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Abstract: This study investigates the multifractal behavior and cross-correlations of major Southeast 
Asian stock markets, offering valuable insights into their interconnectedness and market dynamics. To 
achieve this, three methods are applied: the Multifractal Detrended Cross-Correlation Analysis (MF-
DCCA), the Q-Cross-Correlation Significance Test, and the DCCA Coefficient Method. Additionally, to 
assess the contributions to cross-correlation multifractality, the random permutation (shuffling) and 
phase randomization (surrogate) techniques are employed. The results obtained from the Q-Cross-
Correlation statistic reveal significant cross-correlations between all pairs of Southeast Asian indices, 
emphasizing a strong interconnectedness and shared market dynamics. Furthermore, the DCCA cross-
correlation coefficients for the six major indices show persistent cross-correlations, with values ranging 
from 0 to 1. The fluctuation functions for all pairs demonstrate a nonlinear increase with time scales and 
scaling exponents, indicating a power-law relationship and confirming the presence of long-range cross-
correlations. In addition, the Generalized Hurst Exponent shows a non-linear decrease, while the Rényi 
Exponent exhibits a non-linear increase as the scaling exponents increase. Meanwhile, the Singularity 
Spectrum functions display inverted concave parabolic shapes, which further confirm the multifractal 
nature of the cross-correlations. These findings are corroborated by the non-zero values of the metrics 
assessing the strength of multifractality, based on the Generalized Hurst Exponent and Singularity 
Spectrum. Among the pairs, the Indonesia-Malaysia pair demonstrates the highest degree of 
multifractality, reflecting complex cross-correlations driven by long-range correlations and market-
specific factors, whereas the Indonesia-Singapore pair shows the lowest multifractality. Finally, the 
results of the shuffling and surrogate transformations indicate a significant reduction in multifractality, 
thereby underscoring the role of long-term temporal cross-correlations and heavy-tailed distributions in 
the complex behavior of these markets. The findings offer practical implications for portfolio 
diversification, risk management, and market regulation and policy, emphasizing the importance of 
multifractal analysis in capturing long-term dependencies and complex dynamics in Southeast Asian 
stock markets. 

Keywords: Cross-correlation, Heavy-tailed distributions, MF-DCCA, Long-range correlations, Multifractality, Southeast 
Asian stock markets. 

 
1. Introduction  

The financial markets of Southeast Asia have experienced significant growth and transformation in 
recent decades, emerging as dynamic hubs of economic activity and investment. Historically, these 
markets have faced numerous challenges, such as the 1997 Asian financial crisis and various global 
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economic downturns, which have significantly influenced their development and strengthened their 
resilience. Countries such as Malaysia, Indonesia, the Philippines, Singapore, Thailand, and Vietnam 
exhibit complex behaviors influenced by global economic shifts, regional integration, and the evolving 
dynamics of trade and financial policies. The Association of Southeast Asian Nations (ASEAN) plays a 
critical role in fostering regional cooperation, economic integration, and cultural exchange among its 
member states. These markets are characterized by substantial economic diversity, structural 
differences, and varying levels of financial maturity. The region's growth and the evolving integration 
of its markets into the global economy provide a fertile ground for studying the complexities and 
interdependencies of financial time series. 

As Southeast Asia's financial markets become increasingly interconnected, understanding the 
underlying patterns and interdependencies among these stock markets is critical for both investors and 
policymakers. However, traditional statistical and econometric models frequently struggle to adequately 
capture the complex features of financial time series, including non-linearity, long memory, and inter-
market interactions.  One of the key limitations of these models is their reliance on specific assumptions 
about the nature of distributions, including Gaussian distributions, linearity of relationships, and 
stationarity. These limitations highlight the need for more sophisticated analytical tools that can reveal 
the hidden structures within financial data. 

One such tool is the Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), a powerful 
method for assessing multifractality and cross-correlations between financial time series. 
Multifractality, characterized by the presence of multiple scaling exponents within a time series, reveals 
the intricate structure of its fluctuations. The foundational concept of Detrended Fluctuation Analysis 
(DFA), introduced by Peng, et al. [1] was designed to detect long-range correlations in non-stationary 
time series. Kantelhardt, et al. [2] subsequently extended this framework with Multifractal Detrended 
Fluctuation Analysis (MF-DFA), which allows for the examination of multifractal properties over a 
range of scales. To explore cross-correlations between two time series, Podobnik and Stanley [3] 
introduced Detrended Cross-Correlation Analysis (DCCA), an extension of DFA. Zhou [4] further 
developed this concept into Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), combining 
DCCA and MF-DFA. This integrated methodology provides a comprehensive analysis of the 
multifractal characteristics of cross-correlations, enhancing the understanding of the complex 
interactions between financial time series. 

While multifractal analysis has been extensively applied to financial markets in developed 
economies, there is relatively little research focused on emerging markets, particularly in Southeast 
Asia. This research aims to fill this gap by applying advanced methods like MF-DCCA to a region that 
remains underrepresented in academic literature. 

Specifically, our study seeks to address key research questions related to the degree of 
multifractality and the nature of cross-correlations among Southeast Asian stock markets. The 
application of MF-DCCA offers significant benefits to a variety of stakeholders, including investors, 
policymakers, financial institutions, and regulators. It enhances portfolio diversification by revealing 
hidden cross-market correlations and multifractal patterns, improving investment strategies. MF-
DCCA also strengthens risk management by identifying market dependencies, helping to mitigate 
systemic risks during crises. For policymakers, it provides insights into the progress of financial 
integration in the region, aiding in the design of stability-focused policies. Regulators benefit from an 
improved understanding of market efficiency, enabling better regulations. Global investors gain deeper 
market insights, leading to more informed decisions. Finally, MF-DCCA contributes to financial 
technology by refining risk models and fostering innovation in investment strategies. 

In this paper, we apply three methods: the Multifractal Detrended Cross-Correlation Analysis (MF-
DCCA) method, the Q-Cross-Correlation Significance Test, and the DCCA Coefficient Method. 
Additionally, we discuss two techniques that assess the contribution of various sources to the overall 
cross-correlation multifractality of the bivariate series: random permutation (shuffling) and phase 
randomization (surrogate). 
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The rest of the paper is structured as follows: first, we provide a review of the relevant literature on 
multifractal and cross-correlation analysis, particularly its application in financial markets. Next, the 
materials and methods section details the data sources and analytical techniques used in the study. This 
is followed by the results and discussion section. To conclude, we highlight the main findings and 
explore their practical implications. 

 

2. Literature Review 
The following literature review will explore recent research on MF-DCCA, with a particular focus 

on financial markets. 
El Alaoui and Benbachir [5] employed MF-DCCA to investigate the cross-correlations among the 

stock markets of Morocco, Tunisia, Egypt, and Jordan within the MENA region, finding significant 
multifractal cross-correlations among these markets. In a related study, Xinsheng, et al. [6] also 
utilized MF-DCCA to examine the interrelations between onshore and offshore Chinese Renminbi 
(RMB) markets, revealing that the highest short-term cross-correlation occurred between the Chinese 
Yuan and the British Pound, while the Malaysian Ringgit exhibited the strongest long-term correlation. 

Continuing the exploration of multifractality, Burugupalli [7] analyzed the cross-correlations 
between Gold and WTI Crude Oil using the same MF-DCCA methodology. His findings indicated that 
short-term cross-correlations displayed a stronger multifractal nature compared to those observed over 
longer periods. Qingsong, et al. [8] investigated the relationship between the Hang Seng China 
Enterprises Index and RMB exchange markets, employing both MF-DCCA and multifractal cross-
correlation analysis (MF-CCA). They identified significant cross-correlations, noting that onshore RMB 
markets demonstrated a higher degree of multifractality than offshore markets.  

Li, et al. [9] expanded on this theme by examining the dynamic relationship between the RMB 
exchange index and stock market liquidity in Shanghai and Shenzhen. Their study, which applied MF-
DCCA, revealed strong multifractal cross-correlations that challenge the Efficient Market Hypothesis, 
especially during tightening monetary policy periods. Ferreira, et al. [10] investigated the long-range 
correlations between major global stock markets and their respective exchange rates against the USD, 
uncovering varying effects across different regions, with European markets showing minimal impact, 
while significant effects were observed in the Indian market and positive correlations in Japan, likely 
attributable to its monetary policy. 

In the context of market reforms, Qingsong, et al. [11] assessed the implications of China's 2015 
RMB exchange rate reform on cross-correlations among the CNH, NDF, and CNY markets. Their 
analysis indicated a reduction in both persistence and multifractality following the reform, with shifts in 
the behavior of short- and long-term correlations. Yanjun and Cheng [12] analyzed cross-correlations 
between the Shanghai Stock Exchange Composite and the S&P 500 indices, noting an increase in 
significant interactions post-financial crisis, characterized by multifractal features that were particularly 
evident in small fluctuations. 

Faheem, et al. [13] explored long-range dependencies and multifractality across stock indices from 
nine MSCI emerging Asian economies, finding diverse levels of multifractality that supported the fractal 
market hypothesis. Wang, et al. [14] investigated the nonlinear and multifractal cross-correlations 
between P2P lending and stock markets, recommending regulatory practices from the stock market to 
enhance risk management in the P2P sector. Junjun, et al. [15] examined the long-range cross-
correlation between Bitcoin prices and the U.S. Economic Policy Uncertainty (USEPU) index, 
uncovering significant multifractal interactions. 

Xuemei, et al. [16] focused on the cross-correlations between SHIBOR and Chinese stock market 
liquidity, identifying weak persistence and multifractality that diminished following recent liberalization 
reforms. Similarly, Liu, et al. [17] discovered strong multifractal cross-correlations between futures and 
spot returns in China's soybean market. Baki [18] conducted an analysis of multifractality in 
EUR/TRY and USD/TRY exchange rates using MF-DCCA, highlighting the complex, scale-
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dependent nature of their cross-correlations. Yijun, et al. [19] compared the multifractal characteristics 
of the CSI 300 and S&P 500 indices, documenting differences in long-term memory and complexity. 

In a focused investigation, Faheem, et al. [20] explored the differential responses of Islamic and 
conventional stock markets to economic policy uncertainty (EPU), revealing significant multifractal 
cross-correlations, particularly in U.S. markets. Zeyi, et al. [21] examined the multifractal features and 
market efficiency within the Chinese New Energy market (NEI), concluding that significant 
multifractality and low market efficiency stemmed from long-range correlations. Lastly, Acikgoz, et al. 
[22] revealed multifractal cross-correlations between green bonds and commodities using MF-DCCA. 
The analysis showed long-range correlations in both markets, with volatility displaying persistence 
across fluctuations and returns showing persistence in small fluctuations and antipersistence in large 
ones. 
 

3. Materials and Methods 
3.1. Materials 

The dataset for this study comprises daily closing prices from indices across six major stock markets 
in the Southeast Asia region: Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam. The 
indices include: 

• The IDX Composite is the main stock market index of the Indonesia Stock Exchange (IDX). This 
index includes all stocks listed on the exchange. 

• The FTSE Bursa Malaysia KLCI (Kuala Lumpur Composite Index) is the benchmark stock 
market index for the Bursa Malaysia, representing the 30 largest companies listed on the 
exchange by market capitalization. 

• The PSEi Composite (Philippine Stock Exchange Index) is the main stock market index of the 
Philippine Stock Exchange (PSE). It represents the performance of the top 30 companies that are 
listed on the exchange.  

• The FTSE Straits Times Index (STI) is the primary stock market index that tracks the 
performance of the top 30 companies listed on the Singapore Exchange (SGX). 

• The SET Index is the primary stock market index that tracks the performance of all common 
stocks listed on the Stock Exchange of Thailand (SET).  

• The VN Index is the main stock market index that tracks the performance of all listed companies 
on the Ho Chi Minh City Stock Exchange (HOSE) in Vietnam.  

The data span from 16/10/2013 to 01/11/2024, comprising nearly 2656 observations. All data were 
downloaded from the website www.investing.com. 
The index prices were then converted into logarithmic returns: 

𝑟𝑡 = 𝑙𝑛 (
𝑃𝑡

𝑃𝑡−1
) = 𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1) (1) 

where 𝑃𝑡 denotes the index daily price and 𝑙𝑛 corresponds to the natural logarithm.  
 

4. Methods 
In this section, we describe three methods: the Multifractal Detrended Cross-Correlation Analysis 

(MF-DCCA), the Q-Cross-Correlation Significance Test, and the DCCA Coefficient method. 
Additionally, we discuss two techniques that assess the contribution of various sources to the overall 
cross-correlation multifractality of the bivariate series: random permutation (shuffling) and phase 
randomization (surrogate). 
 
 
 
 

http://www.investing.com/
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4.1. Description of the MF-DCCA 

Consider two time series 𝑥 = (𝑥(𝑘))
1≤𝑘≤𝑁

 and 𝑦 = (𝑦(𝑘))
1≤𝑘≤𝑁

, where 𝑁 is the length of the 

series. We assume that the series have compact supports, meaning that 𝑥(𝑘) = 0 and 𝑦(𝑘) = 0  for only 

a negligible fraction of the values 𝑘. 
 

Step 1: For 𝑥 and 𝑦, we determine the profiles 𝑋 = (𝑋(𝑖))
1≤𝑖≤𝑁

 and 𝑌 = (𝑌(𝑖))
1≤𝑖≤𝑁

 defined by: 

𝑋(𝑖) = ∑(𝑥(𝑘) − 𝑥̅)

𝑁

𝑘=1

 𝑌(𝑖) = ∑(𝑦(𝑘) − 𝑦̅)

𝑁

𝑘=1

 (2) 

where 𝑥̅ and 𝑦̅ are the means of 𝑥 and 𝑦: 

𝑥̅ =
1

𝑁
∑ 𝑥(𝑘)

𝑁

𝑘=1

 𝑦̅ =
1

𝑁
∑ 𝑦(𝑘)

𝑁

𝑘=1

 (3) 

 

Step 2 : For each time scale 𝑠, we divide the two profiles 𝑋 and 𝑌 into 𝑁𝑠 = 𝐼𝑛𝑡(𝑁 𝑠⁄ ) non-

overlapping sub-time series of the same length 𝑠, where 𝐼𝑛𝑡(. ) gives the integer part of a real number. 

Based on the recommendations of Peng, et al. [1] 5 ≤ 𝑠 ≤ 𝑁/4 is traditionally selected. Since 𝑁 is 

generally not a multiple of 𝑠, a short part at the end of the profiles may be neglected. To incorporate all 
the ignored parts of the series, the same procedure is repeated starting from the end of the profile. Thus, 

we obtain 2𝑁𝑠 intervals 𝐼𝑣,𝑠 = (𝐼𝑣,𝑠(𝑗))
1≤𝑗≤𝑠

 defined by: 

𝐼𝑣,𝑠(𝑗) = (𝑣 − 1)𝑠 + 𝑗 (4) 

for 𝑣 = 1,2, ⋯ , 𝑁𝑠 and: 

𝐼𝑣,𝑠(𝑗) = (𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑗 (5) 

for 𝑣 = 𝑁𝑠 + 1,2, ⋯ , 2𝑁𝑠. 

We denote by 𝑋𝑣,𝑠 and 𝑌𝑣,𝑠, the 𝑣𝑡ℎ sub-time series corresponding to 𝑋 and 𝑌, defined by: 

𝑋𝑣,𝑠(𝑗) = 𝑋((𝑣 − 1)𝑠 + 𝑗) 𝑌𝑣,𝑠(𝑗) = 𝑌((𝑣 − 1)𝑠 + 𝑗) (6) 

for 𝑣 = 1,2, ⋯ , 𝑁𝑠 and: 

𝑋𝑣,𝑠(𝑗) = 𝑋((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑗) 𝑌𝑣,𝑠(𝑗) = 𝑌((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑗) (7) 

for 𝑣 = 𝑁𝑠 + 1,2, ⋯ , 2𝑁𝑠. 
 

Step 3: For each time scale 𝑠 and for each segment 𝑣 = 1,2, ⋯ ,2𝑁𝑠, we measure the local trends 𝑋̃𝑣,𝑠 

and 𝑌̃𝑣,𝑠 by performing a degree-2 polynomial least-square regressions of the sub-time series 𝑋𝑣,𝑠 and 

𝑌𝑣,𝑠 on the interval 𝐼𝑣,𝑠 : 

𝑋̃𝑣,𝑠(𝑗) = 𝛼0
𝑣,𝑠 + 𝛼1

𝑣,𝑠. 𝑗 + 𝛼2
𝑣,𝑠. 𝑗2 𝑌̃𝑣,𝑠(𝑗) = 𝛽0

𝑣,𝑠 + 𝛽1
𝑣,𝑠. 𝑗 + 𝛽2

𝑣,𝑠 . 𝑗2 (8) 

We then calculate the detrended covariances: 

𝑓𝑋𝑌
2 (𝑣, 𝑠) =

1

𝑠
∑|𝑋((𝑣 − 1)𝑠 + 𝑗) − 𝑋̃𝑣,𝑠 (𝑗) |.

𝑠

𝑗=1

|𝑌((𝑣 − 1)𝑠 + 𝑗) − 𝑌̃𝑣,𝑠(𝑗)| (9) 

for 𝑣 = 1,2, ⋯ , 𝑁𝑠, and: 

𝑓𝑋𝑌
2 (𝑣, 𝑠) =

1

𝑠
∑|𝑋((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑗) − 𝑋̃𝑣,𝑠 (𝑗) |.

𝑠

𝑖=1

|𝑌((𝑁 − 𝑣 − 𝑁𝑠)𝑠 + 𝑗) − 𝑌̃𝑣,𝑠(𝑗)| (10) 

for 𝑣 = 𝑁𝑠 + 1,2, ⋯ , 2𝑁𝑠. 
 
 



1093 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1088-1108, 2025 
DOI: 10.55214/2576-8484.v9i9.10057 
© 2025 by the authors; licensee Learning Gate 

 

Step 4:  

• The 𝑞𝑡ℎ order fluctuation functions:  

For each time scale 𝑠 and for a given order 𝑞, the 𝑞𝑡ℎ order fluctuation function 𝐹𝑞(𝑠) is defined as an 

average of the covariances over all segments: 

𝐹𝑞(𝑠) = [
1

2𝑁𝑆
∑ (𝑓𝑋𝑌

2 (𝑣, 𝑠))

𝑞

2

2𝑁𝑆

𝑣=1

]

1

𝑞

 (11) 

for 𝑞 ≠ 0 and: 

𝐹0(𝑠) = 𝑒𝑥𝑝 [
1

4𝑁𝑆
∑ 𝑙𝑛 (𝑓𝑋𝑌

2 (𝑣, 𝑠))

2𝑁𝑆

v=1

] (12) 

for 𝑞 = 0. 
The purpose of the MF-DCCA procedure is primarily to determine the behavior of the fluctuation 

functions 𝐹𝑞
𝑋𝑌(𝑠) as a function of the time scale 𝑠 for various values of 𝑞. To this end, steps 2 through 4 

must be repeated for different time scales 𝑠. 

Step 5 : We analyze the multi-scale behavior of the fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠)  by estimating the 

slope of the log-log plots of 𝐹𝑞
𝑋𝑌(𝑠)  versus 𝑠 for different values of 𝑞. If the analyzed time series 𝑋 and 

𝑌 exhibits long-range cross-correlation according to a power-law, such as fractal properties, the 

fluctuation function 𝐹𝑞
𝑋𝑌(𝑠) will behave, for sufficiently large values of 𝑠, according to the following 

power-law scaling law: 

𝐹𝑞
𝑋𝑌(𝑠)~𝑠𝐻𝑋𝑌(𝑞) (13) 

or 

𝑙𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) = 𝐻𝑋𝑌(𝑞). 𝑙𝑜𝑔(s) + 𝑙𝑜𝑔(𝐶) (14) 

where 𝐻𝑋𝑌(𝑞) is called the generalized Hurst exponent, which is the power-law cross-correlation of the 

two series 𝑋 and 𝑌. 

When 𝐻𝑋𝑌(𝑞) depend on 𝑞, the cross-correlation of the two-time series is multifractal, otherwise it 

is monofractal. To estimate the values of 𝐻𝑋𝑌(𝑞) for different values of 𝑞, we perform a semi-

logarithmic regression of the time series 𝐻𝑋𝑌(𝑞) on the time series 𝐹𝑞
𝑋𝑌(𝑠). When 𝑞 = 2, 𝐻𝑋𝑌(2) is 

known as the standard Hurst exponent. When 𝐻𝑋𝑌(2) = 0.5, there are no cross-correlations. When 

𝐻𝑋𝑌(2) > 0.5, the cross-correlations are long-range persistent, while 𝐻𝑋𝑌(2) < 0.5, the two series have 

long-range anti-persistent cross-correlations. In addition, for positive 𝑞, 𝐻𝑋𝑌(𝑞) describes the scaling 

behavior of intervals with large fluctuations. On the contrary, for negative 𝑞, 𝐻𝑋𝑌(𝑞) describes the 
scaling behavior of segments with wavelet fluctuations. 

𝐻𝑋𝑌(𝑞) is a decreasing function and to measure the degree of multifractality between the two series, 

we can use the variation Δ𝐻𝑋𝑌 between the minimum and maximum values as defined below: 

Δ𝐻𝑋𝑌 = 𝐻𝑋𝑌−𝑀𝑎𝑥 − 𝐻𝑋𝑌−𝑀𝑖𝑛 = 𝐻𝑋𝑌(𝑞𝑚𝑖𝑛) − 𝐻𝑋𝑌(𝑞𝑚𝑎𝑥) (15) 

The larger Δ𝐻𝑋𝑌 is, the stronger the degree of multifractality will be. 

For positive values of 𝑞, the average fluctuation function 𝐹𝑞
𝑋𝑌(𝑠) is dominated by segments 𝑣 with 

large covariances 𝑓𝑋𝑌
2 (𝑣, 𝑠). Thus, for 𝑞 > 0, the generalized Hurst exponents 𝐻𝑋𝑌(𝑞)  describe the 

scaling properties of large fluctuations. In contrast, for 𝑞 < 0, the exponents 𝐻𝑋𝑌(𝑞)  describe the 
scaling properties of small fluctuations. 

It is well known that the generalized Hurst exponent 𝐻𝑋𝑌(𝑞) is directly related to the multifractal 

scaling exponent 𝜏𝑋𝑌(𝑞), commonly known as the Rényi exponent : 

𝜏𝑋𝑌(𝑞) = 𝑞. 𝐻𝑋𝑌(𝑞) − 1 (16) 
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If the Rényi exponent 𝜏𝑋𝑌(𝑞) increase nonlinearly with 𝑞, the cross-correlation of the two series is 

multifractal. Otherwise, if the Rényi exponent 𝜏𝑋𝑌(𝑞) is a linear function of 𝑞, then the cross-correlation 
is monofractal. 

Another interesting way to characterize the multifractality of the time series cross-correlations, is to 

use the Hölder spectrum or the singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌)  of the Hölder exponent 𝛼𝑋𝑌. It is well 

known that the singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌)  is related to the Rényi exponent 𝜏𝑋𝑌(𝑞) through the 
Legendre transform: 

{
𝛼𝑋𝑌 = 𝜏𝑋𝑌

′ (𝑞)                          

𝑓𝑋𝑌(𝛼𝑋𝑌) = 𝑞. 𝛼𝑋𝑌 − 𝜏𝑋𝑌(𝑞)
 (17) 

where 𝜏𝑋𝑌
′ (𝑞) is the derivative of the function 𝜏𝑋𝑌(𝑞). 

The Hölder exponent 𝛼𝑋𝑌 characterizes the intensity of the singularity, and the singularity 

spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌) represents the Hausdorff dimension of the fractal subset with exponent 𝛼𝑋𝑌.  
When the cross-correlation between the two series is multifractal, then the singularity spectrum 

𝑓𝑋𝑌(𝛼𝑋𝑌) present a concave bell-shaped curve. 
The richness of the multifractality can be determined by the width of the spectrum defined by: 

∆𝛼𝑋𝑌 = 𝛼𝑋𝑌−𝑚𝑎𝑥 − 𝛼𝑋𝑌−𝑚𝑖𝑛 (18) 

Thus, the wider the spectrum, the richer the multifractal behavior of the cross-correlation of the 
analyzed time series.  

We can easily deduce the relationship between the generalized Hurst exponent ℎ(𝑞) and the 

singularity spectrum 𝑓𝑋𝑌(𝛼𝑋𝑌) : 

{
𝛼𝑋𝑌 = 𝐻𝑋𝑌(𝑞) + 𝑞. 𝐻𝑋𝑌

′ (𝑞)              

𝑓𝑋𝑌(𝛼𝑋𝑌) = 𝑞. (𝛼𝑋𝑌 − 𝐻𝑋𝑌(𝑞)) + 1
 (19) 

 
4.2. A Q-Cross-Correlation Significance Test 

As a preliminary analysis, it is useful to examine the existence of cross-correlations qualitatively. To 

this end, Podobnik, et al. [23] developed the Q-Cross-Correlation statistic test denoted 𝑄𝐶𝐶 . 

Suppose (𝑥𝑡)1≤𝑡≤𝑁 and (𝑦𝑡)1≤𝑡≤𝑁 are two time series of length 𝑁. Podobnik, et al. [23] have defined 

the cross-correlation function 𝐶𝑖 by : for 1 ≤ 𝑖 ≤ 𝑁 − 1 

𝐶𝑖 =
∑ 𝑥𝑘.𝑦𝑘−1

𝑁
𝑘=𝑖+1

√∑ 𝑥𝑘
2𝑁

𝑘=1 . ∑ 𝑦𝑘
2𝑁

𝑘=1

 
(20) 

The cross-correlation statistic 𝑄𝐶𝐶 is defined by : for 1 ≤ 𝑠 ≤ 𝑁 − 1 

𝑄𝐶𝐶(𝑠) = 𝑁2. ∑
𝐶𝑖

2

𝑁 − 𝑠

𝑠

𝑖=1

 (21) 

Podobnik, et al. [23] demonstrated that 𝑄𝐶𝐶(𝑠) is approximately 𝜒2(𝑠) distributed with s degrees 

of freedom. The test can be used to test the null hypothesis that none of the first 𝑠 cross-correlation 
coefficients is different from zero. The authors proposed to use the statistic by plotting the test statistic 

𝑄𝐶𝐶(𝑠) versus the critical values 𝜒2(𝑠) for a broad range of the degree of freedom 𝑠. If for a broad range 

of 𝑠 the test statistic 𝑄𝐶𝐶(𝑠) exceeds the critical values at a 95% level of confidence, we can claim that 
cross-correlations are not only significant, but there are long-range cross-correlations. However, this 
test statistic, as a correlation coefficient, is a measure of linear cross-correlations, and as pointed by 
Podobnik, et al. [23] this cross-correlations test should be used to test the presence of cross-
correlations only qualitatively. 
 
4.3. DCCA Cross-correlation Coefficient 

Based on the Detrended Cross Correlation Analysis (DCCA) and the Detrended Fluctuation 
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Analysis (DFA) [1, 24] proposed a DCCA Cross-Correlation Coefficient to quantify the cross-
correlation between two non-stationary series. This method divide the profiles of the two series into 
overlapping sub-time series, contrary to the MF-DCCA which is based on the non-overlapping 
segments. We present below another version of the DCCA Cross-correlation Coefficient based on MF-
DCCA and using non-overlapping segments. 
The detrended covariance and variance functions are given by: 

𝑓𝑋𝑌
2 (𝑣, 𝑠) =

1

𝑠
∑ (𝑋(𝑗) − 𝑋̃𝑣,𝑠 (𝑗)) (𝑌(𝑗) − 𝑌̃𝑣,𝑠(𝑗))

𝑠

𝑖=1

 (22) 

𝑓𝑋
2(𝑣, 𝑠) =

1

𝑠
∑ (𝑋(𝑗) − 𝑋̃𝑣,𝑠 (𝑗))

2
𝑠

𝑖=1

 𝑓𝑌
2(𝑣, 𝑠) =

1

𝑠
∑ (𝑌(𝑗) − 𝑌̃𝑣,𝑠 (𝑗))

2
𝑠

𝑖=1

 (23) 

We obtain the covariance and variance fluctuation functions by taking 𝑞 = 2: 

𝐹𝑋𝑌
2 (𝑣, 𝑠) =

1

2𝑁𝑠
∑ 𝑓𝑋𝑌

2 (𝑣, 𝑠)

2𝑁𝑠

𝑣=1

 (24) 

𝐹𝑋
2(𝑠) =

1

2𝑁𝑆
∑ 𝑓𝑋

2(𝑣, 𝑠)

2𝑁𝑆

𝑣=1

 𝐹𝑌
2(𝑠) =

1

2𝑁𝑆
∑ 𝑓𝑌

2(𝑣, 𝑠)

2𝑁𝑆

𝑣=1

 (25) 

The DCCA Cross-correlation Coefficient is defined by: 

𝜌𝐷𝐶𝐶𝐴(𝑠) =
𝐹𝑋𝑌

2 (𝑠)

√𝐹𝑋
2(𝑠) × √𝐹𝑌

2(𝑠)
 (26) 

 
4.4. Sources of Cross-Correlation Multifractality 

It is widely recognized that the two primary sources of multifractality in the cross-correlation of 
bivariate time series are long-term temporal cross-correlations and heavy-tailed distributions [2, 4]. To 
assess the contribution of each source to the overall cross-correlation multifractality, we apply two 
transformations to the original return series: random permutation and phase randomization. 

Random permutation (shuffling) maintains the distribution of the data's moments but removes any 
long-term correlations. After permutation, the data retain their statistical distribution but lack temporal 
correlations or memory. 

Phase randomization (surrogate), on the other hand, isolates the effect of long-term correlations on 
multifractality. This method involves randomly altering the temporal phases of the data, disrupting 
long-term correlations while preserving the overall fluctuation behavior. 
Several techniques for phase randomization are discussed in the literature: 

• Inverse Fast Fourier Transform (IFFT) [25]. 

• Iterated Algorithm (iAAFT) [26]. 

• Statically Transformed Autoregressive Process (STAP) [27]. 
In this study, we employed two shuffling techniques using functions “randperm” and “randi”. For 

phase randomization, we utilized the Inverse Fast Fourier Transform (IFFT) method. 
 

5. Results and Discussion 
5.1. Results of Q-Cross-Correlation Significance Test 

In this section, we have checked qualitatively the presence of the cross-correlations between the six 

Southeast Asia indices, using the 𝑄𝐶𝐶 statistic. 
For all pairs return of indices, we have plotted the decimal logarithm of the test statistic 

𝑄𝐶𝐶(𝑠) versus the decimal logarithm of the critical values 𝜒0,95
2 (𝑠) at 95% confidence level for a broad 

range of the degree of freedom 𝑠, 1 ≤ 𝑠 ≤ 2000. The results are given in the figure below. 
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Figure 1.  

 𝐿𝑜𝑔(𝑄𝐶𝐶(𝑠)) and 𝐿𝑜𝑔(𝜒0,95
2 (𝑠)) vs. 𝐿𝑜𝑔(𝑠) for all pairs of indices. 
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The results from the 𝑄𝐶𝐶(𝑠) statistics indicate that for all pairs of stock market indices in the 

dataset, the values are close to or deviate from the critical threshold of 𝜒0,95
2 (𝑠). This suggests that 

significant cross-correlations exist between these pairs, pointing to interconnectedness and shared 
dynamics among the major Southeast Asian stock markets. However, it is important to note that this 
test statistic provides a predominantly linear and qualitative assessment of cross-correlations, which 
limits its ability to fully capture the complex, nonlinear dependencies that may exist in financial time 
series. 
 
5.2. Results of DCCA Cross-Correlation Coefficient 

In this section, we applied the DCCA cross-correlation coefficient to quantify the cross-correlation 
between the six Southeast Asia indices. The figure below shows the plots of the DCCA cross-correlation 

coefficient 𝜌𝐷𝐶𝐶𝐴(𝑠) as a function of the variable 𝑠 for the 15 pairs. 
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Figure 2.  

DCCA cross-correlation coefficient 𝜌𝐷𝐶𝐶𝐴(𝑠) vs. 𝑠 for all pairs of six indices. 

 
The analysis of the DCCA cross-correlation coefficients for the six major Southeast Asian indices 

reveals persistent cross-correlations across all market pairs, with values between 0 and 1. This indicates 
interconnected behavior among these markets, where an increase in one market is likely to drive 
increases in others. 

The persistence of these correlations suggests long memory effects, implying that past market 
behaviors impact future dynamics, reflecting regional market interdependence. This finding highlights 
the challenges for portfolio diversification, as these markets are not entirely independent. Additionally, 
the varying strength of correlations between different market pairs, during the time scale interval, 
suggests that the level of integration across Southeast Asian markets is not uniform. The persistence of 
these cross-correlations may also heighten systemic risk, as financial shocks in one market could 
propagate to others. Future sections will delve deeper into the multifractal characteristics driving these 
persistent cross-correlations to better understand the complexity and evolution of these relationships 
over time. 
 
5.3. Results from the Application of MF-DCCA 

In this section, we applied the MF-DCCA technique to analyze the multifractal cross-correlation of 
the six southeast Asia indices. 
 
5.3.1. Multi-Scale Behavior of the Cross Correlation Fluctuation Functions 

We analyzed the multi-scale behavior of the cross-correlation fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠)  with 

respect to the time scales 𝑠 within the interval [20:10:100, 200:100:1000] for values of 𝑞 in the interval 

[-45:5:-5,-3.1:0.1:-0.1,0.1:0.1:3.1,5:5:45]. By regressing 𝐿𝑜𝑔(𝑠) on 𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)), we obtain an 

estimation of 𝐻𝑋𝑌(𝑞) : 

𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) ≈ 𝐻𝑋𝑌(𝑞). 𝐿𝑜𝑔(𝑠) (27) 

The figure below shows the log-log plots of 𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) versus 𝐿𝑜𝑔(𝑠) for 9 values of 𝑞 chosen 

from {−10, −5, −3, −0.7, 0, 0.7, 3, 5, 10}, for the 15 pairs of indices. 
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Figure 3. 

 𝐿𝑜𝑔 (𝐹𝑞
𝑋𝑌(𝑠)) vs. 𝐿𝑜𝑔(𝑠) for 𝑞 ∈ {−15, −5, −3, −0.7, 0, 0.7, 3, 5, 20} 
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As illustrated in the previous figure, the fluctuation functions 𝐹𝑞
𝑋𝑌(𝑠) for all index pairs 

demonstrate a nonlinear increase with the scale s and exhibit growth with changes in 𝑞, which is 
indicative of a power-law relationship across all pairs. This nonlinear increase confirms the existence of 

significant long-range cross-correlations between the indices, as the scaling behavior of 𝐹𝑞
𝑋𝑌(𝑠) 

suggests that the correlations are not merely short-term or random but extend over long time horizons. 
The power-law relationship also points to the multifractal nature of these cross-correlations, as the 

variation in 𝑞 highlights the fact that different moments of the fluctuation function exhibit different 
scaling properties. This is a key characteristic of multifractality, where the system’s complexity cannot 
be captured by a single scaling exponent but instead requires a spectrum of exponents. The persistence 
of these cross-correlations suggests that shocks or movements in one market are likely to propagate and 
have a sustained impact on others. This interdependence has significant implications for risk 
management and portfolio diversification, as it highlights the potential for shared vulnerabilities or 

opportunities across the region's stock markets. The growth of 𝐹𝑞
𝑋𝑌(𝑠) with 𝑞 further indicates that the 

strength of cross-correlation may differ for small and large fluctuations, with larger movements 
possibly exhibiting stronger multifractality.  
 
5.3.2. Multifractality and Persistence of the Cross-Correlations 

The figure below shows the plots of the generalized Hurst exponent 𝐻𝑋𝑌(𝑞), the Rényi exponent 

𝜏𝑋𝑌(𝑞) and the Singularity spectra 𝑓𝑋𝑌(𝛼) for all the pairs of indices. 
 
 

   
Figure 4.  

Plots of 𝐻𝑋𝑌(𝑞), 𝜏𝑋𝑌(𝑞)  and 𝑓𝑋𝑌(𝛼) for all pairs of southeast Asia indices. 

 
The results from the figure illustrate important aspects of the multifractal behavior in the cross-

correlations between the pairs of Southeast Asian stock market indices. As the parameter 𝑞 varies from -

45 to 45, the Generalized Hurst exponent 𝐻𝑋𝑌(𝑞) shows a non-linear decrease. This behavior suggests 
that the correlations between smaller and larger fluctuations differ significantly, indicating a 

heterogeneous structure in the cross-correlation scaling. A decreasing 𝐻𝑋𝑌(𝑞) points to stronger 

persistent correlations for smaller fluctuations (negative 𝑞) and weaker persistence for larger ones 

(positive 𝑞), a hallmark of multifractality. 

Similarly, the non-linear increase in the Rényi exponent 𝜏𝑋𝑌(𝑞) across all pairs further confirms the 
presence of multifractal scaling. This indicates that the fluctuations in cross-correlations are governed 
by a range of different scaling exponents rather than a single uniform behavior, a key feature of 
multifractal systems. 

Furthermore, the Singularity spectrum functions 𝑓𝑋𝑌(𝛼), which exhibit inverted concave parabolic 
shapes, provide strong evidence for multifractality. The bell-shaped parabolas indicate that the pairs of 
indices have a wide range of singularities, reinforcing the finding that these cross-correlations are not 
monofractal, but rather exhibit a rich multifractal nature. 



1101 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1088-1108, 2025 
DOI: 10.55214/2576-8484.v9i9.10057 
© 2025 by the authors; licensee Learning Gate 

 

These results suggest that the relationships between the Southeast Asian stock markets are highly 
complex and governed by multifractal dynamics. The existence of multifractality implies that the 
markets exhibit long-range dependencies and scale-invariant behavior, which could be driven by 
underlying factors such as market liquidity, investor sentiment, or external economic shocks. This 
complexity may affect portfolio diversification and risk management strategies, as it points to a non-
linear interdependence between the markets that traditional methods may not fully capture. 

The strength of multifractality of the cross-correlations could be measured by the difference 

between the smallest and largest values of 𝐻𝑋𝑌(𝑞) : 

Δ𝐻𝑋𝑌 = 𝐻𝑋𝑌−𝑀𝑎𝑥 − 𝐻𝑋𝑌−𝑀𝑖𝑛 = 𝐻𝑋𝑌(𝑞𝑚𝑖𝑛) − 𝐻𝑋𝑌(𝑞𝑚𝑎𝑥) (28) 
or by the width of the Spectrum, given by: 

∆𝛼𝑋𝑌 = 𝛼𝑋𝑌−𝑚𝑎𝑥 − 𝛼𝑋𝑌−𝑚𝑖𝑛 (29) 

The table below present the degrees of multifractality for the 15 pairs of indices based on Δ𝐻𝑋𝑌 and 

∆𝛼𝑋𝑌. 
 

Table 1.  

Degrees of multifractality of the 15 pairs cross-correlations based on Δ𝐻𝑋𝑌 and ∆𝛼𝑋𝑌. 

Pairs of indices 𝚫𝑯𝑿𝒀 ∆𝜶𝑿𝒀 Pairs of indices 𝚫𝑯𝑿𝒀 ∆𝜶𝑿𝒀 
Indonesia vs Malaysia 0.620 0.668 Malaysia vs Vietnam 0.523 0.569 

Indonesia vs Philippines 0.401 0.449 Philippines vs Singapore 0.416 0.462 
Indonesia vs Singapore 0.262 0.308 Philippines vs Thailand 0.494 0.541 

Indonesia vs Thailand 0.509 0.553 Philippines vs Vietnam 0.514 0.562 
Indonesia vs Vietnam 0.493 0.540 Singapore vs Thailand 0.339 0.385 

Malaysia vs Philippines 0.495 0.545 Singapore vs Vietnam 0.408 0.458 

Malaysia vs Singapore 0.497 0.546 Thailand vs Vietnam 0.536 0.582 
Malaysia vs Thailand 0.612 0.659    

 
The analysis of cross-correlations between each pair of Southeast Asian stock indices reveals clear 

evidence of multifractal behavior, as demonstrated by the values of both Δ𝐻𝑋𝑌 and ∆𝛼𝑋𝑌.  

Firstly, the fact that Δ𝐻𝑋𝑌 is non-zero for all pairs suggests that the cross-correlations are 

characterized by multifractality rather than monofractality. A Δ𝐻𝑋𝑌 = 0   would imply uniform scaling 

behavior across different fluctuations, indicative of monofractal time series. Since Δ𝐻𝑋𝑌 is positive for all 
pairs, this means that the different pairs of indices exhibit varying levels of persistence across different 
time scales, confirming multifractal behavior. This non-uniform scaling suggests that small and large 
fluctuations are governed by different dynamics, which is a hallmark of multifractal systems. 

Similarly, the non-zero values of ∆𝛼𝑋𝑌 further emphasize the multifractality of the cross-
correlations. The width of the Singularity spectrum reflects the range of singularities or scaling 
exponents present in the data. A broader spectrum, as observed here, indicates that the cross-
correlations are influenced by a wide variety of scaling behaviors, typical of multifractal systems. In 

contrast, a ∆𝛼𝑋𝑌 = 0 would denote a monofractal structure. 

The multifractal behavior observed based on both Δ𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 points to the complexity of the 
relationships between these stock markets. It suggests that different time scales or magnitudes of 
market movements affect cross-correlations in distinct ways, potentially influenced by factors like 
market liquidity, external shocks, or investor behavior. This multifractality adds a layer of intricacy to 
understanding the interconnections between markets, implying that their relationships cannot be fully 
captured by simple linear models or assumptions of uniform behavior. 

The figure below illustrates the degrees of multifractality based on on 𝛥𝐻𝑋𝑌 and ∆𝛼𝑋𝑌. 
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Figure 5.  
Ranking of the Southeast Asian indices based on the degrees of multifractality. 

 

As demonstrated in the figure, the rankings derived from both 𝛥𝐻𝑋𝑌 and ∆𝛼𝑋𝑌 metrics reveal 
consistent patterns of multifractality across the pairs of indices. The pair Indonesia-Malaysia exhibits 
the highest degree of multifractality, indicating more complex cross-correlations and significant 
variations in scaling behavior. This suggests that the interdependence between these two markets is 
characterized by a higher level of intricacy, likely driven by a combination of long-range correlations 
and market-specific factors. On the other hand, the Indonesia-Singapore pair shows the lowest 
multifractality, suggesting that their cross-correlations are less complex. This comparative analysis 
highlights the varying levels of market interaction and cross-correlation complexity across the region, 
which could be influenced by structural differences in market dynamics, economic linkages, and investor 
behavior. 
 
5.3.3. Source of Multifractality for the Cross-Correlations 

As previously mentioned, multifractality can arise from two distinct sources: long-term temporal 
cross-correlations and heavy-tailed distributions. To assess the contributions of each source to the 
overall multifractality of cross-correlations, we employ two transformations on the original geometric 
return series:  

(a) Shuffling 
(b) Surrogate 
In this study, we implemented two shuffling techniques, referred to as “randperm” and “randi.” For 

the phase randomization, we utilized the Inverse Fast Fourier Transform (IFFT) method as described 
by Proakis and Manolakis [25].  

The figures presented below compare the Singularity pectrum curves 𝑓𝑋𝑌(𝛼) for the 15 original 
pairs of index return series against those derived from the surrogate and shuffled series. 
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Figure 6.  

Singularity spectrum 𝑓𝑋𝑌(𝛼) vs. 𝛼 for original, surrogate and shuffled pairs. 

 
As shown in the figure above, the application of both the shuffling and surrogate transformations 

results in a reduction of the multifractality degrees of the original series. To quantify the extent of this 

reduction, we calculated the values of ∆𝛼𝑋𝑌 for all 15 pairs of indices. 
We ran the MF-DCCA program 100 times for each pair, and each run produced different results for 

the surrogate series and the two shuffled series. In contrast, the results for the original series remained 
consistent across all simulations. This variability in the results for the surrogate and shuffled series is 
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attributed to the random permutations used by the algorithms when generating these series. Despite the 

variability in the surrogate and shuffled series, the ∆𝛼𝑋𝑌 values for the original series are consistently 
greater than those for the surrogate series and both shuffled series in all 100 simulations.  

The table below presents the results from one of the 100 simulations, further illustrating this trend. 
This confirms that the multifractal nature of the original series is significantly reduced when subjected 
to the shuffling and surrogate transformations, reinforcing the fact that the multifractality in the 
original series is predominantly driven by long-term temporal cross-correlations and heavy-tailed 
distributions. 
 
Table 2.  

Degrees of multifractality of original, surrogate and shuffled series based on ∆𝛼𝑋𝑌 

 ∆𝜶𝑿𝒀 
Pairs  Original Surrogate Shuffled-randperm Shuffled-randi 
Indonesia vs Malaysia 0.668 0.221 0.246 0.303 

Indonesia vs Philippines 0.449 0.367 0.303 0.285 
Indonesia vs Singapore 0.308 0.232 0.274 0.290 

Indonesia vs Thailand 0.553 0.282 0.345 0.335 
Indonesia vs Vietnam 0.540 0.252 0.305 0.238 

Malaysia vs Philippines 0.545 0.295 0.216 0.394 

Malaysia vs Singapore 0.546 0.369 0.309 0.322 
Malaysia vs Thailand 0.659 0.385 0.256 0.388 

Malaysia vs Vietnam 0.569 0.353 0.173 0.308 
Philippines vs Singapore 0.462 0.307 0.263 0.263 

Philippines vs Thailand 0.541 0.354 0.339 0.229 
Philippines vs Vietnam 0.562 0.307 0.215 0.366 

Singapore vs Thailand 0.385 0.351 0.258 0.259 
Singapore vs Vietnam 0.458 0.258 0.269 0.352 

Thailand vs Vietnam 0.582 0.308 0.402 0.315 

 

The results indicate that ∆𝛼𝑋𝑌−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒 is greater than both ∆𝛼𝑋𝑌−𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 and ∆𝛼𝑋𝑌−𝑆ℎ𝑢𝑓𝑓𝑙𝑒𝑑  

for all 15 pairs of index returns. This indicates that the multifractality of the cross-correlations has been 
reduced by both the surrogate and shuffled transformations. We conclude that both long-term cross-
correlations and heavy-tailed distributions contribute to the cross-correlations multifractal behavior of 
the 15 pairs of index returns. 

This outcome underscores the significance of both long-range dependencies and the presence of 
heavy tails in driving the multifractal behavior observed in the 15 pairs of index returns. By 
demonstrating that both sources play a key role in the multifractal structure, the results reinforce the 
conclusion that the complex interactions between these markets are not only driven by temporal 
dependencies but also by the fat-tailed nature of the returns distributions. 
 

6. Conclusion 
Based on the comprehensive findings from this research, we can draw several key conclusions 

regarding the cross-correlations and multifractal behavior of the major Southeast Asian stock markets. 

Initially, the significant cross-correlations identified through the 𝑄𝐶𝐶(𝑠) statistics indicate a robust 
interconnectedness among the stock market indices. This interconnectedness suggests that market 
dynamics are not isolated, but rather influenced by a complex web of relationships across the region. 

However, the limitations of the 𝑄𝐶𝐶 statistic highlight the necessity for more sophisticated methods to 
fully capture the intricate nonlinear dependencies present in these financial time series. 

Furtehermore, the DCCA cross-correlation coefficients affirm the existence of long memory effects, 
indicating that past market behaviors significantly impact future dynamics. This persistence in 
correlations not only reflects regional market interdependence but also poses challenges for portfolio 
diversification, as these markets are not entirely independent. The variability in correlation strengths 
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across different pairs and time scales further emphasizes the heterogeneous nature of market 
integration, suggesting that systemic risk may increase during times of financial stress. 

Moreover, the analysis of fluctuation functions demonstrates a power-law relationship, reinforcing 
the presence of long-range cross-correlations. This finding indicates that market responses are likely to 
propagate over extended periods, complicating risk management strategies. The evidence of multifractal 
characteristics in the scaling behaviors—such as the non-linear changes in the Generalized Hurst 
exponent and the Rényi exponent—illustrates that the cross-correlations are governed by diverse 
dynamics across varying fluctuations. 

Finally, the results of the shuffling and surrogate transformations reveal a notable reduction in 
multifractality, further confirming that both long-term temporal cross-correlations and heavy-tailed 
distributions contribute significantly to the complex behavior of these markets. The findings suggest 
that these two factors are integral to understanding the multifractal nature of cross-correlations, 
indicating that financial shocks in one market can have pronounced effects on others due to these 
underlying dependencies. 

Building upon the comprehensive findings and conclusions, several practical implications can be 
drawn for investors, portfolio managers, and policymakers. 
 
6.1. Portfolio Management and Diversification Strategies 

The demonstrated interconnectedness among Southeast Asian stock markets suggests that 
diversification strategies based solely on geographical separation may be less effective than previously 
thought. Investors should consider the multifractal nature of cross-correlations when constructing 
portfolios, as the persistent dependencies between markets can lead to increased systemic risk. Instead 
of focusing on traditional diversification across markets, investors may benefit from strategies that 
incorporate assets with lower correlation coefficients, even if they are from the same region. 
Additionally, employing risk management tools that account for long-term dependencies and 
multifractal characteristics will enhance portfolio resilience against market shocks.  
 
6.2. Risk Assessment and Management 

The presence of long memory effects and heavy-tailed distributions in the cross-correlations 
highlights the need for advanced risk assessment models that incorporate multifractality. Traditional 
risk metrics such as Value at Risk (VaR) may underestimate potential losses during periods of market 
stress due to their linear assumptions. Implementing multifractal models and stress testing portfolios 
under various market scenarios will provide a more nuanced understanding of potential risks. Financial 
institutions should consider developing and utilizing models that account for the tail dependencies and 
nonlinear relationships revealed in this research. Such models can enhance the accuracy of risk forecasts, 
allowing firms to better prepare for extreme market movements and improve their overall risk 
management frameworks. 

 
6.3. Market Regulation and Policy Implications 

The interconnectedness of stock markets calls for closer regulatory oversight to mitigate systemic 
risk. Policymakers should monitor cross-market dynamics to identify potential sources of contagion that 
could lead to broader financial instability. Regulatory frameworks may need to be updated to reflect the 
complex interdependencies between markets, ensuring that financial institutions maintain adequate 
capital reserves to withstand shocks in interconnected systems. Moreover, collaboration among 
regulatory bodies in Southeast Asia can facilitate a more coordinated approach to market surveillance 
and crisis management. Establishing regional frameworks for information sharing and joint responses 
to financial distress can enhance overall market stability. 
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6.4. Investor Education and Awareness 
Investors should be educated about the implications of multifractal behavior in stock markets. 

Understanding that market correlations can change over time and are influenced by underlying factors 
such as liquidity and investor sentiment is crucial. Investor awareness programs could focus on the 
importance of adaptive strategies that account for market complexity rather than relying on historical 
performance or simplistic models. Encouraging investors to adopt a long-term perspective and consider 
the broader economic and political factors that can influence market dynamics will lead to more 
informed investment decisions. 
 
6.5. Further Research and Development 

The findings of this research indicate that there is a need for ongoing exploration of the  cross-
correlation multifractal nature of financial markets. Researchers should continue to investigate how 
varying market conditions, technological advancements, and geopolitical events impact the multifractal 
behavior of stock markets. Developing new methodologies that better capture the complexities of 
market interactions will be essential for advancing our understanding of financial systems. 

In conclusion, this research provides significant added value by offering a deeper understanding of 
the multifractal dynamics driving the interdependence of Southeast Asian stock markets. By employing 
advanced analytical tools and providing a comprehensive, region-specific study, this work expands the 
theoretical and practical knowledge of financial market interconnections. It not only advances cross-
correllation multifractal analysis techniques but also lays the groundwork for improved investment, risk 
management, and regulatory strategies in the context of increasingly interconnected global financial 
markets. 
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