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Abstract: Load flow analysis is essential for periodic planning, scheduling, and reliable operation of 
traditional and modern power grids. This study evaluates the effectiveness of Artificial, Physics-
Informed and Graph Neural Network (NN) models in performing load flow analysis on standard 
benchmark systems (IEEE 14- and 30-bus) and practical Nigerian networks (28- and 52-bus) under 
steady-state, Fault, and Distributed Generation (DG) penetration scenarios. Newton-Raphson (NR) 
method was used to generate base case voltage magnitudes and phase angles as reference targets for 
model training. Models were implemented in MATLAB (R2025a) and evaluated using standard 
statistical metrics (MSE, RMSE, MAE, MAPE) and Line Voltage Stability Index (LVSI). Simulation 
results showed that ANN achieved MSE values between 0.385-1.079, RMSE 0.62-1.039, MAE 0.037-
0.105, MAPE 2.005-5.562%, and LVSI 0.594-0.87. GNN recorded MSE 0.731-1.828, RMSE 0.855-
1.352, MAE 0.068-0.18, MAPE 3.073-8.903%, and LVSI 0.524-0.724. PINN showed MSE 1.622-2.552, 
RMSE 1.274-1.597, MAE 0.158-0.238, MAPE 6.197-10.77%, and LVSI 0.563-0.752. The results 
demonstrate the suitability of the individual models for rapid and reliable load flow analysis across 
varying network sizes and operating conditions. The findings of this study will serve as practical 
guidance for model selection in modern power systems, supporting efficient planning, operation, and 
integration of DG resources. 

Keywords: Artificial neural networks, Distributed generation, Graph neural networks, Load flow analysis, Physics-
informed neural networks, Power system stability, Resilient power grids. 

 
1. Introduction  

Electrical power systems are large-scale, interconnected infrastructures designed to facilitate the 
generation, transmission, and distribution of electricity across wide geographic regions [1, 2]. Ensuring 
their stable and economic operation requires continuous monitoring and analysis of electrical 
parameters at various nodes and branches of the system. One essential analytical tool used in this 
context is load flow analysis (also known as power flow analysis), which provides critical information on 
voltage magnitudes, phase angles, real and reactive power flows, and system losses [3]. This analysis 
forms the backbone of power system planning, operation, and contingency assessment, enabling 
operators to understand system behavior under both normal and disturbed conditions [3-5]. 

The growing integration of Renewable Energy (RE) sources, Distributed Generation (DG) units, 
and advanced power electronic devices has also introduced new complexities into modern grids, making 
accurate and efficient load flow analysis more crucial than ever [6-8]. Traditionally, numerical methods 
such as Newton-Raphson (NR), Gauss-Seidel (GS), and Fast Decoupled Load Flow (FDLF) have been 
widely used for solving load flow problems. For instance, Adejumobi, et al. [9] performed a comparative 
study of NR, GS, and FDLF methods; T. BS. and K. V. Madhukar, "Deep learning based optimal power 
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flow with renewable integration," in Fikri, et al. [3] also utilized NR and GS for power flow studies, 
while Adebayo, et al. [10] investigated load flow using Load Tap-Changing Transformers (LTCT). 
Although these methods are effective under many conditions, they often struggle with convergence in 
highly nonlinear or dynamically complex systems, particularly those impacted by RE and DG 
integration. These limitations have spurred interest in more adaptive and intelligent approaches [11]. 

To address these challenges, Artificial Intelligence (AI) techniques have been increasingly explored 
as alternatives to conventional methods. Metaheuristic algorithms and expert systems such as Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Sparrow Search 
Algorithm (SSA), Artificial Bee Colony (ABC) and Fuzzy Logic have demonstrated flexibility in 
handling the uncertainties and complexities of load flow problems [11-13]. Notable examples include 
Himakar and Reddy [14] who applied Real-Coded Buragohain and Boruah [5] and Dixit, et al. [15] 
both applied fuzz logic, while Shazly, et al. [13] implemented PSO for power flow analysis in modern 
systems. Despite their adaptability, these methods can be computationally intensive and may face issues 
with convergence in large-scale or highly variable environments [13]. 

As a result, Machine Learning (ML) techniques have gained attention for their ability to model 
complex systems using historical data. ML methods like Artificial Neural Networks (ANNs), Support 
Vector Machines (SVMs), and decision Trees have been used to approximate bus voltages, power flows, 
and other key indicators with impressive accuracy [16-18]. For example, EFE [19] compared 
analytical methods with ANN for a 5-bus system; Tiwari, et al. [20] employed ANN for predicting 
voltage magnitudes and power flows, while Fikri, et al. [3] and Alsulami and Kumar [16] extended this 
to a Moroccan 24-bus system and Saudi Arabia grid, respectively. Calma and Pacis [21] also 
demonstrated ANN’s ability to assess voltage security and calculate stability indices. These data-driven 
models can generalize from past system behavior and often eliminate the need for repetitive 
computations during real-time inference [17]. 

Researchers have also explored hybrid approaches, combining conventional and AI methods to 
improve performance. Gnanambal, et al. [22] investigated hybrid PSO-GA for three-phase power flow, 
while Davoodi, et al. [23] hybridized simplex with PSO to improve convergence. Singh, et al. [24] 
employed a hybrid PSO-ANN to predict bus voltage magnitudes and angles on the IEEE 14-bus system 
under various cases. Ting, et al. [25] tested a GA-PSO hybrid method on larger power systems 
including IEEE 30, 57, and 118-bus systems under heavy loading. Ahiakwo, et al. [26] also utilized a 
neuro-swarm approach combining ANN and ABC algorithms for load flow computation of a 4-bus 
system, illustrating the flexibility of hybrid models in practical problems. 

While ANNs have shown promise, their reliance on large datasets without embedded physical 
constraints is limited [17]. To bridge this gap, physics-informed and structure-aware neural networks 
approaches have emerged. The study of Kaseb, et al. [27] employed Quantum Neural Network for load 
flow analysis of standard IEEE 4 bus and 30 bus systems. Therefore, this study investigates the 
effectiveness of three ML models including ANNs, Physics-Informed Neural Networks (PINNs), and 
Graph Neural Networks (GNNs) in solving load flow problems. Using both IEEE standard systems 
(14-bus and 30-bus) and practical Nigerian networks (28-bus and 52-bus), the models are evaluated 
based on their accuracy in predicting bus voltages and phase angles, convergence behavior, and 
computational efficiency. The aim is to provide insights into the adaptability and reliability of these 
techniques for both conventional and evolving power grid environments. 
 

2. Theoretical Framework 
2.1. Modern Electric Power Grid 

The modern electrical power grid is a highly networked system that delivers electricity at high 
efficiency from the location at which it is generated to where it is needed. It integrates DG resources 
such as wind and solar at the distribution level as shown in Figure 1. As a result of this integration, the 
system becomes increasingly dynamic and complicated. Therefore, accurate load flow analysis becomes 
even more essential to guarantee the efficient and reliable operation of the power grid [28]. 
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Figure 1.  
Modern Electric Power Grid 

 
2.2. Modeling DG for Load Flow Analysis 

Distributed Generation are energy sources which are used to compensate for the power losses at 
distribution level in an electric power system [28]. The mathematical representation of the power 
contribution from solar and wind DG resources  is generally modeled as follows. 

For solar PV, the active power contributed is modeled as Ejuh Che, et al. [7] 

𝑃𝐷𝐺
𝑃𝑉 = 𝜂𝑃𝑉 ∙ 𝐴𝑃𝑉 ∙ 𝐺𝑆𝑇𝐶 ∙ 𝜂𝐼𝑁𝑉           (1) 

For wind turbine generation, the active power contributed is modeled as Ejuh Che, et al. [7]  

𝑃𝐷𝐺
𝑊𝑇 =

1

2
𝜌𝐴𝑣3𝐶𝑝            (2) 

where 𝜂𝑃𝑉 is the efficiency of the photovoltaic panels; 𝐴𝑃𝑉 is the area of the photovoltaic panels; 

𝐺𝑆𝑇𝐶 is the solar irradiance in 𝑊/𝑚2 (typically obtained from meteorological data); 𝜂𝐼𝑁𝑉 is the efficiency 

of the inverter system; 𝜌 is the air density; 𝐴 is the swept area of the wind turbine blades; 𝑣 is the wind 

speed at the height of the turbine and 𝐶𝑝 is the power coefficient. 

The reactive power of DG resources is typically small and can be assumed to be zero unless there 
are reactive power compensation devices (like capacitors) installed, which is not the case for the current 
study. 
 
2.3. Fundamentals of Load Flow Analysis 

Load flow analysis is a procedure used to determine the known and unknown variables at the 
different buses of an electric power system for specified operating conditions [5]. These variables are 

presented in Table 1. The objective of load flow analysis is to solve for bus voltage magnitudes, 𝑉𝑖 and 

the phase angles, 𝛿𝑖 when the power generations and loads are specified. 
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Table 1.  
Load Flow Variables. 

Bus Types Known Variables Unknown Variables 

Generator (PV) Real power (𝑃) Voltage angle (𝜃) 

Voltage magnitude (𝑉) Reactive power (𝑃) 
Load/Generator (PQ) Real power (𝑃) Voltage angle (𝜃) 

Reactive power (𝑄) Voltage magnitude (𝑉) 
Slack/Reference Bus  Voltage magnitude (𝑉) Real power (𝑃) 

Voltage angle (𝜃) Reactive power (𝑄) 

 

If the admittance matrix 𝑌𝑏𝑢𝑠 is known for the power system under consideration. The complex 

power balance at any bus 𝑖 of the network is given as Fikri, et al. [3]. 

𝑆𝑖 = 𝑉𝑖𝐼𝑖
∗ = 𝑆𝐺𝑖 − 𝑆𝐿𝑖      (3) 

If 𝑉𝑏𝑢𝑠 and 𝐼𝑏𝑢𝑠 are used to represent the vectors of the bus voltage and bus injection current 

respectively, the admittance matrix 𝑌𝑏𝑢𝑠 provides the relationship; 𝐼𝑏𝑢𝑠 = 𝑌𝑏𝑢𝑠 ∙ 𝑉𝑏𝑢𝑠. Also, if the 𝑖𝑡ℎ or 

𝑗𝑡ℎ entry has the magnitude, 𝑌𝑖𝑗 of the 𝑌𝑏𝑢𝑠 matrix and the phase γij; hence the sending end current 

𝐼𝑖 can be formulated as Fikri, et al. [3]. 

𝐼𝑖 = ∑ 𝑌𝑖𝑗𝑉𝑗 = ∑ 𝑌𝑖𝑗𝑉𝑗 < (𝛿𝑗 + 𝛾𝑗)𝑗𝑗     (4) 

Therefore, combining equations (1) and (2) we get the complex power balance equations for the 
network as Fikri, et al. [3]. 

𝑆𝑖 − 𝑆𝐺𝑖 − 𝑆𝐿𝑖 = ∑ 𝑌𝑖𝑗𝑉𝑖𝑉𝑗 < (𝛿𝑖 − 𝛿𝑗 − 𝛾𝑖𝑗)𝑁
𝑗=1               (5) 

The base power flow equations, representing both active and reactive power balances, are given 

as follows for each bus 𝑖 in the system Fikri, et al. [3]. 

𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝐿𝑖 = ∑ 𝑌𝑖𝑗𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗 − 𝛾𝑖𝑗)𝑁
𝑗=1    (6) 

𝑄𝑖 = 𝑄𝐺𝑖 − 𝑄𝐿𝑖 = ∑ 𝑌𝑖𝑗𝑉𝑖𝑉𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗 − 𝛾𝑖𝑗)𝑁
𝑗=1    (7) 

where 𝑁 represents the number of buses; 𝑃𝑖  is the net active power injection at bus 𝑖; 𝑄𝑖 is the net 

reactive power injection at bus 𝑖; 𝑃𝐺𝑖 is the active power generated at bus 𝑖; 𝑃𝐿𝑖 is the active power load 

at bus 𝑖, 𝑄𝐺𝑖 is the reactive power generated at bus 𝑖; 𝑄𝐿𝑖 is the reactive power load at bus 𝑖; 𝑉𝑖 is the 

voltage magnitude at bus 𝑖; 𝑉𝑗 is the voltage magnitude at bus 𝑗; 𝛿𝑖is the voltage phase angle at bus 𝑖; 𝛿𝑗 

is the voltage phase angle at bus 𝑗;𝑌𝑖𝑗 magnitude of the admittance between bus 𝑖 and 𝑗 and 𝛾𝑖𝑗 is the 

phase angle of the admittance 𝑌𝑖𝑗 . 

The admittance matrix 𝑌𝑏𝑢𝑠 can be constructed from the line parameters 𝑟, 𝑥 and 𝑏 of each branch 
in the network as Buragohain and Boruah [5]. 

𝑌𝑖𝑗 =
1

𝑟𝑖𝑗+𝑗𝑥𝑖𝑗
      (8) 

where 𝑟𝑖𝑗, 𝑥𝑖𝑗 and 𝑏𝑖𝑗 are the resistance, reactance, and shunt susceptance of the branch between 

buses 𝑖 and 𝑗 
For fault scenarios modeling, the system's admittance matrix is modified to reflect line outages or 

fault conditions. The faulted admittance matrix is given as Buragohain and Boruah [5]. 

𝑌𝑏𝑢𝑠
𝑓𝑎𝑢𝑙𝑡

= 𝑌𝑏𝑢𝑠 − ∆𝑌𝑙𝑖𝑛𝑒     (9) 

where ∆𝑌𝑙𝑖𝑛𝑒 represents the admittance of the faulted line whose modification subsequently affects 
the power flow equations and system dynamics. 

The resulting non algebraic power flow equations is solved using various load analysis techniques 
to provide valuable information on the performance/state of the power system. 
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2.4. Load Flow Analysis Techniques 
Traditionally, techniques such as NR, GS, and FDLF have been extensively employed due to their 

proven reliability and mathematical rigor. These conventional approaches are particularly effective for 
steady-state analysis in conventional power grids, offering acceptable convergence and computational 
efficiency under normal operating conditions [27]. However, as power systems evolve, these methods 
often face challenges related to convergence speed, sensitivity to initial conditions, and handling of non-
linearities [11]. Nevertheless, since most ML techniques are data-driven models that require a 
substantial amount of high-quality input-output data to learn complex relationships, the NR method is 
often employed to generate accurate and reliable load flow solutions under various operating conditions. 
The NR method is preferred for this task due to its high precision, fast convergence characteristics, and 
robustness in handling large-scale and non-linear power systems [3] 

In the NR technique for load flow analysis, the most important expressions are those that relate the 
power mismatch at each bus to the Jacobian matrix and the voltage deviations as given in equations (10) 
to (13). These equations form the core of the iterative update process of the NR technique [19, 29]. 

[
∆𝑃
∆𝑄

] = [
𝐽1 𝐽2

𝐽3 𝐽4
] [

∆𝛿
∆|𝑉|

]          (10)                         

where ∆𝑃 and ∆𝑄 are the mismatch or residual power; ∆|𝑉| is the change in voltage magnitude; ∆𝛿 is 

the change in voltage angle and 𝐽 is a matrix of partial derivatives known as a Jacobian. 
 

The Jacobian matrix J is given as EFE [19].  

                                     

𝐽 = [

𝜕𝑃

𝜕𝛿

𝜕𝑃

𝜕|𝑉𝑖|

𝜕𝑄

𝜕𝛿

𝜕𝑄

𝜕|𝑉𝑖|

]           (11)                                                               

The voltage magnitude and phase angles are updated as follows EFE [19]. 

                                                                  𝛿𝑖
(𝐾+1)

= 𝛿𝑖
𝐾 + ∆𝛿𝑖

𝐾          (12) 

                                                               |𝑉𝑖
(𝐾+1)

| = |𝑉𝑖
𝐾| + ∆|𝑉𝑖

𝐾|          (13) 

where ∆𝛿𝑖
(𝑘) 

is the change in calculated angle; ∆|𝑉𝑖
𝐾| is the difference between voltage magnitude at bus 

𝑖; |𝑉𝑖
(𝑘)

| is the most recently voltage magnitude value at bus 𝑖;  𝐾 and (𝐾 + 1) denote previous and next 

iteration respectively. 
 
2.5. Overview of Machine Learning Techniques 

Machine learning techniques have become such influential tools in contemporary science and 
engineering fields because they provide data-driven solutions that enhance or even outperform 
conventional analytic methodologies. ML techniques are capable of learning patterns and correlations 
from historical data to make correct predictions, classification, and decision-making operations possible 
without complex mathematical rigor [27, 30, 31]. 

These techniques have a broad spectrum, ranging from supervised learning methods such as linear 
regression, support vector machines, and neural networks to unsupervised techniques such as k-means 
clustering and principal component analysis as illustrated in Figure 2. The adaptability, scalability, and 
capacity for real-time applications make ML techniques indispensable in addressing emerging 
challenges in smart grid systems, autonomous vehicles, financial forecasting, and beyond [31]. The ML 
techniques considered for investigation in this study are ANN, PINN and GNN. A brief description and 
the fundamental equations of each of these techniques are subsequently presented. 
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Figure 2.  
Classification of Machine Learning Techniques Alnuaimi and Albaldawi [30]. 

 
2.5.1. Artificial Neural Networks 

Artificial neural network is a common ML technique modeled to process information based on the 
biological brain. It consists essentially of several interconnected functional units generally referred to as 
artificial neurons. The neuron receives numerical inputs, processes it internally and produces an output. 
These neurons are arranged in a layered structure to form a network capable of executing parallel and 
distributed computations [32-34]. The architecture of a simple ANN with a three-layer network is as 
shown in Figure 3. 
 

 
Figure 3.  
Simple Architecture of a 3-layered Artificial Neural Network Xue, et al. [17]. 

 

For each neuron in 𝑙 layer, the input is a weighted sum of the outputs from the previous layer, (𝑙 −
1) Therefore, the weighted sum can be computed using equation (14) [34]. 
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𝑧𝑗
(𝑙)

= ∑ 𝜔𝑗𝑖
(𝑙)

𝑎𝑖
(𝑙−1)

+ 𝑏𝑗
(𝑙)𝑚(𝑙−1)

𝑖=1           (14) 

where 𝑧𝑗
(𝑙)

 represents the input to neuron 𝑗 in layer 𝑙; 𝜔𝑗𝑖
(𝑙)

 represents the weight from neuron 𝑖 in layer 

(𝑙 − 1) to neuron 𝑗 in layer 𝑙; 𝑎𝑖
(𝑙−1)

 represents the activation of neuron 𝑖 in layer (𝑙 − 1) and 𝑏𝑗
(𝑙)

 

represents the bias of neuron 𝑗 in layer 𝑙 
The activation function transforms the input of the neuron into its non-linear output, and it is 

computed as Aydin and Gümüş [34]. 

𝑎𝑗
(𝑙)

= 𝜎 (𝑧𝑗
(𝑙)

)           (15) 

The loss function which defines the error between predicted output 𝑥 and actual target, 𝑥𝑖 is 
computed using equation (16). 

ℒ𝐴𝑁𝑁 =
1

𝑡𝑠
∑ |𝑥 − 𝑥𝑖|2𝑡𝑠

𝑖=1           (16) 

Generally, the chain rule is used to compute derivatives of the loss with respect to weights and 
biases using equation (17) [34]. 

𝜕ℒ

𝜕𝜔𝑗𝑖
(𝑙) =

𝜕ℒ

𝜕𝑎𝑗
(𝑙) ∙

𝜕𝑎𝑗
(𝑙)

𝜕𝑧𝑗
(𝑙) ∙

𝜕𝑧𝑗
(𝑙)

𝜕𝜔𝑗𝑖
(𝑙)          (17) 

Finally, the weights and biases are updated using equations (18) and (19) respectively [34]. 

𝜔𝑗𝑖
(𝑙)

← 𝜔𝑗𝑖
(𝑙)

− 𝜂
𝜕ℒ

𝜕𝜔
𝑗𝑖
(𝑙)           (18) 

𝑏𝑗
(𝑙)

← 𝑏𝑗
(𝑙)

− 𝜂
𝜕ℒ

𝜕𝑏𝑗
(𝑙)           (19) 

 
2.5.2. Physics-Informed Neural Network 

Physics-informed neural network is a modern ML technique used in solving differential equations 
by blending the expressive power of neural networks with the rigor of physical laws [35]. Compared to 
conventional data-driven models like ANN which rely solely on observed data, the neural network in 
PINN incorporates governing physical equations such as those derived from conservation laws, fluid 
dynamics, or electromagnetism directly into the training process. This incorporation is accomplished 
through the formulation of a loss a loss function that penalizes deviations from both empirical data and 
the underlying physical principles, as well as the initial and boundary conditions [35-37]. PINNs 
provide more robust and generalizable solutions while reducing the need for extensive labeled datasets 
[37]. The architecture of a simple PINN model is depicted in Figure 4. 
 

 
Figure 4.  
Basic Model of Physics Informed Neural Network Tipu, et al. [35]. 
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Generally, the PINN model can be constructed by integrating the ANN architecture with the 
governing physics described by differential equations. It aims to embed the physical laws directly into 
the loss function as described in equations (20) to (23) Tipu, et al. [35] and Ghalambaz, et al. [37]. 

𝜇𝜗(𝑥) ≈ 𝜇(𝑥)           (20) 

where 𝜇𝜗(𝑥) represents the output of the neural network parameterized by weights and biases, 𝜗 

and 𝜇(𝑥) represents the inputs to the model. 

Physical law enforcement, 𝑓𝜗(𝑥) is expressed as Tipu, et al. [35] and Ghalambaz, et al. [37]. 

𝑓𝜗(𝑥) = ℵ[𝜇𝜗(𝑥)]          (21) 

where ℵ[∙] represents the governing differential operator 
As reported in the study of Tipu, et al. [35] it is necessary to ensure the residual is enforced across 

all collocation points. Hence, the loss function is computed using equation (22) as follows Tipu, et al. 
[35] and Ghalambaz, et al. [37]. 

ℒ𝑃𝐼𝑁𝑁 = 𝜆𝑢ℒ𝑑𝑎𝑡𝑎 + 𝜆𝑓ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 + 𝜆𝑏𝑐ℒ𝑏𝑐 + 𝜆𝑖𝑐ℒ𝑖𝑐         (22) 

where 𝜆𝑢ℒ𝑑𝑎𝑡𝑎 represents the difference between the predicted and observed data; 𝜆𝑓ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 

represents the governing physical laws; 𝜆𝑏𝑐ℒ𝑏𝑐 represents the boundary and initial condition losses and 

𝜆𝑖𝑐ℒ𝑖𝑐 represents the weighting coefficients. 
The model is trained by minimizing the loss function using an optimizer which is given as 

Ghalambaz, et al. [37].  

𝜗∗ = 𝑎𝑟𝑔 [
𝑚𝑖𝑛

𝜗
] ℒ𝑃𝐼𝑁𝑁          (23) 

 
2.5.3. Graph neural networks 

Graph neural networks belong to the category of deep learning models which are primarily 
designed to handle data structured as graphs, where the relationships among data points are as critical 
as the data itself [38-41]. When compared to conventional neural networks that assume grid-like or 
Euclidean structures, GNNs excel in learning from non-Euclidean data structures such as social 
networks, power grids, chemical molecules or transportation networks [39]. The basic model of GNN 
is illustrated in Figure 5. By providing options and preferences to extract, generalize, and represent 
both non-graph and graph data into network modelling systems, it makes it possible to predict the 
accurate behavior of electric power system for efficient operational planning and maintenance [38]. 
 

 
Figure 5.  
Simple Model of Graph Neural Network Vrahatis, et al. [38]. 

 



1542 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1534-1561, 2025 
DOI: 10.55214/2576-8484.v9i9.10161 
© 2025 by the authors; licensee Learning Gate 

 

The predominant variant of GNNs reported in literature are Graph Convolutional Networks 
(GCN), which was employed in this study [40]. The fundamental equations are described as follows Jia, 
et al. [40]. 

The input node, 𝐻0 which represents the input features of all the nodes in the graph is defined as; 

𝐻0 = 𝑋           (24) 

The node representation at layer (𝑙 + 1) is given as;  

ℎ𝑖
(𝑙+1)

= 𝜎 (∑ 𝑓 (ℎ𝑖
(𝑙)

, ℎ𝑗
(𝑙)

, 𝑒𝑖𝑗)𝑗𝜖ℵ(𝑖) )          (25) 

where ℎ𝑖
(𝑙)

 represents the feature vector of node 𝑖 at layer 𝑙; ℎ𝑗
(𝑙)

represents the feature vector of node 𝑗 at 

layer 𝑙; ℵ(𝑖)represents the set of neighbors of node 𝑖; 𝑒𝑖𝑗 represents the feature of edge from node 𝑗 to 𝑖 

and 𝑓 represents the message aggregation function. 
The update rule of the GCN is given as; 

𝐻(𝑙+1) = 𝜎 (𝐷̃−
1

2𝐴̃𝐷̃−
1

2𝐻(𝑙)𝑊(𝑙))         (26) 

where 𝐴̃ = 𝐴 + 𝐼 is the adjacent matrix with added self-loops; 𝐷̃𝑖𝑖 = ∑ 𝐴̃𝑖𝑗𝑗  is the degree matrix of 𝐴̃ and 

𝐻(0) = 𝑋 represents the input node features 
The attention mechanism of the GCN over neighbors is expressed as; 

ℎ𝑖
(𝑙+1)

= 𝜎 (∑ 𝛼𝑖𝑗
(𝑙)

𝑛 𝑊(𝑙)ℎ𝑗
(𝑙)

)         (27) 

While the attention coefficient, 𝛼𝑖𝑗
(𝑙)

  between node 𝑖 and neighboring node 𝑗 at layer 𝑙, reflecting the 

importance of node 𝑗’s feature to node 𝑖 is given as;  

𝛼𝑖𝑗
(𝑙)

=
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝜏[𝑊ℎ𝑖

(𝑙)
][𝑊ℎ𝑗

(𝑙)
]))

∑ 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝜏[𝑊ℎ
𝑖
(𝑙)

][𝑊ℎ𝑘
(𝑙)

]))𝑘𝜖ℵ(𝑖)

         (28) 

where 𝑊 is the trainable weight matrix applied to the input features shared across all nodes and 

edges in the graph layer; 𝑎𝜏 is the trainable weight vector used in computing attention scores; 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is an activation function used to introduce non-linearity into the attention computation 

(usually a small negative slope value) and 𝑒𝑥𝑝 is an exponential function to ensure positive attention 
scores and enable softmax normalization. 
The final output layer is expressed as; 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻(𝐿))           (29) 

where 𝐻(𝐿) represents the output after 𝐿 layers of the GNN and 𝑍 is the predicted labels for each 
node or graph.  
The loss function for the GCN is computed using; 

ℒ𝐺𝑁𝑁 = − ∑ 𝑦𝑖𝑖𝜖𝑦𝐿
∙ log 𝑍𝑖          (30) 

where 𝑦𝐿 is a set of labeled nodes; 𝑦𝑖 represents the true label of node 𝑖 and 𝑍𝑖  is the predicted 
probability distribution over classes. 
 

3. Description of Test Systems 
To assess the performance and generalization capability of the proposed neural network-based load 

flow models, comprehensive experiments were carried out on both standard IEEE benchmark systems 
and real-time practical power networks. Specifically, the IEEE 14-bus and 30-bus systems were 
employed as standard test cases, while the Nigerian 28-bus and 52-bus systems were selected to reflect 
the operational characteristics of actual grid infrastructures. The IEEE 14-bus system comprises 14 
buses, 20 transmission lines, 5 generators, and 11 loads. In contrast, the IEEE 30-bus system features a 
more intricate network topology with 6 generators, 24 loads, and 41 branches. This increased 
complexity facilitates a more rigorous assessment of the model's scalability and its ability to manage 
larger, interconnected systems.  



1543 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1534-1561, 2025 
DOI: 10.55214/2576-8484.v9i9.10161 
© 2025 by the authors; licensee Learning Gate 

 

Beyond the standard benchmarks, two practical systems from the Nigerian power grid were also 
considered. The Nigerian 28-bus system represents a medium-scale network, it comprises of 8 effective 
generators, 11 loads and 33 transmissions. Lastly, the Nigerian 52-bus system offers a broader and more 
comprehensive view of the Nigerian transmission network. It comprises of 11 generators, 21 loads and 
36 transmissions. With diverse load centers, high-voltage interconnections, and a wide geographic 
spread, this system presents a highly practical scenario for testing the model's effectiveness under 
realistic, non-uniform loading and generation conditions. 
 

4. Methodology 
4.1. Study Approach 

This study evaluates the performance of three neural network models, ANN, PINN and GNN for 
load flow analysis of power systems. The input dataset is obtained through NR load flow solution by 
varying load patterns. The dataset is split into training (50%), validation (25%) and testing (25%). As 
shown in Figure 6, The ANN model was trained via back propagation in MATLAB, while PINN was 
trained in TensorFlow and the GNN was trained in PyTorch geometric. To evaluate resilience, models 
are tested under fault conditions such as line outages and retrained to reflect this scenario. DG units 
such as PV are randomly integrated at weak buses to simulate smart grid enhancements. This approach 
assesses each model’s capability to maintain reliable operation in both normal and disrupted states.  
 

 
Figure 6.  
Block Diagram of the Methodology Flow Process. 

 
4.2. Data Collection 

The data utilized in this study were obtained from a combination of standard benchmark 
repositories and utility-based system records. For the IEEE 14-bus and 30-bus systems, network 
topology, bus data, and line parameters were sourced from open literature. These datasets include 
information on bus types, voltage levels, power generation, load demands, and branch admittances. On 
the other hand, the Nigerian 28-bus and 52-bus systems were constructed using operational data 
acquired from national control center in Osogbo, Nigeria.  
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4.3. Implementation of Neural Network Models for Load Flow Analysis 
This section presents the implementation of neural network models for load flow analysis. The 

ANN model was designed as a traditional fully connected network trained on labeled load flow data to 
approximate the non-linear relationship between power injections and bus voltages. The PINN model 
incorporated physical power flow equations directly into the loss function. The GNN model leveraged 
the graph structure of power systems by modeling buses as nodes and transmission lines as edges, 
capturing the spatial dependencies within the network. The mathematical formulation of each model for 
load flow analysis is presented in the following sub-sections.  
 
4.3.1. Implementation of ANN 

The ANN is used to approximate the nonlinear mapping from bus power injections to bus voltage 
magnitudes and angles for load flow analysis as illustrated in Figure 7. 

 

 
Figure 7.  
Architecture of ANN for load flow analysis. 

 

The input vector 𝑥 comprises active and reactive power injections at all buses: 

𝑥 = [𝑃1, 𝑄1, 𝑃2, 𝑄2, … . . 𝑃𝑁 , 𝑄𝑁]𝜏 ∈ ℝ2𝑁         (31) 

The output vector, 𝑦 contains all the predicted bus voltage magnitudes and angles and it is given as;  

𝑦 = [𝑉1, 𝛿1, 𝑉2, 𝛿2, … . 𝑉𝑁, 𝛿𝑁]𝜏 ∈ ℝ2𝑁         (32) 

where 𝑃 and 𝑄 are the active and reactive power injections, 𝑉 and 𝛿 are the voltage magnitude and 
angle at the buses. 
This mapping is modeled as; 

𝑦 = 𝑓𝐴𝑁𝑁(𝑥)           (33) 

where the term, 𝑓𝐴𝑁𝑁 approximates the power system load flow solution. 
The ANN model architecture consists of an input layer, a single hidden layer with nonlinear 

activation, and an output layer with linear activation. The forward propagation is given by Tipu, et al. 
[35]; 

𝑧(𝑙) = 𝑊(1)(𝑥) + 𝑏(1);     𝑎(1) = 𝑡𝑎𝑛ℎ(𝑧(1))        (34) 

𝑧(2) = 𝑊(2)𝑎(1) + 𝑏(2);      𝑦̂ = 𝑧(2)          (35) 

where 𝑊(𝑙) and 𝑏(𝑙) represent the weight matrices and bias vectors for layer 𝑙, 𝑎 is the hidden layer 

activation, and 𝑦̂ is the estimated output. 

Training of the ANN is conducted using supervised learning with a dataset, {(𝑋𝑘 , 𝑌𝑘)}𝑘=1
𝑀 . The 

objective is to minimize the MSE loss function given as;  

ℒ𝐴𝑁𝑁(𝜋) =
1

𝑀
∑ ‖𝑦𝑘 − 𝑦̂𝑘‖2𝑀

𝑘=1 = 
1

𝑁
∑ (𝑉𝑖

𝑝
− 𝑉𝑖

𝑡𝑟𝑢𝑒)
2

+ (𝛿𝑖
𝑝

− 𝛿𝑖
𝑡𝑟𝑢𝑒)

2𝑁
𝑖=1        (36) 
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where 𝑉𝑖
𝑝

 and 𝛿𝑖
𝑝

 represent the predicted voltage magnitude and angle; 𝑉𝑖
𝑡𝑟𝑢𝑒 and 𝛿𝑖

𝑡𝑟𝑢𝑒 represent 
the true values of voltage and angle from the power flow solution. 

The gradient and the hidden layer error are computed using equations (37) and (38), respectively. 

𝜕(2) = 𝑦̂ − 𝑦           (37) 

𝜕1 = (𝑊(2)𝜏
𝜕(2)) °(1 − 𝑎(1)°𝑎(1))         (38) 

where ° represents element-wise multiplication and 𝑡𝑎𝑛ℎ activation derivative is applied. 

The weights and biases update iteratively using the learning rate, 𝜂 which is given in equation (39) 
Tipu, et al. [35]. 

𝑊(𝑙) ⟵ 𝑊(𝑙) − 𝜂𝜕(𝑙)(𝑎(𝑙−1))
𝜏
;    𝑏(𝑙) ⟵ 𝑏(𝑙) − 𝜂𝜕(𝑙)       (39) 

The training is continued until the MSE converges below a specified threshold or a maximum epoch 
count has been reached. 
 
4.3.2. Implementation of PINN 

PINN embeds the governing nonlinear power balance equations directly into the training loss 
function. This approach leverages both data-driven learning and physical constraints, enabling the 

model to approximate bus voltage magnitudes, 𝑉𝑖 and voltage angles, 𝛿𝑖 from given power injections 
while satisfying Kirchhoff’s laws and system admittances. Its architecture consists of a fully connected 
feed-forward neural network with an input layer, multiple hidden layers employing nonlinear activation 
functions and an output layer with linear activation as shown in Figure 8. 
 

 
Figure 8.  
PINN for Load Flow Analysis. 

 

The input vector, 𝑥 contains all the active and reactive power injections at all 𝑁 buses, including 

load, generator and slack bus injections as modeled in equation (31), while the output vector, 𝑦 contains 
all the predicted bus voltage magnitudes and angles as modeled in equation (32). The fundamental load 
flow equations serve as the physics-based residuals incorporated into the PINN loss function. Hence, for 

each bus 𝑖 ∈ {1,2, … . 𝑁}, the active and reactive power balance residuals, ℛ𝑃𝑖(𝑦) and ℛ𝑄𝑖(𝑦) are 

computed using: 

ℛ𝑃𝑖(𝑦) = 𝑃𝐺𝑖 − 𝑃𝐿𝑖 − ∑ 𝑌𝑖𝑗𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗 − 𝛾𝑖𝑗)𝑁
𝑗=1 = 0        (40) 
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ℛ𝑄𝑖(𝑦) = 𝑄𝐺𝑖 − 𝑄𝐿𝑖 − ∑ 𝑌𝑖𝑗𝑉𝑖𝑉𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗 − 𝛾𝑖𝑗)𝑁
𝑗=1 = 0        (41) 

It should be noted that the slack bus voltage magnitude and angle, as well as the line admittances 
are enforced via fixed boundary conditions, while the PV buses have voltage magnitude constrained to a 
specified setpoint, with the network estimating reactive power accordingly. 

The PINN training minimizes a composite loss function, ℒ𝑃𝐼𝑁𝑁(𝜋) which is computed as; 

ℒ𝑃𝐼𝑁𝑁(𝜋) = ℒ𝑑𝑎𝑡𝑎 + 𝜆ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠          (42) 

where 𝜋 denotes the neural network parameters (weights and biases), and 𝜆 is a hyperparameter 
balancing the two terms. 

The data loss function represents the MSE between predicted outputs and the NR load flow 
solutions and computed using;  

ℒ𝑑𝑎𝑡𝑎 =
1

𝑀
∑ ‖𝑦𝑘 − 𝑦̂𝑘‖2𝑀

𝑘=1            (43) 

While the physics loss function represents the MSE of residuals over all buses and samples 
enforcing power flow constraints and computed using;  

ℒ𝑝ℎ𝑦𝑠𝑖𝑐𝑠 =
1

𝑀
∑ ∑ (ℛ𝑃𝑖(𝑦̂𝑘)2 + ℛ𝑄𝑖(𝑦̂𝑘)2)𝑁

𝑖=1
𝑀
𝑘=1         (44) 

The expression in equation (44) is used to penalize any kind of deviations from the physical laws 
embedded in the network output. 
 
4.3.3. Implementation of GNN 

The GNN leverages the inherent graph-structured nature of power systems, enabling spatially 
aware and scalable load flow solutions by explicitly modeling buses and lines as graph components. It 
learns by mapping nodal power injections to bus voltage magnitudes and angles by aggregating 
information along transmission network edges as depicted in Figure 9. 

 

 
Figure 9.  
GNN for Load Flow Analysis. 

 

The power system is modeled as a directionless graph 𝐺𝑝 = (∪, 𝜀); where ∪= {1,2, … . , 𝑁} 

represents the set of N nodes (buses) in the power system and 𝜀 ⊆∪×∪ represents the set of edges 

(transmission lines) connecting the buses. Each node 𝑖 ∈∪ is associated with an input vector given as;  

ℎ𝑖
(0)

= [𝑃𝑖, 𝑄𝑖, 𝑃𝐺 , 𝑉𝑟𝑒𝑓 , 𝐵𝑡𝑖………]
τ
         (45) 

The input vector given in equation (45) includes active/reactive power injections, generated active 

power where applicable, reference voltage magnitude for slack or PV buses and bus type indicators, 𝐵𝑡𝑖. 

Each edge (𝑖, 𝑗) ∈ 𝜀 is characterized by the line admittance parameters representing the magnitude, 

|𝑌𝑖𝑗| and angle, 𝛾𝑖𝑗 of the transmission as given in equation (46). 

𝑒𝑖𝑗 = [|𝑌𝑖𝑗|, 𝛾𝑖𝑗]
𝜏
          (46) 



1547 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1534-1561, 2025 
DOI: 10.55214/2576-8484.v9i9.10161 
© 2025 by the authors; licensee Learning Gate 

 

The GNN iteratively updates node embeddings through 𝑇 message passing layers to capture spatial 

dependencies [38]. At layer 𝑡 ∈ {1, … . . 𝑇}, the embedding ℎ𝑖
(𝑡)

 of node 𝑖 is updated using equations (47) 
and (48) [38].  

𝑚𝑖
(𝑡)

= ∑ 𝜑𝑚 (ℎ𝑖
(𝑡−1)

, ℎ𝑗
(𝑡−1)

, 𝑒𝑖𝑗)𝑗∈ℵ(𝑖)          (47) 

ℎ𝑖
(𝑡)

= 𝜑𝑢 (ℎ𝑖
(𝑡−1)

, 𝑚𝑖
(𝑡)

)          (48) 

where 𝜑𝑚 is a learnable message function and 𝜑𝑢 is a s a learnable update function 
It should be noted that equations (47) and (48) are used for the passing message and nodes update 

respectively. After 𝑇 layers, the final node embeddings ℎ𝑖
(𝑇)

encode both local features and global 

network context.  

Each node’s voltage magnitude and angle are predicted by a readout function, 𝛽 applied to its final 
embedding as; 

[𝑉̂, 𝛿] = 𝛽 (ℎ𝑖
(𝑇)

)          (49) 

The GNN model is trained in a supervised manner using datasets {(𝑋𝑘 , 𝑌𝑘)}𝑘=1
𝑀 ; where 𝑋𝑘 contains 

the nodal power injections and grid topology; and 𝑌𝑘 contains the ground truth voltage profiles 
obtained from NR load flow solutions. Hence, the training loss minimizes the mean squared error using;  

ℒ𝐺𝑁𝑁(𝜋) =
1

𝑀
∑ ∑ ((𝑉𝑖

(𝑘)
− 𝑉̂𝑖

(𝑘)
)

2
+ (𝛿𝑖

(𝑘)
− 𝛿𝑖

(𝑘)
)

2
)𝑁

𝑖=1
𝑀
𝑘=1        (50) 

The computational efficiency of the GNN is improved by enforcing power balance residuals as in the 
case of the PINN model to improve generalization and physical consistency.  
 
4.4. Performance Evaluators 

The performance of the models was evaluated using Line Voltage Stability Index (LVSI) and a set of 
statistical evaluators such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) as metrics. A brief description 
and mathematical representation of each of the metrics is subsequently presented.  
 
4.4.1. Line Voltage Stability Index (LVSI) 

The LVSI was developed by Kessel and Glavitsch; it gauges how close each transmission line is to 
voltage collapse by comparing its reactive-power margin with its loading level. It can be computed 
using [42]. 

𝐿𝑖 = 1 − |∑ 𝐹𝑖𝑗𝑗∈𝐺
𝑉𝑗

𝑉𝑖
|          (51) 

where 𝐺 is the set of generator buses; 𝐹𝑖𝑗 is derived from the load flow Jacobian or Y-bus and 𝑉𝑗 and 

𝑉𝑖 are the voltages of generator and load buses. 
 
4.4.2. Mean Squared Error (MSE) 

The MSE measures the square-root of the average squared deviation between the neural network’s 
predicted voltage or power values and the reference NR load-flow solutions [43].  

𝑀𝑆𝐸 =
1

𝑡𝑠
∑ |𝑥 − 𝑥𝑖|2𝑡𝑠

𝑖=1           (52) 

 
4.4.3. Root Mean Squared Error (RMSE) 

The RMSE is the square-root of the mean of squared differences between the network’s predicted 
voltages and the reference NR load-flow results [43, 44]. 

𝑅𝑀𝑆𝐸 = √
1

𝑡𝑠
∑ |𝑥 − 𝑥𝑖|2𝑡𝑠

𝑖=1           (53) 
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4.4.4. Mean Absolute Error (MAE) 
The MAE computes the average of the absolute differences between the neural network’s 

predictions and the reference NR load-flow solutions [43, 44]. 

𝑀𝐴𝐸 =
1

𝑡𝑠
∑ |𝑥 − 𝑥𝑖|𝑡𝑠

𝑖=1           (54) 

 
4.4.5. Mean Absolute Percentage Error (MAPE) 

The MAPE expresses the mean absolute deviation between predicted load-flow values as a 
percentage of the reference NR load flow solutions [43, 44].  

𝑀𝐴𝑃𝐸 =
100

𝑡𝑠
∑

|𝑥−𝑥𝑖|

𝑥𝑖

𝑡𝑠
𝑖=1           (55) 

where 𝑥𝑖 represents true value obtained; 𝑥 represents the predicted value of the sample outcome, 

and 𝑡𝑠 is the total sample number. 
 

5. Results and Discussion 
The results of simulation are presented and discussed in this section. It provides a detailed 

comparative evaluation of the neural network models for load flow analysis, with performance examined 
under three operating conditions of the test systems.  

1. Scenario 1: Base case: - steady-state condition without any system alterations. 
2. Scenario 2: Fault condition: - evaluation of robustness when system faults are introduced. 
3. Scenario 3: PV DG integration: - assessment under random integration of PV DG. 
To ensure comprehensive assessment, the simulation results of each scenario are analyzed and 

discussed using performance metrics MSE, RMSE, MAE, MAPE, LVSI and Computational Time (CT). 
The simulation results of each scenario are subsequently presented.  
 
5.1. Simulation Results of Scenario 1 (Steady-State Condition) 

For scenario 1, the results of voltage profile comparison across the test systems using the three 
neural network models with NR method included as reference is illustrated in Figure 10. The voltage 
profile comparison shows that the performance of ANN, PINN, and GNN varies with system size, with 
PINN and GNN generally providing more stable voltage magnitudes closer to nominal values (0.95-
1.05 p.u.) than ANN. For the 14-bus system, PINN and GNN remained near nominal, while ANN 
slightly deviated at the upper limit. In the 30-bus system, PINN had slight deviations at the upper limit, 
while ANN and GNN stayed closer to nominal. However, for the 28-bus system, PINN and GNN 
performed better, while ANN deviated towards the lower limit. In the 52-bus system, PINN maintained 
stability, while ANN and GNN deviated toward upper and lower voltage limits. 
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Figure 10.  
Comparison of voltage profile across test systems for scenario 1. 
 

The outcomes suggest that PINN, which embeds physical laws into its architecture, tends to 
maintain voltage magnitudes across larger systems. GNN leverages topological information, making it 
robust in smaller and moderately sized systems where connectivity strongly impacts performance. 
ANN, relying purely on data-driven learning, is more prone to voltage deviations as it lacks explicit 
incorporation of physical or structural constraints. For larger or more complex networks, PINN 
appears to generalize better, making it more suitable for real-world power system applications where 
accuracy in voltage stability is critical. This highlights the practical value of physics-informed and 
graph-based approaches over traditional ANN, particularly in ensuring robust and accurate load flow 
solutions under varying system sizes. 

The performance metrics of the three models across all test systems are summarized in Table 2. The 
results indicate that ANN consistently achieved the lowest values of MSE, RMSE, MAE, MAPE and 
CT, alongside the highest LVSI. For the IEEE 14-bus system, ANN achieved the lowest error metrics 
with an MSE of 1.039, RMSE of 1.019, MAE of 0.091, MAPE of 4.887%, alongside shortest CT of 0.080 
minutes and the highest LVSI of 0.778. PINN recorded highest errors (MSE: 2.370; RMSE: 1.540; 
MAE: 0.190; MAPE: 8.230%), longest CT of 0.170 minutes with a lower LVSI of 0.673, while GNN 
achieved intermediate error values (MSE: 1.520; RMSE: 1.230; MAE: 0.130; MAPE: 6.480%) longer CT 
and lowest LVSI of 0.120 minutes and 0.621 respectively.  
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Table 2.  
Summary of performance metrics across test systems for scenario 1. 

Test Systems Performance Metrics Neural Network Models 

ANN PINN GNN 

IEEE 14-Bus MSE 1.039 2.370 1.520 
RMSE 1.019 1.540 1.230 

MAE 0.091 0.190 0.130 
MAPE 4.887 8.230 6.480 

LVSI 0.778 0.673 0.621 
Computation time 0.080 0.170 0.120 

IEEE 30-Bus MSE 0.449 1.870 0.832 
RMSE 0.670 1.368 0.912 

MAE 0.043 0.182 0.078 
MAPE 2.324 7.429 3.579 

LVSI 0.798 0.672 0.724 
Computation time 0.170 0.370 0.260 

Nigerian 28-Bus MSE 0.649 1.974 1.183 
RMSE 0.806 1.405 1.088 

MAE 0.048 0.171 0.105 
MAPE 2.577 6.750 4.872 

LVSI 0.791 0.664 0.716 

Computation time 0.16 0.34 0.24 
Nigerian 52-Bus MSE 0.680 1.935 1.217 

RMSE 0.825 1.391 1.103 
MAE 0.066 0.177 0.120 

MAPE 3.520 6.908 5.651 

LVSI 0.597 0.563 0.524 
Computation time 0.300 0.640 0.450 

 
Similar trends were observed in the other test systems, where ANN outperformed both PINN and 

GNN models. However, in the 14-bus and Nigerian 52-bus systems, PINN delivered a higher LVSI 
(0.673 and 0.563) compared to that of GNN (0.621 and 0.524) respectively, indicating a stronger voltage 
stability margin. The results indicate that minimizing error metrics does not necessarily guarantee 
stable voltage profiles at individual buses.  

While GNN performs well in error reduction, it is less stable in voltage outcomes, PINN on the 
other hand offers moderate accuracy with slightly higher stability in small and large systems, 
highlighting a trade-off between predictive accuracy and practical stability. Consequently, while ANN 
offers overall superior accuracy, PINN and GNN may be more suitable when the need to maintain 
consistent bus-level voltage stability is prioritized. The convergence characteristics comparison plot of 
the models for scenario 1 is depicted in Figure 11. 
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Figure 11.  
Comparison of convergence characteristics plot across test systems for scenario 1. 

 
5.2. Simulation Results of Scenario 2 (Fault Condition) 

The voltage profile comparison for scenario 2 across test systems is depicted in Figure 12. The 
results revealed that the performance of the models varies with system disturbances. In the 14-bus 
system, both PINN and GNN suffered large deviations toward the lower voltage limits, whereas ANN 
maintained voltage magnitudes closer to the nominal values, indicating better small-system resilience. 
For the 30-bus system, the performance trends across the models were similar to Scenario 1, suggesting 
consistent behavior under moderate disturbances.  
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Figure 12.  
Comparison of voltage profile across test systems for scenario 2. 

 
Nevertheless, for the Nigerian 28-bus system, PINN showed deviations toward the lower limit but 

remained within acceptable bounds, while ANN and GNN deviate toward the upper limit, but also 
remained within nominal operating values. In contrast, for the Nigerian 52-bus system, PINN 
maintained voltage stability, while ANN and GNN exhibited deviations near the upper voltage limits. 
These findings suggest that while ANN demonstrates robust voltage control in smaller networks, 
PINN provides stronger stability in larger and more complex systems, with GNN offering intermediate 
performance. This implies that the choice of model should not only be informed by the system size as 
observed in scenario 1, but also disturbance characteristics, as reliance on a single model may 
compromise stability under certain operating conditions. 

The performance of the three models in Scenario 2 across is summarized in Table 3. It is also 
obvious here that ANN consistently achieved the lowest error metrics, with MSE ranging from 0.415 to 
1.079, RMSE from 0.644 to 1.039, MAE from 0.037 to 0.105, and MAPE from 2.019% to 5.562%, 
shortest CT (0.13-0.5), alongside the highest LVSI values (0.654-0.795). On the other hand, PINN 
recorded the highest errors (MSE: 1.622-2.305; RMSE: 1.274-1.518; MAE: 0.158-0.208; MAPE: 6.197-
8.914%), longest CT (0.25-0.94) and lowest LVSI (0.523-0.611), while GNN showed intermediate 
performance in both error metrics and LVSI.  
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Table 3.  
Summary of performance metrics across test systems for scenario 2. 

Test Systems Performance Metrics Neural Network Models 

ANN PINN GNN 

IEEE 14-Bus MSE 1.079 2.305 1.773 
RMSE 1.039 1.518 1.331 

MAE 0.105 0.202 0.168 
MAPE 5.562 8.914 8.316 

LVSI 0.694 0.6111 0.563 
Computation time 0.13 0.25 0.19 

IEEE 30-Bus MSE 0.415 1.622 0.789 
RMSE 0.644 1.274 0.888 

MAE 0.037 0.158 0.072 
MAPE 2.019 6.197 3.255 

LVSI 0.795 0.587 0.694 
Computation time 0.29 0.54 0.4 

Nigerian 28-Bus MSE 0.680 2.118 1.209 
RMSE 0.825 1.455 1.099 

MAE 0.057 0.183 0.106 
MAPE 3.019 7.338 4.918 

LVSI 0.791 0.586 0.690 

Computation time 0.27 0.51 0.37 
Nigerian 52-Bus MSE 0.572 2.179 1.445 

RMSE 0.756 1.476 1.202 
MAE 0.051 0.208 0.146 

MAPE 2.733 8.491 6.932 

LVSI 0.654 0.523 0.609 
Computation time 0.5 0.94 0.7 

 
Nevertheless, a notable trend was observed in the 14-bus and 52-bus systems, where PINN achieved 

higher LVSI than GNN in scenario 1. In scenario 2, PINN maintained its superiority in LVSI for the 
14-bus system, indicating better voltage stability in small networks. However, in the 52-bus system, this 
trend reversed, with GNN showing higher LVSI than PINN. This suggests that PINN’s stability 
advantage can diminish in larger, stressed networks, highlighting that voltage stability depends on both 
model architecture and system-specific disturbances. The convergence characteristics comparison plot 
of the  models for scenario 2 is depicted in Figure 13.  
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Figure 13.  
Comparison of convergence characteristics plot across test systems for scenario 2. 

 
5.3. Simulation Results of Scenario 3 (PV DG Penetration Condition) 

The voltage profile comparison for Scenario 3 across the test systems is also illustrated in Figure 
14. The results also indicate that the performance of the neural network models varies with the presence 
of randomly integrated PV-based DG. In the 14-bus system, all three models maintained voltages near 
nominal values, demonstrating robust performance under low network complexity. For the 30-bus 
system, ANN and GNN remained close to nominal, while PINN exhibited minor deviations toward the 
upper voltage limit. 
 

 
Figure 14.  
Comparison of voltage profile across test systems for scenario 3. 
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For the 28-bus system, PINN and GNN maintained more stable voltages, whereas ANN deviated 
slightly toward the lower voltage limit. However, in the 52-bus system, both PINN and GNN 
effectively preserved nominal voltage levels, while ANN showed minor deviations near the upper 
voltage limit. These findings suggest that while ANN provides reliable voltage control in smaller 
networks, PINN and GNN offer stronger stability in larger networks under PV-based DG integration. 
This implies that the choice of neural network model for load flow analysis should consider both 
network size and level of DG penetration. 

The performance metrics of the models across the test systems in Scenario 3 is summarized in Table 
4. The results of Table 4 showed that there was a general improvement in the values of LVSI across the 
test systems compared to scenarios 1 and 2 due to the penetration of PV-based DG. ANN consistently 
achieved the lowest error metrics, with MSE ranging from 0.385 to 1.079, RMSE from 0.620 to 1.039, 
MAE from 0.037 to 0.105, and MAPE from 2.005% to 5.562%,  and shortest CT ranging from 0.1 to 
0.37, along with the highest LVSI values (0.796-0.870), indicating strong predictive accuracy and 
voltage stability even under PV-based DG fluctuations. 
 
Table 4.  
Summary of performance metrics across test systems for scenario 3. 

Test Systems Performance Metrics Neural Network Models 

ANN PINN GNN 
IEEE 14-Bus MSE 1.024 2.552 1.828 

RMSE 1.012 1.597 1.352 
MAE 0.096 0.238 0.180 

MAPE 5.146 10.770 8.903 
LVSI 0.87 0.752 0.696 

Computation time 0.1 0.21 0.15 

IEEE 30-Bus MSE 0.385 1.714 0.731 
RMSE 0.620 1.309 0.855 

MAE 0.037 0.166 0.068 
MAPE 2.005 6.612 3.073 

LVSI 0.817 0.705 0.707 
Computation time 0.21 0.44 0.31 

Nigerian 28-Bus MSE 0.539 2.109 1.197 
RMSE 0.734 1.452 1.094 

MAE 0.043 0.187 0.104 

MAPE 2.364 7.571 4.869 
LVSI 0.810 0.703 0.706 

Computation time 0.2 0.41 0.3 
Nigerian 52-Bus MSE 0.569 2.096 1.282 

RMSE 0.754 1.448 1.132 
MAE 0.051 0.198 0.124 

MAPE 2.731 7.956 5.809 
LVSI 0.796 0.601 0.714 

Computation time 0.37 0.77 0.55 

 
PINN recorded the highest errors (MSE: 1.714-2.305; RMSE: 1.309-1.518; MAE: 0.166-0.202; 

MAPE: 6.612-8.914%), longest CT of 0.21 to 0.77 and lower LVSI (0.601–0.752), while GNN 
maintained its intermediate performance in error metrics, CT and LVSI. As is the case of scenarios 1 
and 2, PINN maintained its superiority in LVSI over GNN for the 14-bus system, indicating better 
voltage stability in small networks, even in the presence of DG. But the reverse case remains the same 
for the 52-bus system, with GNN showing higher LVSI than PINN scenarios 2 and 3 as compared to 
scenario 1.  

This pattern suggests that PINN’s physics-informed approach consistently enhances voltage 
stability in small networks, even under the influence of DG. However, in larger networks, its relative 
advantage diminishes under disturbances or increased system complexity, allowing GNN to 
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occasionally achieve higher LVSI. This highlights that the effectiveness of a neural network model in 
maintaining voltage stability is both network-size dependent and sensitive to system conditions, 
implying that model selection should consider not only accuracy but also the scale and operating 
characteristics of the network. The convergence characteristics comparison plot of the three models for 
scenario 3 is depicted in Figure 15. 

 

 
Figure 15.  
Comparison of convergence characteristics plot across test systems for scenario 3. 

 
5.4. Performance Comparison of Neural Network Models 

This subsection presents a comparative analysis of ANN, PINN, and GNN for load flow prediction 
across the test systems under each scenario, highlighting trends in accuracy, LVSI and CT. 
 
5.4.1. Performance of the Models on Standard 14-Bus and 30-Bus Systems 

The performance comparison of the neural network models across scenarios on the 14-bus and 30-
bus systems is illustrated in Figures 16 and 17 respectively.  For the standard test systems, ANN 
consistently achieved the highest predictive accuracy across all operating conditions. For the 14-bus 
system, ANN recorded the lowest MSE, MAE and MAPE values in scenario 1, highlighting its 
robustness in smaller networks. Interestingly, while PINN had higher error metrics, its LVSI was 
greater than GNN in all 14-bus scenarios, indicating stronger voltage stability predictions despite lower 
overall accuracy.  
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Figure 16.  
Performance comparison of the neural network models on IEEE 14-bus system. 

 

 
Figure 17.  
Performance comparison of the neural network models on IEEE 30-bus system. 

 
It was also observed that in scenarios 2,  all models showed slight performance degradation, with 

increased errors and decreased LVSI, reflecting the increased complexity of stressed conditions. 
However, in scenario 3, all models showed significant improvement, particularly in the value of LVSI, 
reflecting the importance of DG integration for improved voltage stability. Generally, GNN maintained 
intermediate performance, outperforming PINN in accuracy but slightly behind ANN, while 
computation times were lowest for ANN, moderate for GNN, and highest for PINN.  
 
5.4.2. Performance of the Models on Practical Nigerian 28-Bus and 52-Bus Systems 

The performance comparison of the models across scenarios on the Nigerian 28-bus is illustrated in 
Figure 18. The diagram of figure 18 showed that ANN again demonstrated superior accuracy across all 
scenarios, with MSE and MAPE consistently lower than both GNN and PINN. The trend of slightly 
higher errors in scenario 2 and improved LVSI in scenario 3 persisted, indicating the expected challenge 
posed by stress conditions and benefits DG penetration, respectively. Overall, GNN provided a balance 
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between accuracy and voltage stability, outperforming PINN in error metrics while maintaining 
reasonably high LVSI. PINN’s LVSI was lower than ANN and GNN in this system, although it still 
contributed to voltage stability prediction. ANN maintained the fastest computation times, confirming 
its suitability for moderate-size practical systems.  

 

 
Figure 18.  
Performance comparison of the neural network models on Nigerian 28-bus system. 

 
The performance of the models across scenarios on the larger 52-bus Nigerian network is depicted 

in Figure 19. The diagram of Figure 19 showed that ANN continued to outperform in accuracy metrics. 
Similarly, LVSI analysis shows that ANN maintained its superiority in all scenarios, while PINN’s LVSI 
exceeded GNN only in scenario 1, but fell below GNN in scenarios 2 and 3. GNN demonstrated better 
voltage stability performance under stressed conditions, suggesting resilience in larger networks. All 
models experienced slight performance degradation under fault conditions, and significant improvement 
in LVSI under DG penetration, highlighting the complexity of high-dimensional systems and benefits of 
integrating DG. ANN’s combination of accuracy and computation efficiency remained superior even in  
large practical systems.  
 

 
Figure 19.  
Performance comparison of the neural network models on Nigerian 28-bus system. 

 

0

2

4

6

8
M

SE

R
M

SE

M
A

E

M
A

P
E

LV
SI

C
.T

.

M
SE

R
M

SE

M
A

E

M
A

P
E

LV
SI

C
.T

.

M
SE

R
M

SE

M
A

E

M
A

P
E

LV
SI

C
.T

.

Steady-State Fault Condition DG Penetration

Performance of ANN, PINN and GNN across Scenarios on Nigerian 28-

bus System  

ANN PINN GNN

0

2

4

6

8

10

M
SE

R
M

SE

M
A

E

M
A

P
E

LV
SI

C
.T

.

M
SE

R
M

SE

M
A

E

M
A

P
E

LV
SI

C
.T

.

M
SE

R
M

SE

M
A

E

M
A

P
E

LV
SI

C
.T

.

Steady-State Fault Condition DG Penetration

Performance of ANN, PINN and GNN across Scenarios on Nigerian 52-

bus System  

ANN PINN GNN



1559 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1534-1561, 2025 
DOI: 10.55214/2576-8484.v9i9.10161 
© 2025 by the authors; licensee Learning Gate 

 

6. Conclusion  
The performance comparison of ANN, PINN and GNN models for load flow analysis of power 

systems under steady-state, fault, and DG penetration scenarios is presented in this study. NR load flow 
method was used to obtain the necessary dataset (voltage magnitudes and angles) required for training, 
validation and testing under varied load conditions in each scenario. The dataset was divided into 
50:25:25 ratio for training, validation and testing of each model, respectively. 

The results demonstrate that across all test systems, ANN consistently delivered the best balance of 
accuracy, LVSI performance, and computational efficiency, confirming its robustness for load flow 
analysis under varied operating conditions. GNN generally ranked second, offering a stability-oriented 
alternative, particularly in larger or stressed networks, while PINN exhibited scenario-dependent 
voltage stability strengths, performing well in small systems like 14-bus and under Steady-state in 52-
bus networks but less so in larger stressed scenarios. The slight degradation of all models under fault 
conditions underscores the challenges introduced by network stresses. However, the improvement in 
LVSI across test systems under DG penetration validates the need for integration of DG resources for 
improved voltage stability. These trends indicate that ANN is best for fast, accurate predictions, GNN is 
advantageous for stability assessment in complex systems, and PINN can be useful when voltage 
stability focus outweighs precision.  

Overall, this study contributes to the integration of ML into power system analysis by providing a 
comprehensive comparison of ANN, GNN, and PINN under realistic operational scenarios. The findings 
of this study offer practical guidance for model selection based on network size, operating condition, and 
performance priorities, highlighting the trade-offs between accuracy, voltage stability, and 
computational efficiency.  
 

7. Future Studies 
Future studies should consider extending these models to dynamic load flow, real-time operational 

environments, and hybrid architectures to further enhance grid resilience, smart grid decision-making, 
and integration of DG resources 
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