as optimal PID 
controller parameters. 
 
2.4. Model Validation 

Model validation is done for the system identification step by comparing the predicted data with 
actual data from the dataset through the mean square error (MSE). As a first step, the model 
development and validation will be lab-based (Matlab) and the model output will be compared with the 
actual system output. 

The Predicted PID parameters will be tested on the real PID controllers. PID parameters will be 
changed and the controller response will be supervised in the real environment. Error metrics such as 
mean square error will be calculated to evaluate the quality of the result. 
 
2.5. Evaluation Metrics 

The integral error indices are used to measure and evaluate the system error. Integral Error indices 
are defined as a quantitative measure to evaluate the system’s performance. They can be used both in 
System Identification and in the tuning of PID parameters. 

 

 
Figure 3. 
PSO algorithm flow chart. 
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They calculate the difference between the set point and the corresponding measured process 

variable (e(t) = SV − PV) over a period of time. Such metrics include [44]: 

• Integral Absolute Error (IAE):  𝐼𝐴𝐸 = ∫ |ⅇ(𝑡)| ⅆ𝑡
𝑡

0
 

• Integral Time-Weighted Absolute Error (ITAE): ITAE = 𝐼𝑇𝐴𝐸 = ∫ 𝑡|ⅇ(𝑡)| ⅆ𝑡
𝑡

0
 

• Integral Squared Error (ISE): 𝐼𝑆𝐸 = ∫ 𝑡𝑒2(𝑡) ⅆ𝑡
0

  

• Mean Squared Error (MSE): 𝑀𝑆𝐸 = ∫
𝑒2(𝑡)

𝑡
ⅆ𝑡

𝑡

0

 

 
3. Data Collection and Feature Selection 

In this project, we have considered using real data to build the model. We have got permanent 
access to real-time and historical data systems. Data access is through Plant Information Management 
System (Exaquntum), which saves all historical data for the plant.  

Plant Information Management System (PIMS) is used for extracting data for each PID controller, 
each PID logic is associated with six parameters to calculate the output signal. Three fixed parameters 
for each PID controller; proportional, integral, and derivative values for PID, and another three variable 
parameters for each process; set point (SV), process variable (PV), and final control opening (MV). In 
Figure 5.a, an example of a level controller receives the feedback from a level transmitter as PV to 
control the level with 50% set point (SV). PID parameter values are extracted from the PID tuning 
panel as depicted in Figure 5.b.  

For each PID controller, a separate Excel data file is collected. It contains the set points (SV), 
process variables (PV), manipulated variables (MV), time, and date, as shown by the excerpt in Figure 6. 
The other three parameters P, I, and D are fixed for each controller and will be manually added in the 
optimization stage. The Excel file will be generated for each PID controller separately. The datasets are 
collected for a long period, more than 6 months. 

The input and output of PID controller and tuning parameters are all selected as features. Datasets 
are extracted with all these features as shown in Figure 5. The list of these features and their sources in 
control system are shown in Table 1. 
 

Table 1. 
Selected features. 

Features list 
Feature Source 
 
- (SV) Set Point Value. 
- (PV) Process Variable Value. 
- (MV) Manipulate VariableValue. 
- (P) Proportional Parameter Value. 
-  (I) Integral Parameter. 
- (D) Derivative Parameter. 
- Time Stamp. 
 

 
- PID controller SV tag number. 
- Feedback transmitter signal tag number. 
- Final control element signal tag number. 
- Function block setting. 
- Function block setting. 
- Function block setting. 
- Network time server. 
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Figure 4. 
GA-PID tuning flow chart. 

 

 
Figure 5. 
PID tuning system: (a) PID controller face plate, (b) PID tuning panel. 

 
4. Solution Details 

Neural Networks are proposed to be used for the identification of the actual system model. Training 
methods and operational data can be adjusted until reaching a high accuracy model. 



7259 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 7252-7272, 2024 
DOI: 10.55214/25768484.v8i6.3576 
© 2024 by the authors; licensee Learning Gate 

 

 
Figure 6. 
Extracted dataset. 

 
4.1. Radial Basis Function Neural Networks (RBFNN) 

In our case, Radial Basis Function neural network structure is proposed. It is a feed forward and 
fully connected neural network. RBFNN has a good approximation properties and shows high accuracy 
of approximation. Also, the connection weights from the hidden layer to the output layer are linear and 
we can use the linear algorithm to ensure the global convergence of the parameters [46–48]. Moreover, 
during the training time one part of the nodes is affected by a given input, and only the parameters need 
to be adjusted, which reduces computation and the training time [47]. 
RBFNN has three layers; an input layer, a nonlinear hidden layer, and a linear output layer, as shown by 
Figure 7. Nodes in each layer are fully connected to the previous layer. Inputs to input layer are 
connected directly to the hidden layer without weights. Euclidean distances between the centers and the 
network input are calculated, then send to hidden layer and pass through RBF units. Output layer nodes 
are weighted linear combinations of the hidden layer. 
 

 
Figure 7. 
RBF neural network architecture. 

 

Input layer has 2 neurons and their inputs are 𝑋 = [𝑢(𝑘), 𝑦(𝑘 − 1)], where u(k) and y(k) are the 
desired response and the actual output respectively (see Figure 2). The hidden layer contains 3 neurons 
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H = [h1, h2, h3], is the radial basis vector, where hj is a Gaussian function, which can be described 
through the following formula: 

                   ℎ𝑗 = 𝜙𝑗(𝑋(𝑘)) = 𝜙𝑗(𝑋, 𝐶𝑗, 𝜎𝑗) = ⅇ𝑥𝑝 (−
‖𝑥(𝑘)−𝐶𝑗‖

2

2
𝜎𝑗

)                                (2) 

Where Cj and σj are Gaussian function parameters. The output layer contains one neuron and its output 

variable �̂� is calculated through following equation: 

�̂� = ∑ 𝑤𝑗𝛷𝑗

𝑚

𝑗=1
                                                                   (3) 

where Wj is the weight of the jth node and Φj is the jth activation function. 
RBFNN are defined by three important parameters: centers, widths and weights. These parameters 

are unknown and a learning strategy should be used to predict and optimize these parameters. Gradient 
descent (GD) is proposed to select an appropriate set of RBFNN parameters. The system is considered 

as identified when �̂�  matches y. Mean Square Error is used to measure the model approximation 
accuracy. 
 
4.1.1. RBFNN System Identification Steps 
RBFNN-based system Identification steps are as follows: 

• Apply the input from the training data set to the input layer. 

• Compute the output of the hidden layer. 

• Compute the output and compare the output with actual output y and adjust the weight to 
minimize the error. 

• Repeat steps 1 to 3 for all training set. 

• Repeat steps 1 to 4 until the error tends to zero. 
When the model is trained, validated and tested with high prediction accuracy, then it is ready for 

tuning step. The tuning algorithm will change the PID parameters based on the model output. 
Adjusting the parameters, consequently, will change the PID controller output signal, which will be 
reflected in the model. Model output error again will be sent back to tuning algorithm. Repeat this loop 
until you reach to minimum error or complete the maximum iteration number. 
 
4.2. Tunning PID Parameters Optimization 

In this section will explain our proposed optimization methods, include optimization steps, equations 
and hyper parameter for PSO and GA. 
 
4.2.1. Particle swarm optimization (PSO) 

Tuning PID parameters by PSO algorithm is the second step after system identification. It starts 
with an initial swarm of random particles, each particles candidate as solution (PID values) with defined 
range. Particles assigned with a randomized velocity Vi and position Xi. 

The 3D search space is defined, and all its points represent a particular combination of 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 
parameters values. Randomly each particle is scattered in the swarm and represented by 3xSwarm 
matrices. Depending on the information that get exchanged between particles, each particle adjusts and 
adapts its direction and remember its best fitness function (pbest) and the best global position obtained by 
any particle (gbest). 

The feedback error from system model is considered as fitness function input. Fitness function 
calculates the integral of model error to select the best set of PID parameters [39-41]. 
The particles are updated according to following equation: 

                𝑉𝑖
𝑑 = 𝑊𝑉𝑖

𝑑 𝑚𝑎𝑥 +𝑐1𝑟1(𝑋𝑖
𝑑𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑑) + 𝑐2𝑟2(𝑋𝑖
𝑑𝑃𝑔𝑜𝑜𝑑 − 𝑋𝑖

𝑑)                                   (5) 
Where, c1 and c2 are acceleration constant. r1 and r2 are random numbers between 0 and 1. W is 

the inertia weight. i is the index of the d-dimensional particle, and: 
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• 𝑋𝑖
𝑑 = [𝑥𝑖

1, 𝑥𝑖
2, … 𝑥𝑖

𝑑]represents the present position for particles. 

• 𝑋𝑖
𝑑𝑝𝑏𝑒𝑠𝑡 = [𝑥𝑖

1𝑝𝑏𝑒𝑠𝑡 , 𝑥𝑖
2𝑝𝑏𝑒𝑠𝑡 , … 𝑥𝑖

𝑑𝑝𝑏𝑒𝑠𝑡], reprents the best positions visited by particles. 

• 𝑋𝑖
𝑑𝑝𝑏𝑒𝑠𝑡 = [𝑥𝑖

1𝑝𝑏𝑒𝑠𝑡 , 𝑥𝑖
2𝑝𝑏𝑒𝑠𝑡 , … 𝑥𝑖

𝑑𝑝𝑏𝑒𝑠𝑡], represents the best global position. 

• 𝑉𝑖
𝑑 = [𝑣𝑖

1, 𝑣𝑖
2, … 𝑣𝑖

𝑑], represents the velocity of particles. 

• 𝑉𝑖
𝑑𝑚𝑎𝑥 = [𝑣𝑖

1𝑚𝑎𝑥, 𝑣𝑖
2𝑚𝑎𝑥, … 𝑣𝑖

𝑑𝑚𝑎𝑥]represents the upper bound velocity of the particle. 
 
4.2.2. PSO-PID Tuning Steps 
PSO-PID Tuning steps are as follows: 

• Step 1: Start after setting the constants, Inertia weight factor W, Acceleration constants c1 and 

• c2. 

• Step 2: set the initial number of swarms in the 3D search space with [𝑋𝑖
1, 𝑋𝑖

2, 𝑋𝑖
3] and 

[𝑉𝑖
1, 𝑉𝑖

2, 𝑉𝑖
3] as initial position and velocity. 

• Step 3: Evaluate the fitness function. 

• Step 4: If the fitness value is greater than pbest, then go to step 5, else, go to step 8. 

• Step 5: set pbest with present fitness value. 

• Step 6: If the present fitness value is greater than gbest, then go to step 7, else, go to step 8. 

• Step 7: set gbest with present value of fitness function. 

• Step 8: Update the position and velocity values of the particles. 

• Step 9: Exit if it meets the defined end criteria, else, go to step 3. 
 
4.2.3. PSO Hyper-Parameters 

The hyper parameters can be adjusted to start adapting the parameters. Start with low parameters, 
then adjuste depending on the results. The PSO-PID tuning listed in Table 2. 
 
4.2.4. Genetic Algorithm 

The GA used as hybrid function with PSO algorithm. It starts with the PSO optimization result as 
initial population. The genetic algorithm generates PID parameters and assigns the new values to 
controller, then the controller will react based on these new values and send new output to the final 
control. Integral square error function will calculate the error over time and send it to GA to evaluate 
the previous PID parameters values, repeat this loop until reach to the minimum fitness function value 
or max iteration. The PID parameters values corresponding with minimum error will be selected as 
optimal parameters [23–25]. 
 

Table 2. 
PSO-PID tuning hyper parameters. 

Variable Description 
n Size of the swarm (# of birds) 
Bird step Max. no. of bird steps 
dim Dimension of the problem 
c1 Velocity constant 
c2 Velocity constant 
w Momentum of inertia 
minKp Minimum value of agent for Kp 
maxKp Maximum value of agent for Kp 
minKi Minimum value of agent for Ki 
maxKi Maximum value of agent for Ki 

 
4.2.5. GA-PID Tuning Steps 

The GA-PID Tuning algorithm consists of many steps and elements as follows: 
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• Coding and Decoding: The initial population is set by encoding the PID parameters to the 
binary as chromosomes with fixed length of zero and ones. The length of the strings depends on 
the PID values range. The required bits is calculated based on the following equation: 

                                                           2(m
j 
−1) < (bj − aj) ∗ 104 < 2m

j − 1                                                           
(6) 

Where mj is the number of the bits, and bj upper bound, aj is the lower bound of PID parameters 
values. 

• Fitness Function: Evaluate the fitness values of all chromosomes and find a group of the best 
chromosomes by converting their binary number to real number which represents the PID 
parameters. The encoding process is done for each chromosome from binary to real as the 
following equation: 

𝑋𝑗 = 𝑎𝑗 + 𝑃𝐼𝐷 − 𝑣𝑎𝑙𝑢ⅇ ∗
(𝑏𝑗−𝑎𝑗)

2
𝑚𝑗−1

                                         (7) 

 PID parameters set to pass to the controller, system feedback, and initial fitness value are 
computed. The performance criterion functions are used as fitness functions [26]. For each set of PID 
parameters new fitness value will be generated and measured by ISE performance metric. 

• New population: In our case start by taking the PSO output as the initial population to get the 
new population by doing the selection, crossover, and mutation processes. 

• Selection: select the two parents from the population depending on their fitness. 

• Crossover: Crossover pairs of chromosomes in the new generation based on their probability and 
crossover rate. 

• Mutation: Mutation is a swap between the chromosomes to maintain diversity in the genetic 
population by removing the low probability. 

• GA Hyper-Parameters: GA Hyper Parameters can be adjusted to start adapting the parameters. 
Start with low parameters, then adjust depending on the results. The GA-PID tuning is listed in 
Table 3. 

 
Table 3.  
GA hyper parameters. 

Parameter Type/value 
Generations Number 
Population size Number 
Encoding Binary 
Selection Uniform 
Mutation Uniform 

 
5. Experimental Results 

The implementation of the system will start with system identification coding in section 5.1, 
followed by coding of PID tuning with PSO in section 5.2. In section 5.3, the integration of Matlab and 
Simulink is done to show real interaction between project components. 
 
5.1. System Identification 

RBF neural network with gradient descent is selected to perform system identification. The Monte- 
Carlo Simulation (MCS) Method is used to train the RBF network. The system identification Algorithm 
is shown in the Pseudo Code of Algorithm 1 RBFNN. 
 
5.2. PID Tuning Parameters Optimization 

The second part of the implementation is coding the optimization method for finding the optimal 
PID parameters. Particle Swarm Optimization (PSO) algorithm combined with hyperfunction is selected 
to solve bounded constrained problems with a fitness function. The following pseudo-code shows the 
main steps for the optimization process. 
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5.3. Simulink Model Integration 

Simulink is a block diagram environment for multidomain simulation. It supports system-level 
design, simulation, and continuous testing and verification of control systems. Simulink provides a 
graphical editor, customizable block libraries, and solvers for modeling and simulating dynamic 
systems. It is integrated with MATLAB and helps to incorporate Matlab algorithms into models and 
export simulation results to Matlab for further analysis [56]. 

As shown in Figure 8, there are two subsystems; PID controller and identified process model 
(RBFNN). PID controller subsystem takes error e as input and calculates PID controller output u with 
the help of optimized PID gains which are received from the PSO Matlab function through the sinTrack 
function. 

 
5.4. Model Outputs 

The final output after completing the optimization and simulation process will show in the 
command lines, the iteration number, evaluation counter, best fitness function, average of evaluated 
iteration, and stall iterations counter as shown in Table 4. 

• f-count: Number of fitness function evaluations. 

• Best f(x): Best evaluated fitness function value. 

• Mean f(x): Mean of fitness function values. 

• fval: Final fitness value. 
 
5.5. Model Validation on Real Process 

The validation step for each study case is done in the real PID controller itself. Official approval is 
obtained for conducting our validation. The PID parameters were predicted by our model and are 
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applied instead of the actual PID parameters. Predicted PID parameters show notable enhancement in 
controlling and more stability in process. 

 

 
Figure 8.  
Integrated simulation block diagram. 

 
Table 4.  
Optimization outputs. 

Iteration f-count Best f(x) Mean f(x) Iterations Stall 
22 1150 0.7447 0.7794 4 
KP KI KD fval eflag 

16.8705 1703.63.99 0 0.7447 -4 
 
5.5.1. Predicted PID Validation: Case 1 

In this case, the process variable (PV) has high oscillating around the set value (SV), because of the 
process under high pressure and continuous high flow of liquid. The PID controller tries to track the 
PV changing but still, there is a gap and overshooting. As shown in Figure 9 the controller opening 
(pink color trend) does not react correctly with high change in process variable (blue color trend). The 
actual PID controller parameters are P = 200, I = 10 and D = 0, repealed with the model prediction 
PID parameters P = 200.3, I = 22, and D = 0 as shown in Figure 10. The controller response becomes 
better and minimizes the overshooting range. Process variable change frequency becomes slower than 
before and close to the set value. The predicted PID increases the Integral parameter (I) to avoid the 
reaction with instant process overshooting. PID controller will react based on more accumulation errors 
to ensure its action is not caused by instant overshoot due to process disturbances. 
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Figure 9.  
Actual PID response. 

 
Integral Squared Error (ISE) and Integral Absolute Error (IAE) are calculated to compare the rate 

of error (SV-PV) for the actual PID parameters and model prediction as illustrated in Table 5. 
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Figure 10.  
Predicted PID response. 

 
Standard Deviations for PV and MV are collected from the Plant Information Management System 

(PIMS) after validation. SD compares the two PIDs responses by measuring the stability of the process 
variable and controller opening. Predicted PID shows less SD than actual PID parameters as shown in 
Tables 6 and 7. 
 

Table 5.  
Calculated ISE and IAE (case 1). 

PID ISE IAE 
Actual PID 2.332 5.441 
Predicted PID 1.886 1.373 

 
Table 6.  
Actual and predicted PID PV values (case 1). 

 Min value Average value Max value Standard dev. 
Predicted PV values 38.041 39.949 42.396 0.941 
Actual PV Values 38.041 39.945 42.396 1.009 

 
Table 7.  
Actual and predicted PID MV values (case 1). 

 Min value Average value Max value Standard dev. 
Predicted MV values 36.345 38.223 39.447 0.861 
Actual MV Values 34.781 37.886 41.605 1.595 
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5.5.2. Predicted PID Validation: Case 2 
In this case, the problem was observed is process variable (PV) has short continuous oscillating 

around the set value (SV), as depicted in Figure 11. The actual PID parameters are P = 99.3, I = 50 and 
D = 0, replaced with Predicted PID parameters are P = 91.2, I = 50 and D = 0. Figure 12 shows that 
predicted PID parameters decrease the proportional parameter (P), which makes the controller’s action 
less aggressive to minimize the oscillating of PV. 

Integral Squared Error (ISE) and Integral Absolute Error (IAE) are calculated to measure the rate 
of error (SV-PV) for the actual PID parameters and model prediction as illustrated in Table 8. 
 

Table 8.  
Calculated ISE and IAE (case 2). 

PID ISE IAE 
Actual PID 0.08147 0.2854 
Predicted PID 0.01151 0.1073 

 
SD for PV and MV are collected from the Plant Information Management System (PIMS) after 

validation to compare both PIDs parameters response. predicted PID shows SD less than actual PID 
parameters as shown in Tables 9 and 10. 
  

Table 9.  
Actual and predicted PID PV values (case 2). 

 Min value Average value Max value Standard dev. 
Predicted PV values 39.858 40.022 40.140 0.132 
Actual PV values 39.566 39.954 40.716 0.304 

 

 
Figure 11.  
Actual PID response. 
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Table 10.  
Actual and predicted PID MV values (case 2). 

 Min value Average value Max value Standard dev. 
Predicted MV values 52.928 53.375 53.750 0.210 
Actual MV Values 53.985 54.436 54.962 0.305 

 
5.5.3. Predicted PID Validation: Case 3 

In this case, the controller has a low response to the process change. If the deviation between the 
PV and SV increases, it takes a long time to open the controller and eliminate the deviation. This means 
the controller response is very low compared to the process dynamics. The actual proportional value (P) 
is 10, the integral is 1800 and the Derivative(D) is 0 as shown in Figure 13. The set value (SV) is 50%, 
we have changed it to check the controller response before validating our prediction PID parameters. As 
shown in Figure 13, SV changes from 50% to 50.5%, PID controller shows a slow response.  

Actual PID parameter values have changed to our predicted PID parameters as shown in Figure 14, 
the new values I = 16.8705, P = 1703.6399, and D = 0. The SV again changed from 50.5% to 50% to 
check the controller response. The PID controller response has become faster than before, it starts 
opening directly after changing the set value. Increasing the proportional parameter (P) makes the 
controller reaction more aggressive, and decreasing the Integral (I) minimizes the time the controller 
should wait until response to the error. 
 

 
Figure 13.  
Actual PID response. 

 



7269 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 7252-7272, 2024 
DOI: 10.55214/25768484.v8i6.3576 
© 2024 by the authors; licensee Learning Gate 

 

 
Figure 14.  
Predicted PID response. 

 
Integral Squared Error (ISE) and Integral Absolute Error (IAE) are calculated to measure the rate 

of error (SV-PV) for the actual PID parameters and model prediction as illustrated in Table 11. 
 

Table 11.  
Calculated ISE and IAE (case 3). 

PID ISE IAE 
Actual PID 0.06969 0.246 
Predicted PID 0.01796 0.134 

 
Standard Deviation (SD) for PV and MV are collected from Plant Information Management System 

(PIMS) after validation to compare between both PIDs parameters. predicted PID shows SD less than 
actual PID parameters as shown in Tables 12 and 13. 
  

Table 12.  
Actual and predicted PID PV values (case 3) 

 Min value Average value Max value Standard dev. 
Actual PV values 50.236 50.346 50.448 4.295E-02 
Predicted PV Values 50.132 50.199 50.236 5.005E-02 
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Table 13.  
Actual and predicted PID MV values (case 3). 

 Min value Average value Max value Standard dev. 
Actual MV values 39.395 39.652 39.810 0.160 
Predicted MV Values 38.932 39.157 39.395 0.135 

 
6. Discussion and Conclusions 

This research considered using machine learning for PID tuning optimization through system 
identification, instead of conventional methods that are based on signal processing, heuristic tuning, or 
mathematical models. For simulation, datasets obtained for various PID controllers from real plants 
were used. Radial Bias Networks are trained for each tuning case to simulate the dynamic of the process 
model to perform the PID parameters optimization on them. Validation and testing show that RBFNN 
can simulate the actual process with minimal errors. 

Tuning PID parameters using ML algorithms as optimization methods, has been shown through 
simulation and experiments to provide substantial improvement in the controller response and process 
stability. The performance indexes based on error criteria prove that the error rate for the controller 
tuned using our model is less than the controller-tuned conventional methods. PID parameters obtained 
from model predictions applied in the live and real production process. 

The optimization outcomes minimized the dead time, processed overshooting, and increased the 
controller response. Live trends and standard deviation calculations were collected from a real control 
system after Implementation. The implementation is verified and approved by control systems and plant 
operation department’s managers and engineers, and its outcomes are considered as permanent 
improvement change. 
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