
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 9, No. 9, 1562-1572 
2025  
Publisher: Learning Gate 
DOI: 10.55214/2576-8484.v9i9.10162 
© 2025 by the authors; licensee Learning Gate 

© 2025 by the authors; licensee Learning Gate 
History: Received: 17 July 2025; Revised: 28 August 2025; Accepted: 2 September 2025; Published: 23 September 2025 
* Correspondence:  dperaltag2pherreram2@unemi.edu.ec 

 
 
 
 
 

Future trends of AI in precision oncology: Insights from a systematic review 
and evidence-based roadmap (2021–2024) 

 
Pedro Aquino Herrera-Moya1, Dennis Alfredo Peralta-Gamboa2* 

1Universidad Estatal de Milagro, Ecuador; pherreram2@unemi.edu.ec (P.A.H.M.). 
2Facultad de Posgrados, Universidad Estatal de Milagro, Ecuador; dperaltag2pherreram2@unemi.edu.ec (D.A.P.G.). 

 

Abstract: This systematic review investigates the advancements and challenges of artificial intelligence 
(AI) in precision oncology, focusing on research from 2021 to 2024, to provide an evidence-based 
roadmap for future implementation. Following the PRISMA guidelines, a comprehensive search was 
conducted across Scopus, SciELO, and Google Scholar using relevant keywords to identify studies 
evaluating AI applications in cancer diagnosis and treatment. Eighteen relevant articles were selected 
and qualitatively analyzed to identify key themes and patterns. AI models, including machine learning 
and deep learning, have demonstrated significant improvements in diagnostic accuracy, treatment 
planning, and personalized therapies. Examples include a hybrid CatBoost-MLP model that achieved 
98.06% accuracy in breast tissue classification and a deep convolutional neural network with 92.08% 
sensitivity for early gastric cancer detection. AI also reduces radiotherapy planning times, enhancing 
accessibility, particularly in developing countries. The integration of AI into oncology has 
transformative potential, enhancing diagnostic precision, risk stratification, and personalized treatment 
strategies. However, challenges remain, including data standardization, the need for diverse datasets, 
and ethical considerations. This study highlights the need for robust AI models, international data 
standards, and ethical frameworks to ensure the safe, equitable, and effective clinical implementation of 
AI in oncology, paving the way for improved patient outcomes and healthcare accessibility. 
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1. Introduction  

Cancer ranks among the leading causes of death globally, accounting for approximately 10 million 
fatalities by 2020 [1]. This disease presents substantial challenges to healthcare systems because of its 
clinical intricacies and diverse biological manifestations. Although traditional methods for diagnosing 
and treating cancer can be effective in certain instances, they often struggle with sensitivity, specificity, 
and customization [2, 3]. Artificial intelligence (AI) has emerged as a groundbreaking technology 
capable of overcoming these obstacles by enabling sophisticated analysis of complex medical images [4] 
and automating diagnostic and therapeutic procedures [5, 6]. 

Artificial intelligence, characterized by the ability of computer systems to execute tasks that 
typically require human intellect, has been applied across numerous domains, including healthcare [7, 
8] education [9] and finance [10, 11]. This widespread adoption is driven by AI's potential to boost 
efficiency, precision, and decision-making, establishing it as a fundamental element of contemporary 
technological progress. In oncology, AI has focused on machine learning algorithms [12] and deep 
learning [5] which are tailored to effectively and accurately interpret medical images [4] genomic 
sequences, and clinical data. These technologies have shown significant value in the early detection of 
cancer, risk assessment, and enhancement of personalized treatment plans by facilitating precision. This 
approach predicts patients’ reactions to specific therapies based on their distinct genetic makeup [13]. 
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Despite significant advancements, the incorporation of AI into clinical settings remains challenging. 
Key issues include ethical concerns regarding data privacy [13, 14] model interpretability [15] and 
ensuring fair access to these technologies [16]. For example, the World Health Organization (WHO) 
has stressed the need for AI systems to uphold human rights and foster equity [17]. Nonetheless, the 
increasing use of AI in oncology underscores its potential to revolutionize cancer treatment. 

This systematic review aimed to compile recent progress in the use of AI for the diagnosis and 
treatment of cancer, highlighting its benefits and drawbacks. Research conducted over the past five 
years has examined AI algorithms in different phases of cancer management. This study offers an in-
depth perspective on how these technologies are transforming contemporary oncology and explores 
their potential impact on the healthcare of the future. 
 

2. Methodology 
2.1. Search Strategy 

This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses) guidelines to ensure a comprehensive and transparent approach to selecting and 
evaluating relevant studies [17]. The review process included searches of three electronic databases: 
Scopus, SciELO, and Google Scholar. Scopus is highly regarded for its controlled bibliographic data, 
providing reliable metrics for assessing research performance, such as publication counts, citations, and 
h-indices [18-20]. In contrast, Google Scholar is notable for its broad coverage of future citations, 
making it a key tool in this domain. It reports a greater number of citations than Scopus, which is 
attributed to its wider document coverage [21]. SciELO is particularly valuable for accessing scientific 
literature from Latin America, offering insights into regional research trends and thematic connections, 
such as those related to online and distance teacher training [22]. 
The keywords included combinations of the terms "artificial intelligence," "diagnosis," "treatment," and 
"cancer," alongside Boolean operators to broaden and refine the search. 
 
2.2. Inclusion and Exclusion Criteria 
The following inclusion criteria were established. 

• Articles published between 2020 and 2024. 

• Original studies examining the applications of AI in cancer diagnosis and treatment. 

• Publications in English or Spanish. 

• Full access to article text: 
The exclusion criteria were as follows. 

• Duplicate studies. 

• Non-systematic reviews or editorials. 

• The articles focused on non-clinical applications of AI. 
 
2.3. Selection Process 

Initially, a total of 452 studies were identified. After eliminating duplicates (n = 128), the titles and 
abstracts were reviewed, narrowing the selection to 82 articles. Ultimately, a full-text review of these 
studies led to 18 articles that fulfilled all criteria (Figure 1). 
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Figure 1. 
Article Selection Process for Systematic Review. 

 
2.4. Data Extraction and Analysis 

From the 18 selected studies, information on the authors, year of publication, objectives, main 
findings, and conclusions were collected. The data were qualitatively analyzed to identify patterns and 
recurring themes in the use of AI in oncology. 
 

3. Results 
An examination of AI applications in cancer diagnosis and treatment revealed important insights 

from 18 studies. These findings highlight AI's transformative role of AI in contemporary oncology. 
Xu, et al. [23] created a machine learning model to predict mismatch repair deficiency (dMMR) in 

colorectal cancer, enhancing presurgical detection with a decision AUC of 0.832. Similarly, Pasupuleti, 
et al. [24] utilized a model based on a deep neural network, achieving over 99% accuracy and proving 
its effectiveness for brain tumor segmentation. Furthermore, Koyama, et al. [25] demonstrated that 
radiomic models significantly surpassed traditional methods with a C-index of 0.841, highlighting their 
usefulness in selecting the best treatment. 

Similarly, Yin, et al. [26] used convolutional neural networks to enhance the diagnostic precision of 
skin tumors by 15.6%. Additionally, Aggarwal, et al. [27] emphasized the impact of AI-driven 
radiotherapy planning technologies for cervical, head and neck, and prostate cancers, which significantly 
reduce planning durations from weeks to minutes, thereby improving accessibility in developing 
countries. Concurrently, a convolutional neural network optimized with a tunicate swarm algorithm 
achieved an accuracy rate of 98.70 % %in identifying oral cancer lesions, underscoring the potential of 
deep learning in rapid diagnostics [28]. 

In the field of biomarkers and multi-omics data, Xiao, et al. [29] discovered significant genes 
related to the postoperative advancement of non-muscle-invasive bladder cancer, which are associated 
with activated T cells and can predict postoperative outcomes. Similarly, Jia, et al. [30] created a model 
based on lncRNAs to forecast overall survival in patients with hepatocellular carcinoma, achieving AUC 
values greater than 0.785, highlighting the importance of biomarkers in personalized medicine. 

In breast cancer research, a hybrid approach that integrates CatBoost with multilayer perceptron 
(MLP) neural networks was employed to examine electronic health records, achieving an impressive 
98.06% accuracy in distinguishing between benign and malignant tissues. Explainable AI (XAI) 
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technology enhances the interpretability of clinical decisions and boosts confidence in models [31]. This 
progress was furthered by Weitz, et al. [32] who used AI tools to create 3D models of breast tumors, 
improving surgical planning, success rates, and patient satisfaction. Additionally, Arathi and Bai [33] 
reached a 98.57% accuracy in predicting recurrence with a DCNN-based model, thereby optimizing 
therapeutic strategies. 

Conversely, Zhang, et al. [34] showed that radiomic models achieved an AUC of 0.89 in predicting 
complications such as esophageal fistulas. Additional progress included the implementation of the U-Net 
architecture. Uzun, et al. [35] attained a dice score of 91.38% in segmenting brain tumors, whereas 
Song, et al. [36] achieved 88.8% sensitivity in identifying triple-negative breast cancer through 
metabolic fingerprinting and machine learning. Xing, et al. [37] highlighted a simplified proteomic 
panel that predicted responses to sorafenib, with an AUC of 0.988. Finally, using a random survival 
forest model, Liao, et al. [38] achieved AUCs of 0.92, 0.96, and 0.96 for predicting 1-, 3-, and 5-year 
survival rates in patients with gastric neuroendocrine neoplasms (gNENs). This model also classifies 
patients into high- and low-risk groups, demonstrating its potential to guide clinical decisions. 

Recent advancements in artificial intelligence have significantly enhanced cancer diagnosis and 
treatment across various domains. In endometrial cancer, the integration of deep learning algorithms 
with magnetic resonance imaging results in an AUC of 0.918 for detecting high-risk cases and 0.926 for 
forecasting postoperative recurrence, underscoring a significant influence on clinical decision-making 
[39]. Likewise, for early gastric cancer diagnosis, a system utilizing deep convolutional neural networks 
achieved a diagnostic sensitivity of 92.08%, markedly surpassing the performance of seasoned 
endoscopists and demonstrating its potential in clinical environments with limited resources [40]. 

Recent advancements in artificial intelligence (AI) have facilitated the use of diverse models for the 
diagnosis, prediction of outcomes, and treatment of different cancer types. Table 1 presents an overview 
of the leading AI models, their performance metrics, and their primary clinical uses (Table 1). This 
information underscores how new technologies are revolutionizing oncology by offering precise and 
effective tools. 
 
Table 1.  
Summary of AI Models, Performance Metrics, and Clinical Applications. 

Cancer Type AI Model Performance Metrics Clinical Application 

Breast Cancer CatBoost + MLP Neural Network AUC: 0.98, Sens: 98.06% Tissue classification 

Colorectal Cancer Machine Learning (dMMR) AUC: 0.832 Pre-surgical detection 

Skin Cancer Convolutional Neural Network Improvement: 15.6% in accuracy Skin tumor classification 

Liver Cancer AI-based Proteomics AUC: 0.988 Treatment response (sorafenib) 

Brain Cancer U-Net Architecture Dice Score: 91.38% Brain tumor segmentation 

Stomach Cancer Deep CNN Sens: 92.08% Early diagnosis 

 
Below is a summary of the most relevant clinical applications of AI models in oncology, along with 

key findings that demonstrate their impact on improving cancer diagnosis and treatment (see Table 2). 
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Table 2.  
Clinical Applications and Key Outcomes of AI Models. 

Cancer Type Clinical Application AI Model Key Outcomes 

Breast Cancer Tissue classification 
CatBoost + MLP 
Neural Network 

98.06% accuracy in classifying malignant and benign 
tissues 

Colorectal 
Cancer 

Pre-surgical detection of 
dMMR 

Machine Learning 
(dMMR) 

AUC: 0.832, improving pre-surgical detection of 
mismatch repair deficiency 

Skin Cancer Skin tumor classification 
Convolutional Neural 
Network 

15.6% improvement in diagnostic accuracy 

Liver Cancer 
Prediction of treatment 
response (sorafenib) 

AI-based Proteomics 
AUC: 0.988, optimizing patient selection for targeted 
therapy 

Brain Cancer Brain tumor segmentation U-Net Architecture 
Dice Score: 91.38%, enhancing segmentation accuracy 
in MRI imaging 

Stomach 
Cancer 

Early diagnosis Deep CNN 
Sensitivity of 92.08%, outperforming both junior and 
senior endoscopists 

Bladder Cancer 
Identification of post-
surgical biomarkers 

Random Forest 
AUC: 0.92–0.96 for survival prediction at 1, 3, and 5 
years 

Lung Cancer Survival prediction Radiomic Model 
C-index: 0.841, facilitating personalized treatment 
selection 

 
The findings indicate that AI models have not only greatly enhanced performance metrics, such as 

accuracy and sensitivity, but also supported essential applications in oncology, from early detection to 
tailored treatment planning. Additionally, it is clear that advancements in AI allow for more informed 
decision-making and more accurate patient care. 
 

4. Discussion 
This systematic review underscores the revolutionary role of artificial intelligence (AI) in cancer 

diagnosis and treatment, offering sophisticated tools that outperform traditional methods in various 
areas of oncology. 
 
4.1. Application of AI Models in Oncological Diagnosis 

Machine learning models have demonstrated their effectiveness in improving diagnostic accuracy 
across various cancer types. In colorectal cancer, the model created by Xu, et al. [23] achieved an AUC 
of 0.832, significantly enhancing the presurgical detection of mismatch repair deficiency (dMMR). This 
progress highlights AI's capability of AI to identify molecular biomarkers with greater accuracy than 
traditional methods, thereby optimizing personalized treatments. Furthermore, radiomic models, such 
as those detailed by Koyama, et al. [25] excelled in predicting survival in advanced lung cancer, 
achieving a C-index of 0.841, which aids in selecting more effective treatments. 

In a study by Fen, et al. [40] deep convolutional neural networks were shown to detect gastric 
cancer with a sensitivity of 92.08%, surpassing the performance of both junior and senior endoscopists. 
This highlights the potential of AI in clinical settings with limited resources, where professional 
experience may adversely affect the results. Additionally, the U-Net architecture's effectiveness in brain 
tumor segmentation was demonstrated by Uzun, et al. [35] achieving a dice score of 91.38%, which 
illustrates its capability in processing complex medical images. 
 
4.2. Innovations in AI-Assisted Treatment 

AI has transformed cancer treatment, particularly in radiotherapy and surgical planning. According 
to Aggarwal, et al. [27] AI technologies have drastically reduced radiotherapy planning times from 
weeks to minutes for cervical, head, and neck cancer. This progress not only boosts efficiency but also 
enhances treatment accessibility in developing nations, thereby fostering equity in cancer care. 
Similarly, Weitz, et al. [32] found that AI tools for creating 3D tumor models greatly increased 
surgical success rates and patient satisfaction in breast cancer treatment. 
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Recent progress in immunotherapy and biomarker research has facilitated the discovery of crucial 
genetic markers linked to cancer progression. For instance, Xiao et al. [29] identified genes associated 
with the postoperative advancement of non-muscle-invasive bladder cancer. Jia et al. [30] created a 
model based on lncRNAs, achieving AUC values over 0.785 to predict overall survival in patients with 
hepatocellular carcinoma. These findings highlight the significance of incorporating AI into multi-omics 
analyses to tailor treatments and enhance prognosis. 
 
4.3. Impact of AI on Specific Cancers 

In the realm of breast cancer, hybrid models that integrate CatBoost and multilayer perceptron 
(MLP) neural networks, as detailed by Srinivasu, et al. [31] have achieved an accuracy of 98.06%, 
offering interpretability in clinical decision-making through explainable AI (XAI). This progress was 
furthered by Weitz, et al. [32] who enhanced surgical planning using AI tools, thereby increasing the 
success rates for patients with breast cancer. Moreover, Arathi and Bai [33] achieved a 98.57% accuracy 
in predicting recurrence using a DCNN-based model, which aids in optimizing therapeutic strategies. 

In their 2022 study, Song, et al. [36] employed metabolic fingerprinting to identify triple-negative 
breast cancer, achieving a sensitivity of 88.8%. This underscores AI's ability of AI to discern distinct 
metabolic traits in specific cancer subtypes. Similarly, Xing, et al. [37] created a proteomic panel for 
liver cancer with an AUC of 0.988 to predict treatment responses, demonstrating AI's role of AI in 
enhancing pharmacological treatment strategies. 

The findings indicate that AI models have not only greatly enhanced performance metrics, such as 
accuracy and sensitivity, but have also supported essential applications in oncology, from early detection 
to tailored treatment planning. Additionally, AI advancements allow for more informed decision-making 
and accurate patient care. 
 
4.4. Limitations 

Although the conclusions of this review are important, they are subject to some limitations. First, a 
significant number of studies relied on retrospective cohorts, which can lead to selection bias and limit 
the relevance of the findings in future clinical environments. Furthermore, most AI models assessed 
depend on extensive, meticulously curated datasets to perform optimally, which are not always 
accessible in areas with limited resources. This constraint may hinder the adoption of these technologies 
in regions with underdeveloped healthcare systems. 

Furthermore, a significant obstacle to incorporating artificial intelligence (AI) into oncology is the 
diversity of existing models and variations in the datasets employed. Differences in algorithms, model 
structures, and evaluation standards make it difficult to compare studies directly and hinder the 
generalization of results. For instance, deep learning models that require large amounts of uniform data 
may not be suitable in situations where data are limited or inconsistent owing to variations in clinical 
procedures or data collection standards. In addition, resource-constrained environments face further 
challenges when adopting these technologies. The absence of technological infrastructure, such as 
specialized hardware (e.g., GPUs for model training) and high-speed Internet, impedes the 
implementation of these advanced models. Similarly, the lack of well-organized and annotated local 
datasets complicates the training and validation of models in these settings. This could exacerbate 
global disparities in access to advanced healthcare technologies. 

To address these challenges, it is essential to create more resilient and flexible AI models that can 
work effectively with diverse datasets. Moreover, promoting global partnerships to exchange expertise, 
infrastructure, and data is vital for making technological progress accessible to countries with limited 
resources is vital. Employing "explainable AI" (XAI) techniques and transfer learning models could also 
offer practical solutions, as these methods require less domain-specific data and can be utilized in 
settings with less developed infrastructure. 
 
 



1568 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 9: 1562-1572, 2025 
DOI: 10.55214/2576-8484.v9i9.10162 
© 2025 by the authors; licensee Learning Gate 

 

4.5. Data Quality and Standardization as Key Challenges 
Ensuring data quality and standardization is crucial for the precision and relevance of AI models in 

oncology. Medical data, including diagnostic images, electronic health records, and omics data, often 
originate from diverse sources, leading to considerable differences in collection methods, formats, and 
quality. This lack of consistency poses challenges in comparing studies and creating models that can be 
widely applied across various clinical settings. The absence of global standards for data collection and 
labeling creates issues related to model interoperability and reproducibility. For example, differences in 
the resolution of medical images, types of annotations used in imaging studies, and protocols for 
handling omics data can introduce biases into models, limiting their ability to generalize across diverse 
populations. 

Errors in manual annotation and the absence of representative data from certain groups, such as 
those in developing countries, further compromise data quality. This not only diminishes the 
effectiveness of the models but also worsens disparities in access to cutting-edge healthcare 
technologies. 
 
4.6. Ethical Challenges in Applying AI in Oncology 

The implementation of AI in oncology raises numerous ethical challenges that must be addressed to 
ensure its safety, transparency, and equitable use. Key issues include: 
 
4.6.1. Data Privacy 

In the field of oncology, AI models depend on extensive patient data, which include sensitive details, 
such as medical images, genetic information, and clinical records. Although such data are crucial for 
developing precise algorithms, their collection and storage present considerable privacy challenges. If 
health databases are breached, personal information can be exposed, thereby eroding patient trust and 
willingness to engage in future research. To address these concerns, strategies such as data 
anonymization, use of blockchain technologies to maintain data integrity, and strict adherence to 
regulations such as Europe's General Data Protection Regulation (GDPR) are necessary. 
 
4.6.2. Bias in AI Models 

AI models are fundamentally shaped by the data on which they are trained. If these datasets do not 
accurately reflect diverse populations, the algorithms may continue or even worsen the existing 
disparities in healthcare. For instance, models primarily trained on data from urban areas or developed 
nations may not function well in rural environments or in countries with limited resources. 
Furthermore, variations in sex, ethnicity, and healthcare access can result in biased predictions and 
clinical decisions. It is essential to implement strategies to detect and reduce these biases, such as 
conducting regular model audits, creating more inclusive datasets, and using explainable AI (XAI) 
methods. These steps are vital for enabling healthcare professionals to comprehend and scrutinize 
algorithmic decisions. 
 
4.7. Practical Recommendations 

• Transparency: Ensure that AI models are interpretable and auditable by healthcare professionals. 
This not only enhances trust in predictions but also enables the real-time identification of 
potential errors or biases. 

• International Collaboration: Promote global regulations to ensure equitable access to AI-based 
technologies and foster the creation of shared ethical frameworks. 

• Education and Training: Equip healthcare professionals with the necessary skills to understand 
how AI models are developed and applied, ensuring their ethical and effective use. 

• Establishment of Global Standards: Develop international standards for medical data collection, 
labeling, and storage to significantly improve data quality and interoperability. 
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• Data Curation and Validation: Implement automated curation processes and regular audits to 
ensure that datasets are consistent and free from annotation errors. 

• Encouraging international consortia: Supports the creation of international consortia to share 
standardized data and protocols, enabling the development of more robust and generalizable AI 
models. 

• Data augmentation techniques: Data augmentation and synthetic data generation techniques, such 
as generative adversarial networks (GANs), are used to address the lack of representative data in 
underrepresented populations. 

 

5. Conclusions 
While advancements in artificial intelligence (AI) within oncology hold great promise, they also 

bring forth substantial ethical challenges that need to be addressed to ensure responsible and fair 
implementation. The findings highlight critical ethical concerns, such as data privacy, biases in AI 
models, and algorithm transparency. Protecting data privacy is crucial for maintaining patient trust and 
encouraging medical institutions to share information. Conversely, biases in AI models can worsen 
disparities in access to effective treatment, especially among underrepresented groups. 

To address these issues, it is crucial to establish strong international regulations for data 
management and ensure fairness in the creation and use of AI models in healthcare. Additionally, future 
studies should aim to create explainable artificial intelligence (XAI) tools that allow healthcare 
professionals to comprehend and evaluate algorithmic decisions, guaranteeing fairness and 
transparency. These actions would not only alleviate ethical concerns but also enhance the acceptance of 
these technologies among healthcare providers and patients, thereby increasing their beneficial impact 
on contemporary oncology. 
 
5.1. Opportunities for Future Research 

The progress of artificial intelligence (AI) in oncology presents a promising opportunity to explore 
its integration with new technologies, which could significantly enhance its role in cancer diagnosis and 
treatment. Future research should focus on the following key topics. 
 
5.1.1. Integration with Nanotechnology 

Nanotechnology enables the development of targeted drug delivery systems and molecular sensors 
for early tumor detection and diagnosis. Combining AI with this technology can optimize personalized 
treatments using algorithms that analyze real-time patient responses to nanodrugs. 
 
5.1.2. Use of Blockchain for Data Management 

Blockchain offers a secure and decentralized method for storing and exchanging clinical data, 
thereby ensuring both privacy and transparency. By combining AI with blockchain, it is possible to 
train models on extensive datasets while maintaining patient confidentiality and promoting 
international collaboration among healthcare institutions. 
 
5.1.3. Combination with Advanced Oomics 

Omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, produce vast 
quantities of data that can be examined using AI algorithms to reveal intricate biological patterns. By 
combining AI with these technologies, the development of predictive biomarkers can be expedited, 
thereby advancing the field of precision medicine. 
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5.1.4. Applications in Augmented Reality (AR) and Virtual Reality (VR): 
In the field of surgery, integrating AI with AR and VR technologies can enhance the planning and 

performance of intricate operations by offering 3D visual representations of the tissues and tumors. This 
integration would allow surgeons to make more accurate and informed decisions during surgery. 
 
5.1.5. Adoption of Quantum Algorithms 

Quantum computing has the potential to address optimization and large-scale data analysis 
challenges at remarkable speed. The integration of AI with quantum computing can transform medical 
image analysis, treatment forecasting, and the modeling of biological interactions. 
5.1.6. Development of Multimodal Models 

Future studies should focus on developing models that combine various data sources, including 
medical imaging, omics data, and clinical records, to deliver more reliable and precise predictions for 
cancer treatment. 
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