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Abstract: Liver tumors, classified as benign or malignant, pose significant diagnostic challenges. In 
infancy, benign liver tumors may progress to malignancy, making early and accurate classification 
crucial. Traditional manual classification methods are inefficient, time-consuming, and prone to errors, 
necessitating advanced automated techniques. This study introduces a novel Vision Transformer with 
Learned Invariant Feature Transform-based statistical features (ViT+LIFT based Stat features) 
approach for liver tumor classification. Magnetic Resonance Imaging (MRI) liver tumor images from 
the ATLAS dataset serve as input. The preprocessing stage employs an Adaptive Wiener Filter (AWF) 
to enhance image quality. A Dynamic Context Encoder Network (DCE-Net) is then utilized to segment 
the liver and lesions. Feature extraction incorporates Shape Index Histogram (SIH), shape features, 
ResNet features, and LIFT with statistical features. Finally, the Vision Transformer (ViT) classifies 
liver tumors based on these extracted features. The proposed ViT+LIFT based Stat features model 
achieved superior classification performance, with an accuracy of 91.732%, sensitivity of 90.118%, and 
specificity of 90.710%. These results demonstrate the effectiveness of the proposed method in improving 
liver tumor classification accuracy, reducing diagnostic delays, and minimizing the need for invasive 
biopsies. 

Keywords: Adaptive wiener filter, Classification of liver tumor, Dynamic context encoder network, Magnetic resonance 
imaging, Vision transformer. 

 
1. Introduction  

The image processing methods have become progressively significant in diverse applications owing 
to an emergence of computer technologies. It is specifically accurate for clinical imaging namely 
ultrasonography, MRI, nuclear medicine and Computed Tomography (CT) that can be employed for 
assisting doctors in research, diagnosing and treatment [1]. Liver is an organ accountable for blood 
purification as it is exposed to the impureness more than other organs. When a liver is affected with the 
diseases such as tumor, it is enormously significant to be diagnosed for malignancies at earlier. The 
diagnosing approaches mostly depend upon imaging methods, such as CT and MRI scans, exploiting 
Dynamic Contrast-Enhanced schemes. When compared to CT, dynamic contrast-enhanced MRI 
(DCEMRI) technique provides high specificity as well as sensitivity in diagnosing liver tumor, owing to 
its finest tissue contrasts and comprehensive blood supply classification. With the MRI, diverse contrast 
processes can be employed for increasing difference of several tissues, for example; T1-, T2-, and 
diffusion-weighted sequences. When the T2-weighted MRI with a fat saturation is not accessible, 
standard T2-weighted MRI is employed, similar to medical practices [2]. Developing and designing 
computer-aided image processing methods to assist doctors enhance their diagnosing has gained 
significant interest over last few years [1]. 
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Liver is an essential organ located in upper abdomen that supports digestion and eliminates waste 
products from blood. The tumor is classified into two types such as malignant and benign [3]. Liver 
having malignant tumor is referred to liver tumor [4]. Therefore, it is crucial to identify the type of 
tumor. For determining tumor type, liver should be segmented [4]. The segmentation is a complicated 
process owing to varying sizes of liver cancers as well as their shapes. Hence, an automatic procedure 
for segmentation of liver tumor assists specialists with exact and earlier diagnosing of liver cancers. The 
liver segmentation regarding CT images is a challengeable task owing to occurrence of same intensity 
objects in abdomen with no obvious delineation amongst liver and objects [3, 5, 6]. The classification of 
tumor is accomplished by Neural Network (NN) classifier. Various researchers employed techniques, 
like Deep Learning (DL), fuzzy-enabled approaches and Machine Learning (ML) for diagnosing liver 
tumor. DL-enabled models have been made machine vision tasks highly progressive and adaptable to 
support in clinical diagnosing [7]. Some of the examples of DL techniques are Deep Belief Network 
(DBN), Stacked Autoencoders (SAE) and Convolutional Neural Network (CNN). An accuracy of DL-
enabled techniques is considerably higher than conventional ML-enabled approaches [8-14]. 

The research aims to design ViT+LIFT based Stat features for liver tumor classification using MRI 
liver tumor images from the ATLAS dataset [15]. AWF is used for pre-processing, followed by liver 
area and lesion segmentation using DCE-Net. SIH, shape, ResNet, and LIFT features are extracted, 
along with statistical features like mean, contrast, entropy, energy, variance, and homogeneity. ViT is 
then used for liver tumor classification. 
 
1.1. Motivation 

MRI is an imaging methodology for detection and classification of liver tumor. The conventional 
approaches utilized for classification are time-consumable and required skilled experts for analyzing 
tumors. Thus, an automated and incorporated approaches are necessary to classify the types of liver 
tumor. Motivated by this fact, liver tumor classification model is developed by reviewing traditional 
approaches. This section presents the existing liver tumor classification methods and their demerits. 

The proposed ViT+LIFT-based statistical feature framework for liver tumor classification is 
designed to achieve the following objectives: 

• Acquire MRI liver tumor images from the ATLAS dataset and enhance them using the Adaptive 
Wiener Filter (AWF) for noise reduction. 

• Perform liver area and lesion segmentation using the Dynamic Context Encoder Network (DCE-
Net). 

• Extract features including Shape Index Histogram (SIH), shape features (circularity, irregularity, 
area, and perimeter), ResNet features, and Learned Invariant Feature Transform (LIFT) with 
statistical features (mean, contrast, entropy, energy, variance, and homogeneity). 

• Utilize Vision Transformer (ViT) for liver tumor classification, integrating the extracted features 
for improved accuracy. 

The layout of other sections is: Section 2 interprets literature overview of liver tumour classification 
methods and their disadvantages, section 3 describes ViT+LIFT based Stat features methodology, 
section 4 illustrates outcomes of ViT+LIFT based Stat features and section 5 mentions conclusion of 
ViT+LIFT based Stat features. 

 
2. Literature Review 

ResNet-10, designed for primary liver tumor classification [16] has been criticized for its 
complexity and lack of demonstrations. Other studies, such as Zheng's 3D convolution [17] and Patel's 
PocketNet+nnUNet [8] have shown high performance but lack multi-center external testing sets. 
Wang's UNet++ [18] improved detection of tumor margins and invasion but was expensive and 
impacted healthcare costs and accessibility. 
Recent advancements in deep learning have improved liver tumor segmentation precision [19]. 
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Researchers have combined an attention-augmented U-Net with a conditional GAN to produce 
synthetic annotated datasets, achieving a Dice score of 88.60% for liver MRI. RFiLM-Net [20] a two-
stage U-Net-based model that integrates radiomic features for CT-based tumor segmentation, achieved 
a Dice similarity coefficient of 0.87, ensuring high segmentation accuracy and clinical relevance. 
Hybrid deep learning frameworks have also been explored, with ResUNet [21] and Inception v4 
achieving a Dice score of 98.86% for CT-based liver tumor segmentation and a transformer-based 
segmentation model [22] reaching 97.28% Dice accuracy on the LiverHCC dataset. These studies 
demonstrate that deep learning-driven automated segmentation enhances diagnostic efficiency and 
patient outcomes, underscoring the need for further integration of transformers and hybrid 
architectures in medical imaging. 
 
2.1. Challenges  

The challenges experienced by traditional techniques are interpreted as follows. 

• The method in Goedhart [16] focuses on improving MRI image computable features extraction 
but lacks multiphasic T1-weighted and T2-weighted MRI information for accurate liver tumor 
classification.  

• The method successfully achieved tumor segmentation [17] but faced co-registration errors due 
to motion artifacts. 

• Class imbalance in Deep Learning techniques hinders clinical diagnoses like liver cancer 
classification, affecting model performance and generalization. DL-based feature extraction 
methods are needed. 

 

3. Proposed Vit+Lift Based Stat Features for Liver Tumor Classification 
Liver cancer is one amongst common cancer over a globe and thus, automated classification 

techniques are important to assist doctors in tumor diagnosing process. Here, ViT+LIFT based Stat 
features is presented for liver tumor classification. Firstly, input MRI liver tumor image is obtained 
from the ATLAS dataset. Next, considered MRI liver tumor image is pre-processed by AWF. 
Thereafter, liver area segmentation and lesion segmentation are conducted utilizing DCE-Net. 
Afterwards, features such as SIH, shape features, ResNet features and LIFT with statistical features are 
extracted. At last, classification of liver tumor is performed employing ViT. Figure 2 reveals the 
pictorial presentation of ViT+LIFT based Stat features for liver tumor classification. 
The study chose Vision Transformer (ViT) for liver tumor classification over traditional CNNs or 
hybrid methods due to its unique advantages in handling complex medical imaging tasks like MRI 
scans. ViT processes images by dividing them into patches, capturing global dependencies and long-
range relationships, which is crucial in medical images where tumor structures may span large portions 
of the scan. It has demonstrated superior performance in medical imaging tasks, with better 
generalization and classification accuracy compared to CNNs. 
 
3.1. Input MRI Liver Tumor Image Acquisition 

An input MRI liver tumor image is acquired from the ATLAS dataset [15] which can be formulated 
by, 

𝑀 = {𝑀1,𝑀2, … ,𝑀𝑙 , … ,𝑀𝑑}                          (1) 

Where, 𝑀𝑙 represents 𝑙th  input MRI liver tumor image whereas 𝑀𝑑 indicates overall MRI liver 

tumor images in dataset 𝑀. ATLAS dataset [15] is categorized into two sets like training set and 
testing set. A training set as well as testing set comprises the information of 60 patients and 30 patients 
in about 90 formats. 
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3.2. Pre-Processing Utilizing AWF 
Pre-processing is essential to enhance quality of images and ensures that extracted features are 

appropriate for liver tumor classification. Here, AWF is utilized for pre-processing an input MRI liver 

tumor image 𝑀𝑙. AWF [23] modifies an output of filter in accordance to local variances of image. A 
significant goal of this filter is to lessen Mean Squared Error (MSE) amongst actual image and restored 
image. The pre-processed outcome of this technique is helpful to preserve the edges of an image. The 
beneath expression is utilized for processing the pixels to obtain final results. 

 
𝑊𝑙 = 𝜍 + (1 − 𝑣 + Δ) ∗ (𝑧(𝑛, 𝑤) − 𝜍) (2)

𝑣 =
𝜎𝛼

𝜎𝑣 + 1
(3)

Δ =
𝜎𝑣

𝜎𝛼 + 𝜎𝜇 + 1
(4)

 

 
3.3. Liver Area Segmentation using DCE-Net 

Liver area segmentation is a process to identify and segment liver areas from adjacent anatomical 
structures in clinical imaging like MRI. Here, DCE-Net is employed for segmenting liver area by 

considering pre-processed MRI liver tumor image 𝑊𝑙as an input. DCE-Net [24] adopts a structure of 
U-Net, comprising of decoder and encoder. DCE-Net is incorporated with newer elements such as 
involution layer, Context Extraction Module (CEM), Channel Attention Gate (CAG) and Dynamic 
Residual Module (DRM). 
 
3.3.1. Involution Layer 

An initial convolutional (conv) layer is replaced with involution layer for processing an input image 
and enhancing aggregation ability of parameter on a channel. An involution layer can uncouple the 
information communications considerately for balancing efficiency and accuracy. 
 
3. 3.2. DRM 

The conv is replaced with a dynamic convolution as well as residual blocks for enhancing feature 
extraction ability. DRM with shortcut process can lessen gradient vanishing caused by enhancing depth 
of network. Furthermore, it increases converging speed and decreases computational costs. 
 
3. 3.3. CEM 

CEM is included at a bottleneck of DCE-Net for compensating the spatial information loss after 
numerous down-sampling layers. Moreover, it comprises blocks such as Residual Multi-kernel Pooling 
(RMP) and Dense Atrous Convolution (DAC). CEM is capable to incorporate and extract context 
semantic information for generating higher-level feature maps. A receptive field’s size in an individual 
branch is computed as follows. 

 

𝒓𝒊 = 𝒓𝒊−𝟏 + (𝒇𝒊 − 𝟏)∏  

𝒊−𝟏

𝒉=𝟏

 𝒙𝒉 (𝟓) 
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Figure 1. 
Structure of DCE-Net. 
 

 
Figure 2. 
Pictorial presentation of ViT+LIFT based Stat features for liver tumor classification. 

 
3.3.4. CAG  

CAG is fixed at routes of skip connections in up-sampling layers of decoder for improving an 
extraction accuracy of contextual features. This element is introduced for suppressing inappropriate 
areas while focusing on salient features in feature map. In addition, CAG can be effortlessly incorporated 
into U-shaped CNN structure with minimum computational overhead while efficiently enhancing power 

and system’s sensitivity. The liver area segmented image is specified as 𝐷𝑙 and figure 1 delineates 
structure of DCE-Net. 
 
3.4. Lesion Segmentation using DCE-Net 

Lesion segmentation is a process to identify and delineate abnormal tissue areas within MRI liver 
images. The purpose of lesion segmentation is to accurately outline lesion or tumor boundaries for 
differentiating them from adjacent healthier liver tissues. Here, lesion segmentation is performed using 

DCE-Net by considering 𝐷𝑙 as an input. The architecture of DCE-Net is already explained in section 

III.A.1 and a lesion segmented image is specified as 𝐶𝑙. 
 
3.5. Feature Extraction based on Liver Area Segmented Image and Lesion Segmented Image 

Feature extraction is a process to extract significant or appropriate features that can be efficiently 
classify several types of liver tumors. Here, feature extraction is accomplished based on liver area 

segmented image 𝐷𝑙 and lesion segmented image 𝐶𝑙. The features considered for extraction are SIH, 
shape features, ResNet features and LIFT with statistical features. 
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3.5.1. SIH 

An input 𝐶𝑙 is applied with SIH to acquire texture image. SIH [25] is the second-order curvature 

measure modeled form eigen values of local image. It is developed by selecting the group of 𝜏𝑢 bin 

centers 𝛽𝑢1, … , 𝛽𝑢𝜏 averagely distributed over shape index interval of [−𝜋/2, 𝜋/2]. A shape bin 

contribution 𝐺𝑢 at position 𝑎 [26] can be illustrated as, 

𝑇𝑙 = 𝐺𝑢(𝑎; 𝜎, 𝛽𝑢, 𝑏𝑢) = exp (−
(𝛽𝑢 − 𝑢)2

2𝑏𝑢
2 ) (6) 

 
3.5.2. Designed LIFT with Statistical Features 

The model for liver tumor classification uses statistical features and LIFT designed in Figure 3, 
selected based on empirical studies and medical imaging research. Key features like mean, entropy, 
energy, and contrast capture texture-based characteristics. Automated methods like correlation analysis 
and feature importance techniques reinforce feature selection, retaining relevant features for training. 
This balances theoretical justification with automated methods for predictive performance. Future 
studies may expand the selection process with diverse methods. 
 

 
Figure 3. 
Designed LIFT with statistical features. 

 

3.5.3. LIFT 
LIFT [27] is constructed based on conventional concepts of feature extraction by improving them 

with learned elements for achieving superior performance under diverse conditions. It contains three 

units namely descriptor, orientation estimator and detector. The LIFT feature can be depicted as 𝐿𝑙. 
 

3.5.4. Statistical Features 
The considered statistical features for extraction are mean, entropy, variance, energy, homogeneity 

and contrast [28] are applied to 𝐿𝑙. 
(i) Mean: Mean refers to an average of pixel-wise brightness in a region, which is given by, 

𝑁1 = ∑  

𝑍−1

𝑘=0

 𝑘𝑃(𝑘) (7) 

(ii) Entropy: Entropy acts as the gauge for overall randomness of an image and it is computed as, 

𝑁2 = ∑  

𝑍−1

𝑘=0

 𝑃(𝑘)log2[𝑃(𝑘)] (8) 

(iii) Variance: Variance measures the deviation of image intensity from mean that is modelled as, 

𝑁3 = 𝜎2 = ∑  

𝑍−1

𝑘=0

  (𝑘 − 𝑁1)
2𝑃(𝑘) (9) 

(iv) Energy: Energy is a measure of homogeneousness of an image, which can be evaluated by, 

𝑁4 =∑ 

𝑘,𝑐

 𝑃(𝑘, 𝑐)2 (10) 
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(v) Homogeneity: Homogeneity illustrates the closeness of matrix's component distribution resembling 
its diagonal matrix. The expression of homogeneity can be formulated 
as,

𝑁5 = ∑  𝑘,𝑐  
𝑃(𝑘,𝑐)

1+|𝑘−𝑐|
(11) 

(vi) Contrast: Contrast specifies to a variation among the brightness of the region or object and their 
neighbourhood regions or objected in similar view. The equation of contrast is given as, 

𝑁6 =∑ 

𝑘,𝑐

  |𝑘 − 𝑐|2𝑃(𝑘, 𝑐) (12) 

𝐾1 = {𝑁1, 𝑁2, … , 𝑁6} (13) 
• 𝐾1 = Feature vector after applying statistical features 

• 𝑁1, 𝑁2, … , 𝑁6 = Statistical features like mean, entropy, variance, energy, homogeneity, and contrast. 
1) Shape features 

The lesion segmented image 𝐶𝑙 is applied with shape features namely circularity, irregularity, area 
and perimeter [29] for obtaining feature vector. 
 

(i) Area: Area specifies to the overall pixels in an image and it is manifested by𝑄1. 

(ii) Perimeter: Perimeter represents a distance across the boundary of an area, which is signified as 𝑄2. 
(iii) Circularity: Circularity is specified as a measure for identifying roundness of an object, which can 
be represented as, 

𝑄3 = (𝑄2
∧2)/(4 ∗ 𝜋 ∗ 𝑄1) (14) 

Here,  

• 𝑄1 = Area; 𝑄2  = Perimeter;𝑄3 = Circularity 
 

(iv) Irregularity: Irregularity captures the non-standard or unusual aspects of an image and it is 

depicted as 𝑄4. After applying shape features to 𝐶𝑙, feature vector 𝐾2 is obtained, such that, 

𝐾2 = {𝑄1, 𝑄2, 𝑄3, 𝑄4} (15) 
Here, 

• 𝐾2= Feature vector after applying shape features 

• 𝑄1= Area; 𝑄2= Perimeter; 𝑄3= Circularity; 𝑄4= Irregularity 
2) ResNet features 

In addition, ResNet features are applied over liver area segmented image 𝐷𝑙 for acquiring feature 
vector. ResNet [30] employs conv layer for feature extraction and also, this network consists of fully-
connected (FC) classifiers for allocating labels of input image based on extracted features. The feature 

vector obtained after applying ResNet features is implied by a term 𝐾3. An overall feature vector 

acquired from feature extraction stage is manifested as 𝐾𝑙, such that, 

𝐾𝑙 = {𝐾1, 𝐾2, 𝐾3} (16) 
 
 
3.6. Liver Tumor Classification using ViT 

Liver tumor classification is important for diagnosing and treatment planning of tumor. The 
understanding of tumor types and its attributes can assist to overcome the factors affecting patient's 
outcomes. Here, ViT is utilized for performing liver tumor classification into mild, severe and moderate 

by taking 𝑋𝑙 as an input, such that, 

𝑋𝑙 = {𝑇𝑙 , 𝐾𝑙} (17) 
Here, 

𝑇𝑙 = Textural image, 𝐾𝑙 = Feature vector. 
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3.7. Architecture of ViT 
ViT [31, 32] is a kind of NN developed for image classification tasks that exploits transformer 

model. The original transformer acquires input as one-dimensional (1D) series of token embeddings. 

For handling two-dimensional (2D) images, an image 𝑔 ∈ ℜE×H×B is reshaped into series of flattened 

2D patches 𝑔𝑦 ∈ ℜ𝑂×𝑌2⋅𝐵, wherein (B, H) is a resolution of actual image, B denotes total channels, 

(𝑌, 𝑌) depicts a resolution of individual image patch whereas 𝑂 = EH/𝑌2 refers to a resultant count of 
patches that also acts as an effectual input series length for transformer. This transformer employs 

consistent latent vector dimension 𝑅 throughout its layers and thus, patches are flattened and mapped 

to 𝑅 sizes with learnable linearity projection as mentioned in Equation (18). An outcome of this linearity 
projection is specified as patch embeddings. 

The trainable embedding is prepended to series of embedding patches (𝑡0
0 = 𝑔class ), whose 

condition at an output of transformer encoder (𝑡𝑠
0) behaves as image depiction 𝑞. During fine-training 

and pre-training, the classification head is attached to 𝑡𝑠
0. A classification head is executed by multilayer 

perceptron (MLP) with single hidden layer at a pre-training time and by one linearity layer at fine-
training time. The location embeddings are included to patch embeddings for retaining locational 
information. Therefore, resultant series of embedding vector acta as an input to encoder. 

A transformer encoder comprises alternative layers of the multiheaded self-attention (MSA) as well 
as MLP blocks. The Layernorm (LN) is employed before each block and residual links after individual 
block. MLP consists of two layers with GELU non-linear function. The expressions of this structure are 
formulated as follows. 

𝑡0 = [𝑔class ; 𝑔𝑦
1𝐴; 𝑔𝑦

2𝐴;… ; 𝑔𝑦
𝑂𝐴] + 𝐴𝑝𝑜𝑠, 𝐴 ∈ ℜ(Y2⋅ B)×𝑅 , 𝐴𝑝𝑜𝑠 ∈ ℜ(𝑂+1)×𝑅              (18) 

𝑡′𝑠 = MSA(LN(𝑡𝑠−1)) + 𝑡𝑠−1, 𝑠 = 1,… , 𝑆          (19) 

𝑡𝑠 = MLP(𝐿𝑁(𝑡𝑠
′)) + 𝑡𝑠

′ , 𝑠 = 1,… , 𝑆          (20) 

𝑞 = 𝐿𝑁(𝑡𝑠
0)                                (21) 

 
The overall computational complexity is: 

𝑂(𝑚𝑛(𝐿𝑘2 + 𝐿𝑟𝑘𝑟
2 + 𝑑)) + 𝑂(

𝑚2𝑛2

𝑃4
𝑑)(22) 

 
This indicates that the Vision Transformer’s self-attention mechanism significantly impacts 

complexity, particularly for large image resolutions. 
 

4. Results and Discussions 
The liver tumour classified output is symbolized as 𝑉𝑙 and structure of ViT is represented in Figure 

4. 
 
4.1. Experiment Setup 
ViT+LIFT based Stat features designed for classification of liver tumor is implemented in PYTHON 
tool. 
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Figure 4. 
Structure of ViT. 
 

4.2. Dataset Description 
The ATLAS Dataset [15] is divided into two sets: a training set and a testing set. The training set 

contains data from 60 patients from 2012 to 2020, including images and labels for liver tumors in 90 
formats. The testing set contains 30 patients from 2020 to 2023, with the same data structure. The 
dataset is specific to the ATLAS dataset and no external datasets were used in testing. To enhance the 
model's generalizability and robustness, it is suggested to validate the method using additional external 
datasets. 
 
4.3. Experimental Outcomes 

Figure 5 interprets the experimentation results of ViT+LIFT based Stat features. Figure 5 a), b), c), 
d) and e) displays input image-1, pre-processed image-1, liver area segmented image-1, lesion 
segmented image-1 and classified image-1 whereas input image-2, pre-processed image-2, liver area 
segmented image-2, lesion segmented image-2 and classified image-2 are revealed in figure 5 f), g), h), i) 
and j). Figure 5 k), l), m), n) and o) describes input image-3, pre-processed image-3, liver area segmented 
image-3, lesion segmented image-3 and classified image-3. 
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Figure 5.  
Experimental results of ViT+LIFT based Stat features, a) input image-1, b) preprocessed image-1, c) liver area segmented 
image-1, d) lesion segmented image-1, e) classified image-1, f) input image-2, g) pre-processed image-2, h) liver area segmented 
image-2, i) lesion segmented image-2, j) classified image-2, k) input image-3, l) pre-processed image-3, m) liver area segmented 
image-3, n) lesion segmented image-3, o) classified image-3. 
 

4.4. Evaluation Metrics 
Accuracy, sensitivity and specificity are taken into concern as metrics to evaluate ViT+LIFT based 

Stat features. The dataset used has a class imbalance between benign and malignant cases, potentially 
affecting the model's performance evaluation. This can lead to misleading performance metrics like 
accuracy. Future work will include F1-score and precision-recall curves to provide a more accurate and 
balanced assessment of the model's effectiveness, ensuring a more accurate and balanced evaluation of 
its effectiveness. 
 
4.4.1. Accuracy 

Accuracy [3] refers to correctness of model to classify liver tumor and it is formulated by, 

𝐴𝑐𝑐 =
𝑇𝑝𝑜𝑠 + 𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠 + 𝐹𝑝𝑜𝑠 + 𝐹𝑛𝑒𝑔 + 𝑇neg 

(22) 

Here, 

𝐴𝑐𝑐 = Accuracy of the model;   𝑇𝑝𝑜𝑠 = True positive count;   𝑇𝑛𝑒𝑔 = True negative count  𝐹𝑝𝑜𝑠 = False 

positive count;  𝐹𝑛𝑒𝑔= False negative count 

 
4.4.2. Sensitivity 

Sensitivity [3] specifies to an ability of model for classifying individual with liver tumor, which is 
modeled as, 

 Sen =
𝑇pos 

𝑇𝑝𝑜𝑠 + 𝐹neg 

(23) 

4.4.3. Specificity 
Sensitivity [3] illustrates to a competence of model for detecting individuals without liver tumor 

that can be represented as, 



1481 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 5: 1471-1486, 2025 
DOI: 10.55214/25768484.v9i5.7180 
© 2025 by the authors; licensee Learning Gate 

 

 Spe =
𝑇neg 

𝑇neg + 𝐹pos 

(24) 

 
4.5. Performance Analysis 

The performance of the ViT+LIFT-based statistical features model was assessed by varying the 
number of training epochs (20, 40, 60, 80, and 100) while utilizing 90% of the training data. Figure 6 
illustrates the variations in key performance metrics: 

• Accuracy improved from 78.697% at 20 epochs to 91.535% at 100 epochs, demonstrating 
progressive learning and improved feature representation. 

• Sensitivity values increased from 79.395% to 90.043%, indicating the model’s enhanced capability 
to detect liver tumors over time. 

• Specificity rose from 80.947% to 90.564%, confirming the model’s reliability in distinguishing 
between tumor and non-tumor cases. 

To validate the efficacy of ViT+LIFT-based statistical features, the model was benchmarked against 
ResNet-10 [16] 3D Convolution+C-LSTM [17] PocketNet+nnUNet [8] and UNet++ [18] using the 
ATLAS dataset under identical training conditions (90% training, 10% testing). Preprocessing steps 
such as normalization, augmentation, and resizing were consistently applied across all models for a fair 
comparison. 
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     (b) 
 

 
      (c) 

Figure 6.  
Performance estimation of ViT+LIFT-based statistical features: (a) Accuracy, (b) Sensitivity, and (c) Specificity, 
illustrating the effectiveness of the proposed method across key performance metrics. 
 
As depicted in Figure 7 and Table 1, the ViT+LIFT-based statistical features method consistently outperformed baseline 

models across key metrics: 

 

• Accuracy: 91.732%, exceeding ResNet-10 (79.776%), 3D Convolution+C-LSTM (83.533%), 
PocketNet+nnUNet (85.868%), and UNet++ (87.138%). 

• Sensitivity: 90.118%, surpassing ResNet-10 (79.282%), 3D Convolution+C-LSTM (82.319%), 
PocketNet+nnUNet (85.430%), and UNet++ (87.819%). 

• Specificity: 90.710%, outperforming ResNet-10 (80.445%), 3D Convolution+C-LSTM (82.062%), 
PocketNet+nnUNet (85.671%), and UNet++ (86.433%).  

A similar trend was observed for 50% training data, reinforcing the robustness of the ViT+LIFT-
based statistical features model in both low-data and high-data scenarios. 
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(c) 
Figure 7.  
Comparative evaluation of ViT+LIFT-based statistical features: (a) Accuracy, (b) Sensitivity, and (c) Specificity, 
demonstrating the performance of the proposed method against baseline models for varying training data sizes (50% and 
90%). 
 
Table 1.  
Comparative Discussion of Vit+Lift Based Stat Features. 

Setups Metrics/ 
Methods 

ResNet-10 3D 
convolution+C-

LSTM 

PocketNet+nn
UNet 

UNet++ ProposedViT+LI
FT based Stat 

features 

Training 
data=50% 

Accuracy (%) 68.158 71.238 73.810 74.823 78.493 
Sensitivity (%) 68.016 70.705 73.756 75.464 79.982 

Specificity (%) 69.654 70.898 73.436 75.699 79.724 
Training 
data=90% 

Accuracy (%) 79.776 83.533 85.868 87.138 91.732 

Sensitivity (%) 79.282 82.319 85.430 87.819 90.118 
Specificity (%) 80.445 82.062 85.671 86.433 90.710 

 
The ViT+LIFT-based statistical features model demonstrated superior classification performance, 

effectively distinguishing various liver tumor types. Notably, its high sensitivity highlights its ability to 
detect even subtle tumor characteristics, while its specificity ensures fewer false positives. The model's 
ability to outperform established deep learning architectures underscores its potential in clinical 
diagnostics, reducing diagnostic delays and minimizing the need for invasive procedures. In conclusion, 
the experimental results confirm that the ViT+LIFT-based statistical features approach is a highly 
effective and reliable method for liver tumor classification, offering substantial improvements over 
existing techniques. 
 

5. Conclusion 
An exact diagnosing of liver tumor is significant for avoiding redundant liver biopsy. The widely 

utilized imaging method like MRI has led to constant increase in detection and diagnosing of liver 
tumor. As Artificial Intelligence (AI) develops, the effective classification methods that are capable to 
adjust various real-time applications are becoming available. Owing to noises, appearance variabilities 
and non-homogeneity seen in tumor tissues, the classification of liver tumor is complicated. In this 
research, ViT+LIFT based Stat features is designed for liver tumor classification. Initially, an input 
MRI liver tumor image is acquired from the ATLAS dataset. Then, pre-processing of considered MRI 
liver tumor image is done by AWF. Then, liver area segmentation and lesion segmentation are 
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performed utilizing DCE-Net. After that, features such as SIH, shape features like circularity, perimeter, 
area and irregularity, ResNet features as well as LIFT with statistical features namely mean, contrast, 
entropy, energy, variance and homogeneity are extracted. Lastly, liver tumor classification is 
accomplished employing ViT. Additionally, ViT+LIFT based Stat features achieved accuracy, 
sensitivity and specificity of 91.732%, 90.118% and 90.710% while training data is considered as 90%. As 
a future task, types of features essential for liver tumor classification will be selected by removing 
unnecessary features. 
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