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Abstract: The purpose of this study is to investigate the transient behavior of a second-order 
regeneration reaction at spherical microelectrodes, where nonlinear reaction–diffusion dynamics govern 
the system response. The research is designed to capture the interplay between electrochemical electron 
transfer and the subsequent homogeneous chemical reaction that regenerates the electroactive species, a 
process of considerable importance in electrochemical sensors and catalytic systems. The methodology 
combines analytical and numerical approaches: the homotopy perturbation method (HPM) is applied to 
derive approximate solutions for non-steady-state concentrations and current responses, while 
numerical simulations are carried out using Scilab to ensure accuracy and reliability. The approach 
effectively manages the inherent nonlinearity of the governing equations, offering tractable expressions 
for system behavior. The findings demonstrate strong agreement between the HPM-based analytical 
solutions and numerical simulations, confirming the validity of the proposed approach. The study 
concludes that HPM is a robust and efficient tool for analyzing nonlinear electrochemical systems. The 
practical implications highlight its potential application in the modeling and optimization of 
electrochemical devices, such as biosensors, microelectrodes, and catalytic fuel cells, where transient 
dynamics and regeneration mechanisms play a critical role. 

Keywords: Electrochemical modelling, Homotopy perturbation method, Reaction–diffusion equations, Second-order 
regeneration kinetics, Spherical microelectrodes. 

 
1. Introduction  

Transient reaction–diffusion processes at spherical microelectrodes are fundamental to 
understanding complex electrochemical systems, particularly those involving second-order regeneration 
reactions. These reactions couple electron transfer with homogeneous chemical transformations, 
producing nonlinear behavior that influences both concentration profiles and current responses. The 
spherical geometry offers distinct advantages, such as radial symmetry and enhanced mass transport, 
making it an ideal platform for probing microscale kinetics. Modeling such systems requires solving 
nonlinear partial differential equations that capture spatial and temporal variations in concentration. 
Developing reliable analytical and numerical solutions to these equations is critical for advancing 
electrochemical theory. Moreover, these studies have wide practical applications in biosensing, 
electrocatalysis, and microanalytical chemistry, where accurate transient modeling supports improved 
device performance and optimization. 

Electrode reaction mechanisms involving second-order homogeneous kinetics have been 
investigated using both numerical and analytical techniques. Molina and Laborda [1] proposed a 
generalized numerical scheme based on finite-difference equations to describe diffusion and kinetic 
processes across different time intervals. Eswari and Rajendran [2] applied the homotopy perturbation 
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method (HPM) to derive approximate analytical expressions for concentration and current in 
homogeneous catalytic reactions at spherical microelectrodes. Molina, et al. [3] examined the chromate 
ampero metric behavior of CE processes at spherical microelectrodes under fast chemical conditions, 
while Delmastro [4] presented the polarographic kinetic current theory for second-order regeneration 
reactions. In addition, EC processes at ultramicroelectrodes have been extensively studied through 
computational simulations [5-7] and analytical approximations [8, 9]. Rajendran and co-workers 
further contributed by reporting accurate analytical solutions for steady-state chronoamperometric 
currents in EC reactions at disc [10] spheroidal ultramicroelectrodes. Izadi et al. applied numerical 
techniques to solve the nonlinear equation [11-13]. 

Despite these advances, accurate analytical approximations for transient concentrations and kinetic 
currents in second-order regeneration reactions at spherical electrodes remain unavailable. This gap 
limits predictive modeling of such nonlinear electrochemical systems under time-dependent conditions. 
To address this challenge, the present study employs the homotopy perturbation method (HPM) to 
obtain approximate analytical solutions for both concentration distributions and current responses. The 
approach not only manages the inherent nonlinearity of the governing equations but also provides 
results that can be compared with numerical simulations for validation. By bridging this gap, the study 
aims to extend the analytical toolkit available for modeling transient electrochemical processes at 
spherical electrodes. 
 

2. Mathematical Formulation  
The catalytic reaction scheme for second-order regeneration reaction at spherical electrodes can be 

written as follows: 

𝑂 + 𝑛𝑒 ⇄ 𝑅 

2𝑅
𝑘
→ 𝑂 + 𝑍 

 
The reaction procedure for the second-order regeneration process is shown in Figure 1. 
 
 

 
Figure 1.  
The reaction scheme for second-order regeneration reaction. 
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The nonlinear initial–boundary value problem describing a second-order regeneration reaction at 

spherical electrodes can be expressed in dimensional form as [4]: 

       
𝜕𝐶0(𝑟,𝑡)

𝜕𝑡
= 𝐷0 [

𝜕2𝐶0(𝑟,𝑡)

𝜕𝑟2 +
2

𝑟

𝜕𝐶0(𝑟,𝑡)

𝜕𝑟
] +

𝑘𝐶𝑅
2(𝑟,𝑡)

2
 ,            (1) 

                 
𝜕𝐶𝑅(𝑟,𝑡)

𝜕𝑡
= 𝐷𝑅 [

𝜕2𝐶𝑅(𝑟,𝑡)

𝜕𝑟2 +
2

𝑟

𝜕𝐶𝑅(𝑟,𝑡)

𝜕𝑟
] − 𝑘𝐶𝑅

2(𝑟, 𝑡).           (2)    

The corresponding initial and boundary conditions are: 

      At 𝑡 = 0 ,   𝑟 ≥ 𝑟𝑜, 𝐶0 = 𝐶0
∗,  and 𝐶𝑅 = 0.                         (3)   

      At 𝑟 = 𝑟𝑜,   𝐶0 = 0,  and  𝐷0
𝜕𝐶0(𝑟𝑜,𝑡)

𝜕𝑟
= −𝐷𝑅

𝜕𝐶𝑅(𝑟𝑜,𝑡)

𝜕𝑟
 .                                   (4)       

At 𝑟 = ∞ ,    𝐶0 = 𝐶0
∗,  and 𝐶𝑅 = 0.                                         (5) 

The current is defined as:  

                 
𝑖(𝑡)

𝑛𝐹𝐴
= 𝐷𝑅

𝜕𝐶𝑅(𝑟𝑜,𝑡)

𝜕𝑟
.                   (6) 

Introducing the transformation ψ(r, t) = 2𝐶0(𝑟, 𝑡) + 𝐶𝑅(𝑟, 𝑡) and assuming equal diffusion coefficients 

 𝐷0 = 𝐷𝑅 = 𝐷equations (1)–(2) reduce to: 

        
𝜕𝜓(𝑟,𝑡)

𝜕𝑡
= 𝐷 [

𝜕2𝜓(𝑟,𝑡)

𝜕𝑟2 +
2

𝑟

𝜕𝜓(𝑟,𝑡)

𝜕𝑟
],           (7) 

                     
 𝜕𝐶𝑅(𝑟,𝑡)

𝜕𝑡
= 𝐷 [

𝜕2𝐶𝑅(𝑟,𝑡)

𝜕𝑟2 +
2

𝑟

𝜕𝐶𝑅(𝑟,𝑡)

𝜕𝑟
] − 𝑘𝐶𝑅

2(𝑟, 𝑡).         (8)   

The revised initial and boundary conditions become: 

                  At 𝑡 = 0,   𝑟 ≥ 𝑟𝑜, ψ(𝑟, 0) = 2co
∗,  and 𝐶𝑅(𝑟, 0) = 0.           (9) 

                  At 𝑟 = 𝑟𝑜,   ψ(𝑟𝑜,𝑡) = 𝐶𝑅(𝑟𝑜, 𝑡),  and  
𝜕𝜓(𝑟𝑜,𝑡)

𝜕𝑟
= −

𝜕𝐶𝑅(𝑟𝑜,𝑡)

𝜕𝑟
.                     (10)  

                  At𝑟 = ∞,    ψ(∞, 𝑡) = 2co
∗,    and   𝐶𝑅(∞, 𝑡) = 0.          (11) 

The dimensional current expression becomes 

      [
𝑖(𝑡)

𝑛𝐹𝐴𝐷
] = [

𝜕𝐶𝑅

𝜕𝑟
]

𝑟= 𝑟0

.              (12)          

Introducing the dimensionless variables: 

𝜌 =
𝑟

𝑟𝑜
, 𝑇 =

𝐷𝑡

𝑟𝑜
2 , 𝑈 =

ψ

2co
∗ , 𝑉 =

𝐶𝑅

2co
∗,  𝑚 =

(2co
∗𝑘)(𝑟𝑜)2

𝐷
.           (13) 

the governing equations (7)–(8) reduce to the following non-dimensional form: 

        
𝜕𝑈(𝜌,𝑇)

𝜕𝑇
=

𝜕2𝑈(𝜌,𝑇)

𝜕𝜌2 +
2

𝜌

𝜕𝑈(𝜌,𝑇)

𝜕𝜌
,             (14) 

                
𝜕𝑉(𝜌,𝑇)

𝜕𝑇
=

𝜕2𝑉(𝜌,𝑇)

𝜕𝜌2 +
2

𝜌

𝜕𝑉(𝜌,𝑇)

𝜕𝜌
− 𝑚𝑉2(𝜌, 𝑇),             (15) 

with initial and boundary conditions:  

                𝑈(𝜌, 0) = 1        , 𝑉(𝜌, 0) = 0.            (16) 

               𝑈(1, 𝑇) = 𝑈(1, 𝑇)and  𝑈′(1, 𝑇) = −𝑉′(1, 𝑇).              (17)  

               𝑈(∞, 𝑇) = 1,   𝑉(∞, 𝑇) = 0.                (18) 
Finally, the dimensionless current is expressed as: 

                   [
𝑖(𝑡)

𝑛𝐹𝐴𝐷
] = [

𝜕𝑉(𝜌,𝑇)

𝜕𝜌
]

𝜌=1
.                 (19) 

The nonlinear reaction–diffusion equations modeling second-order regeneration at spherical 
microelectrodes have wide scientific and engineering applications. They aid in optimizing biosensors, 
simulating enzymatic processes in biofuel cells, guiding drug delivery system design, and improving 
electrochemical interfaces in batteries and super capacitors. This framework highlights the 
multidisciplinary importance of coupled diffusion–reaction dynamics near curved reactive surfaces. 
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3. Result and Discussion       
3.1. Solutions of Transient Concentrations and Current Via HPM  

Numerous applied problems can be resolved by solving systems of nonlinear equations. However, 
significant progress has been made in developing accurate approximate analytical techniques over the 
last three decades. Among the most popular approaches are the variation iteration method [14], the 
hyperbolic and Pade approximation [15], the AGM method [16], the Adomian polynomials [17], and 
TSM method [18]. One of the popular techniques for resolving nonlinear differential equations is HPM 
[19, 20]. 

The HPM method was first proposed by He [21];He [22];He [23] and He [24]. Khan et al. 
applied the HPM method to solve the nonlinear boundary value problems [25, 26]. The nonlinear 
equation was also solved using the numerical scheme proposed by Srivastava and Izadi [27] and Izadi, 
et al. [13]. Recently, Rajendran and co-workers solved many nonlinear issues in physical and 
electrochemical sciences using the HPM method [28-35]. The approximate solutions for Eq. (14) and 
Eq. (15) using the homotopy perturbation approach are derived as follows (Appendix-A): 

         𝑈(𝜌, 𝑇) = 1 −
1

2𝜌
(1 − 𝑒𝑟𝑓 (

𝜌−1

2√𝑇
)),                 (20) 

𝑉(𝜌, 𝑇) =
1

2𝜌
(1 − 𝑒𝑟𝑓 (

𝜌−1

2√𝑇
)) +

𝑚√𝑇

𝜌√𝜋
− 𝑚 (

1

𝜌2 (
𝑇

4
+

√𝑇

√𝜋
)) +

𝑚

4𝜌
[

(1−𝜌)2

2
+ 𝑇 + (𝑇 +

(1−𝜌)2

2
) (𝑒𝑟𝑓 (

(1−𝜌)

2√𝑇
)) +

√𝑇(1−𝜌)𝑒
−(1−𝜌)2

4𝑇

√𝜋
].(21) 

The nondimensional current takes the following form: 

I(𝑇) = [
𝑖(𝑡)

𝑛𝐹𝐴𝐷
] = [

𝜕𝑉(𝜌,𝑇)

𝜕𝜌
]

𝜌=1
=|[

𝑚𝑇

4
+

𝑚𝑇−1

2√𝑇√𝜋
−

1

2
]|.     (22) 

When m=0 we get 

I(𝑇) = [
𝑖(𝑡)

𝑛𝐹𝐴𝐷
] = [

𝜕𝑉(𝜌,𝑇)

𝜕𝜌
]

𝜌=1
= 

1

2
[1 +

1

√𝜋𝑇
].      (23) 

This expression describes the limiting diffusion current typically observed under semi-infinite 
spherical diffusion when a potential step is applied. 
 
3.2. Validation of the Model 

Numerical techniques are utilized to solve the nonlinear differential equations (14) and (15). This 
equation is solved using the SCILAB software pdex4 function, which resolves initial-boundary value 
issues for PDE. Table 1 and Tables 2a and 2b compare its numerical result with the HPM method of the 

dimensionless concentration of 𝑈 𝑎𝑛𝑑 𝑉 for various values of dimensionless time 𝑇, respectively, for 

fixing the parameter value 𝑚. This Tables clearly shows that𝑈 ≈ 1 𝑎𝑛𝑑 𝑉 ≈ 0when 𝑇 ≥ 10 and 𝜌 ≥
5 and for higher values, the concentration approaches constant value, indicating that the species reaches 

equilibrium at higher spatial position. The dimensionless concentration values stabilize as 𝑇 increases, 
which means that the system reaches a steady-state. 
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Table 1.  

Comparing the analytical and numerical results for U(ρ,T) for different values of time T. 
Concentration of U(𝝆, 𝑻) 

𝝆 

T=0.1 T=1 T=3 T=5 T=10 

Numerial 
Analytical 
RJM Eq. 

(20) 
Deviation 

Numerical Analytical 
RJM 

Eq. (20) 

Deviation Numerical Analytical 
RJM 

Eq. (20) 

Deviation Numerical Analytical 
RJM 

Eq. (20) 

Deviation Numerical Analytical 
RJM 

Eq. (20) 

Deviation 

1 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 
2 0.9932 0.9937 0.0005 0.8796 0.8801 0.0005 0.8289 0.8292 0.0003 0.8123 0.8120 0.0003 0.7943 0.7942 0.0001 

3 1.0000 0.9999 0.0001 0.9734 0.9738 0.0004 0.9306 0.9301 0.0005 0.9125 0.9122 0.0003 0.8909 0.8909 0.0000 
4 1.0000 1.0000 0.0000 0.9956 0.9958 0.0002 0.9721 0.9724 0.0003 0.9575 0.9572 0.0003 0.9373 0.9372 0.0001 
5 1.0000 1.0000 0.0000 0.9995 0.9995 0.0000 0.9896 0.9898 0.0002 0.9796 0.9794 0.0002 0.9631 0.9629 0.0002 
6 1.0000 1.0000 0.0000 1.0000 0.9999 0.0001 0.9965 0.9966 0.0001 0.9907 0.9905 0.0002 0.9783 0.9780 0.0003 

7 1.0000 1.0000 0.0000 1.0000 0.9999 0.0001 0.9989 0.9989 0.0000 0.9960 0.9959 0.0001 0.9877 0.9872 0.0005 
8 1.0000 1.0000 0.0000 1.0000 0.9999 0.0001 0.9997 0.9997 0.0000 0.9984 0.9983 0.0001 0.9935 0.9927 0.0008 
9 1.0000 1.0000 0.0000 1.0000 0.9999 0.0001 0.9999 0.9999 0.0000 0.9995 0.9994 0.0001 0.9973 0.9959 0.0014 

10 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.9999 0.0001 1.0000 0.9998 0.0002 1.0000 0.9978 0.0022 
Average Deviation 0.0001 Average Deviation 0.0001 Average Deviation 0.0002 Average Deviation 0.0002 Average Deviation 0.0006 

 
Table 2a. 

Comparing the analytical and numerical concentration of specie V(ρ,T) for different values of time T and for a fixed value of m=0.1. 
 Concentration of V(𝝆, 𝑻) (m = 0.1) 

𝝆 

T=0.1 T=1 T=3 T=5 T=10 
 
Numerical 
 

Analytical 
RJM 

 Eq. (21) 
Deviation 

 
 

Numerical 

Analytical 
RJM 

Eq. (21) 

 
 

Deviation 

Numerical Analytical 
RJM 

Eq. (21) 

 
 

Deviation 

 
 

Numerical 

Analytical 
RJM 

Eq. (21) 

Deviation Numerical Analytical 
RJM 

Eq. (21) 

Deviation 

1 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 

2 0.0068 0.0102 0.0034 0.1196 0.1312 0.0116 0.1689 0.1951 0.0262 0.1845 0.2249 0.0404 0.2010 0.2742 0.0732 
3 0.0000 0.0037 0.0037 0.0264 0.0365 0.0101 0.0684 0.0880 0.0196 0.0856 0.1155 0.0299 0.1055 0.1596 0.0541 
4 0.0000 0.0032 0.0032 0.0043 0.0133 0.0090 0.0275 0.0429 0.0154 0.0416 0.0639 0.0223 0.0605 0.0994 0.0389 

5 0.0000 0.0028 0.0028 0.0005 0.0085 0.0080 0.0103 0.0234 0.0131 0.0191 0.0378 0.0187 0.0356 0.0651 0.0295 
6 0.0000 0.0024 0.0024 0.0000 0.0072 0.0072 0.0035 0.0151 0.0116 0.0092 0.0243 0.0151 0.0209 0.0446 0.0237 
7 0.0000 0.0021 0.0021 0.0000 0.0064 0.0064 0.0011 0.0115 0.0104 0.0031 0.0173 0.0142 0.0119 0.0320 0.0201 
8 0.0000 0.0019 0.0019 0.0000 0.0058 0.0058 0.0003 0.0098 0.0095 0.0016 0.0136 0.0120 0.0063 0.0242 0.0179 

9 0.0000 0.0017 0.0017 0.0000 0.0053 0.0053 0.0000 0.0088 0.0088 0.0005 0.0116 0.0111 0.0026 0.0192 0.0166 
10 0.0000 0.0016 0.0016 0.0000 0.0048 0.0048 0.0000 0.0081 0.0081 0.0000 0.0103 0.0103 0.0000 0.0161 0.0161 

Average Deviation 0.0023 Average Deviation 0.0068 Average Deviation 0.0123 Average Deviation 0.0174 Average Deviation 0.0290 
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Table 2b. 

Comparing the analytical and numerical concentration of specie 𝑉(𝜌, 𝑇) for different values of time T and for a fixed value of m=0.01. 

Concentration of V(𝝆, 𝑻) (m = 0.01) 

𝝆 

T=0.1 T=1 T=3 T=5 T=10 
 
Numerical 
 

Analytical 
RJM 

 Eq. (21) 
Deviation 

Numerical Analytical 
RJM 

Eq. (21) 

Deviation Numerical Analytical 
RJM 

Eq. (21) 

Deviation Numerical Analytical 
RJM 

Eq. (21) 

 
Deviation 

 
Numerical 

Analytical 
RJM 

Eq. (21) 

 
 

Deviation 

1 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 
2 0.0067 0.0067 0.0000 0.1203 0.1210 0.0007 0.1709 0.1732 0.0023 0.1873 0.1917 0.0044 0.2052 0.2126 0.0074 
3 0.0000 0.0004 0.0004 0.0267 0.0272 0.0005 0.0693 0.0709 0.0016 0.0873 0.0906 0.0033 0.1087 0.1142 0.0055 

4 0.0000 0.0003 0.0003 0.0044 0.0051 0.0007 0.0278 0.0291 0.0013 0.0425 0.0449 0.0024 0.0625 0.0665 0.0040 
5 0.0000 0.0003 0.0003 0.0005 0.0013 0.0008 0.0104 0.0116 0.0012 0.0203 0.0223 0.0020 0.0368 0.0399 0.0031 
6 0.0000 0.0002 0.0002 0.0000 0.0008 0.0008 0.0035 0.0046 0.0011 0.0093 0.0109 0.0016 0.0216 0.0242 0.0026 

7 0.0000 0.0002 0.0002 0.0000 0.0006 0.0006 0.0011 0.0021 0.0010 0.0040 0.0054 0.0014 0.0123 0.0148 0.0025 
8 0.0000 0.0002 0.0002 0.0000 0.0006 0.0006 0.0003 0.0012 0.0009 0.0016 0.0029 0.0013 0.0065 0.0090 0.0025 
9 0.0000 0.0002 0.0002 0.0000 0.0005 0.0005 0.0000 0.0009 0.0009 0.0005 0.0017 0.0012 0.0028 0.0056 0.0028 

10 0.0000 0.0001 0.0001 0.0000 0.0005 0.0005 0.0000 0.0008 0.0008 0.0000 0.0012 0.0012 0.0000 0.0036 0.0036 

Average Deviation 0.0002 Average Deviation 0.0006 Average Deviation 0.0011 Average Deviation 0.0019 Average Deviation 0.0034 
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3.3. Parametric Analysis of Concentration and Current 
 

 
Figure 2. 

(a,b). (a). Comparison of dimensionless concentration 𝑈 were calculated using Eq. (14) and Eq. (20). (b) shows the steady state 

of dimensionless concentration 𝑈. 

 
In Figure 2(a) at small time   the concentration rapidly increases with distance, reaching a nearly 

steady-state. As T increases (i.e. 𝑇 = 1,3,5,10), the concentration profile smoothens and extends further 
into the domain. Also, clear that as time increases, the concentration value rises and concentration value 

is the same (i.e.  𝑈 = 1) when 𝜌 ≥ 10 for all values of time T. The system appears to describe a 
diffusion-like process where concentration gradually reaches equilibrium. The boundary conditions 

likely enforce a high concentration when 2 ≤ 𝜌 ≤ 4 and also Fig. 2(b) shows the steady-state 

concentration 𝑈 at 𝑇 ≥ 100.From the equation (20) and Fig.2(a,b) it is observed that the concentration 

of U is minimum at 𝜌  =1 and minimum value is 0.5.The concentration of U has been estimated to be 

maximal when ρ = 10, with a peak value of one. 
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Figure 3. 

(a-c) Comparison of concentration 𝑉 using Eq. (15) for various values of T (a) when 𝑚 = 0.1 (b) when 𝑚 = 0.01 (c) various 
values of m (dimensionless parameter). 

 

In Figure 3(a) and 3(b) plots the 𝑉(𝜌, 𝑇) for a range of distance 𝜌  for various value of dimensionless 

time 𝑇when parameter  𝑚 = 0.1 and 𝑚 = 0.01respectively. Here the value of 𝑉(𝜌, 𝑇) is high when 𝑇 

increases and its value is equal (i.e. 𝑉 = 0) for all values of time 𝑇 at 𝜌 ≥ 10. If larger 𝑚 (𝑚 = 0.1)  leads 

to a slower concentration decay while smaller 𝑚 (𝑚 = 0.01) results in a more rapid drop in 
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concentration. According to equation (21) and figure 2(a,b), the concentration of V reaches its maximum 

at ρ=0 and reaches its maximum value of 0.5. 
 

 
Figure 4.  

Dimensionless current were calculated using Eq. (22) for the various values of parameter 𝑚. 

 
Figure 4 represents the variation of current over time T for various values of  m. The dimensionless 

current starts from a lower value and increases as time progresses. As T increases, the system becomes 
more stable, causing the current to change. A higher m likely means faster transport or diffusion, 
leading to a more pronounced increase in current. A comparison between the analytical and simulation 
results for different values of m is provided in Table 3. The highest deviation between the analytical 
predictions and numerical simulations, observed across Tables 1 to 3, is 0.4071. 

 
Table 3.  
Comparison of the analytical results of the current with simulation result. 
Dimensionless current I 

𝑇 

m=0.1 m=0.5 m=1 

 
Numerical 

 

Analytical 
RJM 

Eq. (22) 
Deviation 

 
Numerical 

Analytical 
RJM 

Eq. (22) 

 
Deviation 

 
Numerical 

Analytical 
RJM 

Eq. (22) 

 
Deviation 

5 0.0004 0.0002 0.0002 0.8299 0.3143 0.5156 2.2199 1.2548 0.9651 
10 0.0073 0.0051 0.0022 1.4792 1.1069 0.3723 3.5194 2.8031 0.7163 

20 0.0997 0.0631 0.0366 2.7788 2.5678 0.2110 6.1178 5.6988 0.4190 
30 0.3594 0.3530 0.0064 4.0775 3.9712 0.1063 8.7151 8.4940 0.2211 
40 0.6189 0.6338 0.0149 5.3755 5.3477 0.0278 11.3113 11.2391 0.0722 
50 0.8783 0.9096 0.0313 6.6730 6.7077 0.0347 13.9065 13.9553 0.0488 

Average Deviation 0.0153 Average Deviation 0.2113 Average Deviation 0.4071 
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4. Future Scope 
The homotopy perturbation method (HPM) offers a powerful framework for obtaining accurate 

analytical approximations to nonlinear boundary value problems with minimal computational effort. Its 
versatility extends to second-order homogeneous kinetics [36] and biological wave phenomena [37]. 
Similar nonlinear initial–boundary value problems arise in diverse fields, including heat propagation in 
absorptive media, thermal energy transfer in plasmas, and dead-core formation processes [38]. The 
efficiency of HPM in simplifying nonlinear systems makes it particularly valuable for real-time 
simulations and for bridging empirical models with theoretical frameworks, thereby advancing 
applications across science and engineering. 
 

5. Conclusion 
This study developed and analyzed nonlinear transient reaction–diffusion equations describing a 

second-order regeneration process at spherical microelectrodes with equal diffusion coefficients. Using 
the homotopy perturbation method (HPM), convergent analytical solutions were obtained, effectively 
capturing nonlinear dynamics under transient conditions. The method successfully addressed 
nonlinearities from second-order kinetics and Butler–Volmer type boundary conditions, proving robust 
for curved geometries. These approximations provide insights into concentration profiles and fluxes, 
reducing dependence on numerical simulations. Beyond theory, the approach offers practical 
implications for optimizing biosensors, enzymatic biofuel cells, and electrochemical energy devices, 
where accurate modeling of coupled diffusion–reaction processes is crucial for performance 
improvement. 
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 Appendix A. 
Solution of equations (14) and (15). 

The equations (14) and (15) can be written as follows: 
𝜕2𝑈

𝜕𝜌2 +
2

𝜌

𝜕𝑈

𝜕𝜌
−

𝜕𝑈

𝜕𝑇
= 0,          (A1) 

𝜕2𝑉

𝜕𝜌2 +
2

𝜌

𝜕𝑉

𝜕𝜌
−

𝜕𝑉

𝜕𝑇
− 𝑚𝑉2 = 0.         (A2) 

Dimensionless initial and boundary conditions are as follows: 

At 𝑇 = 0,   𝑈 = 1,    𝑉 = 0.         (A3) 

At  𝜌 = 1,   𝑈 = 𝑉, and 𝑈′ = −𝑉′.        (A4) 

At 𝜌 = ∞,     𝑈(∞) = 1,      𝑉(∞) = 0.                     (A5) 

The homotopy for the nonlinear equation (A2) can be constructed as follows:     

(1 − 𝑝) [
𝜕2𝑉

𝜕𝜌2 +
2

𝜌

𝜕𝑉

𝜕𝜌
−

𝜕𝑉

𝜕𝑇
] + 𝑝 [

𝜕2𝑉

𝜕𝜌2 +
2

𝜌

𝜕𝑉

𝜕𝜌
−

𝜕𝑉

𝜕𝑇
− 𝑚𝑉2] = 0.                 (A6) 

Now assume that the solution of Eqn.(A2) is 

𝑉 = 𝑉0 + 𝑝𝑉1 + 𝑝2 𝑉2 + ⋯.         (A7) 

By inserting Eq. (A7) into Eq. (A6) and matching powers of p, the following equations are obtained. 

𝑝0 ∶
𝜕2𝑉0

𝜕𝜌2 +
2

𝜌

𝜕𝑉0

𝜕𝜌
−

𝜕𝑉0

𝜕𝑇
= 0,         (A8) 

𝑝1 ∶
𝜕2𝑉1

𝜕𝜌2 +
2

𝜌

𝜕𝑉1

𝜕𝜌
−

𝜕𝑉1

𝜕𝑇
− 𝑚𝑉0

2 = 0.        (A9) 

The conditions for (A8) are as follows: 

𝑇 = 0, 𝑈 = 1, 𝑉0 = 0, (A10) 

𝜌 = 1, 𝑈(1) =  𝑉0(1),    𝑈′(1) = −𝑉0
′(1), (A11) 

𝜌 = ∞, 𝑈(∞) = 1, 𝑉0(∞) = 0. (A12) 

The following are dimensionless conditions for (A9): 

𝑇 = 0, 𝑉1 = 0, (A13) 

𝜌 = 1,     𝑉1(1) = 0,       𝑉1
′
(1) = 0, (A14) 

𝜌 = ∞,     𝑉1(∞) = 0. (A15) 

Taking Laplace transformation with respect to 𝑇 to the Eqs. (A1) and (A8) we get 
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𝜕2𝑈̅

𝜕𝜌2 +
2

𝜌

𝜕𝑈̅

𝜕𝜌
− 𝑠𝑈̅ + 1 = 0,  (A16) 

𝜕2𝑉0̅̅ ̅

𝜕𝜌2 +
2

𝜌

𝜕𝑉0̅̅ ̅

𝜕𝜌
− 𝑠𝑉0

̅̅̅ = 0,                       (A17) 

where s is the Laplace variable and the over bar signifies a quantity that has undergone Laplace 
transformation. On solving Eqs. (A16) and (A17) with the initial and boundary conditions,we get the 
following results. 

𝑈̅(𝜌, 𝑠) =
1

𝑠
−

𝑒−𝜌√𝑠

2𝜌𝑠𝑒−√𝑠
,          (A18) 

𝑉0
̅̅̅(𝜌, 𝑠) =

𝑒−𝜌√𝑠

2𝜌𝑠𝑒−√𝑠
.          (A19) 

Using inverse Laplace transform, the final results can be obtained as follows: 

𝑈(𝜌, 𝑇) = 1 −
1

2𝜌
(1 − 𝑒𝑟𝑓 (

𝜌−1

2√𝑇
)),        (A20) 

𝑉0(𝜌, 𝑇) =
1

2𝜌
(1 − 𝑒𝑟𝑓 (

𝜌−1

2√𝑇
)).                                              (A21) 

Taking Laplace transformation with respect to 𝑇 to the Eqs.  (A9) we get 
𝜕2𝑉1̅̅ ̅

𝜕𝜌2 +
2

𝜌

𝜕𝑉1̅̅ ̅

𝜕𝜌
− 𝑠𝑉1̅ −

𝑚

4𝜌2 (
1

𝑠
−

2(𝜌−1)

√𝑠
) = 0.       (A22)  

On solving Eqs. (A22) using reduction of order , we get the following results. 

𝑉1̅(𝜌, 𝑆) =
𝑚𝑒√𝑠(1−𝜌)

4𝑠2𝜌
+

𝑚

2𝜌𝑠
3
2

−
𝑚(1+2√𝑠)

4𝑠2 (𝜌−2 +
2𝜌−4

𝑠
+

24𝜌−6

𝑠2 + ⋯ ) ≈
𝑚𝑒√𝑠(1−𝜌)

4𝑠2𝜌
+

𝑚

2𝜌𝑠
3
2

−
𝑚(1+2√𝑠)

4𝑠2 (𝜌−2).

 (A23) 
Using inverse Laplace transform, the final results can be obtained as follows: 

𝑉1(𝜌, 𝑇) =
𝑚

4𝜌
[(𝑇 +

(1−𝜌)2

2
) (𝑒𝑟𝑓 (

(1−𝜌)

2√𝑇
)) +

√𝑇(1−𝜌)𝑒
−(1−𝜌)2

4𝑇

√𝜋
+

(1−𝜌)2

2
+ 𝑇] +

𝑚√𝑇

𝜌√𝜋
− 𝑚 (

1

𝜌2 (
𝑇

4
+

√𝑇

√𝜋
)).

 (A24) 
 
According to the analysis using HPM, we find that. 

U(𝜌,T) = 1 −
1

2𝜌
(1 − 𝑒𝑟𝑓 (

𝜌−1

2√𝑇
)),    (A25) 

𝑉(𝜌, 𝑇) = lim
𝑝→1

𝑉(𝜌) ≈ 𝑉0 + 𝑉1   

≈
1

2𝜌
(1 − 𝑒𝑟𝑓 (

𝜌−1

2√𝑇
)) +

𝑚

4𝜌
[(𝑇 +

(1−𝜌)2

2
) (𝑒𝑟𝑓 (

(1−𝜌)

2√𝑇
)) +

√𝑇(1−𝜌)𝑒
−(1−𝜌)2

4𝑇

√𝜋
+

(1−𝜌)2

2
+ 𝑇] +

𝑚√𝑇

𝜌√𝜋
−

𝑚(
1

𝜌2 (
𝑇

4
+

√𝑇

√𝜋
).  (A26) 

 
The dimensionless current is 

I=[
𝜕𝑉(𝜌,𝑇)

𝜕𝜌
]

𝜌=1
=   

𝑚𝑇

4
+

𝑚𝑇−1

2√𝑇√𝜋
−

1

2
.        (A27) 

 


