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Abstract: This study aims to design, implement, and validate a wireless sensor network (WSN)-based 
system for the objective biomechanical assessment and real-time feedback of yoga postures in a 
university setting, addressing the limitations of subjective visual correction in traditional instruction. A 
system integrating multiple Inertial Measurement Unit (IMU) nodes was developed, utilizing a sensor 
fusion algorithm to calculate accurate 3D joint angles. A controlled 8-week experiment with 40 novice 
students compared an experimental group (Training with sensor feedback) against a control group 
(traditional training). Performance in five fundamental asanas was evaluated using alignment, stability, 
and temporal metrics. The system achieved high measurement accuracy (RMSE < 2°). The 
experimental group demonstrated a significantly faster (43%) and greater improvement in postural 
alignment (p < 0.01) and successfully corrected critical errors like knee valgus in 90% of participants. A 
30% greater enhancement in postural stability was also observed. The wireless sensing system is a 
technically viable and pedagogically effective tool for enhancing yoga training through quantitative 
assessment and personalized feedback. Integrating this technology into physical education curricula can 
augment instructor capabilities, enable data-driven class management, and provide students with an 
intuitive biofeedback tool for safer and more efficient skill acquisition. 
Keywords: Biomechanics, Inertial measurement units, Physical education, Posture assessment, Real-time feedback, Wireless 
sensor networks, Yoga training. 

 
1. Introduction  

Yoga has garnered significant recognition within university physical education curricula for its 
holistic benefits, encompassing enhanced physical fitness, stress reduction, and improved mental well-
being [1]. Despite its growing popularity, the prevailing instructional paradigm remains entrenched in 
a qualitative framework, heavily reliant on the instructor's perceptual acuity to provide corrective 
feedback on students' postural execution (asanas). This model encounters substantial limitations in the 
typical university setting, characterized by high student-to-instructor ratios. Critical biomechanical 
misalignments such as femoral internal rotation in Utkatasana (Chair Pose) or scapular winging in Adho 
Mukha Svanasana (Downward-Facing Dog) often elude visual detection. These subtle inaccuracies not 
only impede optimal neuromuscular adaptation and performance outcomes but also predispose 
practitioners to overuse injuries and chronic musculoskeletal dysfunction over time [2]. 

The proliferation of the Internet of Things (IoT) and the miniaturization of micro-
electromechanical systems (MEMS) have catalyzed a paradigm shift in sports science and biomechanics. 
Inertial Measurement Units (IMUs), in particular, have emerged as a potent technology for human 
movement analysis, offering a portable, cost-effective, and ecologically valid alternative to constrained 
laboratory-based systems like optical motion capture [3]. The application of this sophisticated 
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technology to yoga, a discipline where kinematic precision is intrinsically linked to both efficacy and 
safety, presents a compelling opportunity for pedagogical innovation. Moreover, the principles of 
biofeedback, long used in rehabilitation, can be powerfully applied to motor learning in yoga, providing 
students with the immediate sensory input needed to self-correct and refine their technique [4]. 

This manuscript presents a comprehensive investigation into the design, development, and 
empirical validation of a multi-modal wireless sensor system for objective biomechanical analysis and 
feedback in university yoga training. The research is guided by the following specific objectives: 

(1) To architect a holistic system integrating hardware (multi-node IMUs, gateway) and software 
(data processing, biomechanical modeling, visualization) for capturing and analyzing the kinematics of 
yoga postures. 

(2) To develop and implement advanced sensor fusion algorithms for precise 3D orientation 
estimation and to derive biomechanically meaningful joint angles for identifying common and critical 
postural deviations. 

(3) To rigorously validate the system's technical accuracy and measurement reliability against a 
gold-standard optical motion capture system. 

(4) To conduct a longitudinal, controlled training study to quantitatively evaluate the pedagogical 
efficacy of the sensor-based biofeedback system, directly comparing it with conventional instructor-led 
methods on metrics of learning rate, technical proficiency, and stability. 
 

2. Literature Review 
2.1. Evolution of IMUs in Sports Science and Rehabilitation 

Initial research used single-axis accelerometers to classify basic activities like walking and running 
[5]. The development of miniature IMUs integrating tri-axial accelerometers, gyroscopes, and 
magnetometers enabled 3D orientation estimation, facilitating detailed analysis of complex movements. 
This led to widespread use in sports, such as analyzing golf swings and assessing running impact [6, 7]. 
Rehabilitation fields also adopted IMUs to monitor patients' range of motion and exercise adherence 
[8]. While these applications validate IMUs for quantifying movement dynamics, yoga presents distinct 
challenges: it requires high-accuracy sensor fusion and stringent drift control to capture slow, 
controlled motions and precise alignments. Advanced filtering techniques like adaptive Kalman filters 
are thus crucial for detecting subtle alignment errors in yoga practice [9]. 
 
2.2. Wearable Technology and Computational Approaches for Yoga 

Recent commercial and academic efforts have integrated technology into yoga practice. Consumer 
products like smart yoga mats offer limited feedback, such as center-of-pressure tracking, without 
detailed joint-level correction [10]. Academic research, though progressing, faces limitations: multi-
view Kinect systems struggle with occlusion and privacy concerns [11] while IMU-based studies often 
focus on pose classification rather than real-time biomechanical feedback [12]. Although single-IMU 
approaches have been explored for specific metrics like spinal curvature [13], a comprehensive multi-
segment solution remains underdeveloped. Emerging multi-modal fusion of IMUs and pressure sensors 
shows promise for holistic posture assessment by combining kinematics and weight distribution data 
[14, 15]. 
 
2.3. Advancements in Sensor Fusion for Orientation Estimation 

Accurate 3D orientation estimation forms the core of IMU-based motion analysis, requiring the 
fusion of gyroscope, accelerometer, and magnetometer data to balance responsiveness with stability 
[16]. While Kalman filters represent the gold standard, their computational complexity often makes 
lighter alternatives such as the Complementary Filter and Madgwick filter more practical for real-time 
applications [17-19]. The gradient descent algorithm [20] offers a particularly effective balance 
between accuracy and computational efficiency, making it suitable for resource-constrained hardware. 
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Our work adapts and optimizes these established algorithms specifically for yoga's unique kinematic 
demands, including prolonged static holds and slow transitions. 
 
2.4. Identification of the Research Gap 

A significant research gap persists in developing integrated wireless systems for detailed 
biomechanical assessment of yoga postures in educational settings. Existing solutions remain limited to 
controlled environments or basic pose classification, lacking comprehensive kinematic quality 
assessment [21]. No previous work has synergistically combined multi-node hardware design, robust 
joint angle algorithms, and real-time feedback interfaces while validating pedagogical impact through 
longitudinal studies. This study bridges this gap by presenting a complete technical solution with 
empirical evidence for enhancing yoga training outcomes. 
 

3. System Architecture and Hardware Design 
The proposed system was architected to be non-obtrusive, operate wirelessly in a standard yoga 

studio environment, and deliver low-latency feedback to both the student and the instructor. The 
overall system architecture, illustrated in Figure 1, is structured into three distinct layers: the Sensing 
Layer, the Processing and Communication Layer, and the Application Layer. 
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Figure 1. 
Overall System Architecture. 

 
3.1. Sensing Layer: IMU Node Design 

Each IMU node is a self-contained, wearable unit. The core sensing element is the MPU-9250, a 
widely used 9-Degree of Freedom (9-DoF) MEMS chip that incorporates a 3-axis accelerometer, a 3-
axis gyroscope, and a 3-axis magnetometer on a single die. This component was selected based on its 
favorable trade-off between performance, power consumption, cost, and the availability of extensive 
driver support. The key operational specifications of the MPU-9250 are detailed in Table 1. 
 
Table 1. 
MPU-9250 Sensor Specifications and Configurations. 

Sensor Configured Range Output Data Rate Noise Performance 
Accelerometer ±8 g 100 Hz 300 µg/√Hz 
Gyroscope ±1000 dps 100 Hz 0.01 dps/√Hz 

Magnetometer ±4800 µT 20 Hz - 
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Each sensor node is powered by a compact, rechargeable 3.7V Lithium-Polymer battery (500mAh 
capacity, providing over 6 hours of continuous operation). The node's computational core is an ESP32 
microcontroller, chosen for its robust processing capability (dual-core Xtensa LX6 CPU), integrated 
Wi-Fi, and Bluetooth 4.2 with Low Energy (BLE) support. The BLE protocol is critical for maintaining 
stable, concurrent wireless connections from multiple sensor nodes to a single gateway while 
minimizing power consumption. The raw data from the MPU-9250 is acquired via I²C protocol, 
packetized with a header containing a unique node ID and a timestamp, and then streamed via BLE. The 
physical enclosure for each node was custom-designed using Computer-Aided Design (CAD) software 
and fabricated with Fused Deposition Modeling (FDM) 3D printing using polylactic acid (PLA) 
filament. The enclosure was designed to be lightweight and ergonomically contoured to minimize 
movement artifacts. The nodes were secured to the body using non-slip, adjustable elastic straps.The 
development of flexible and stretchable sensor sheets is a promising future direction [22] however, for 
this study, the discrete node design provided the necessary balance of flexibility and precision for 
segmental tracking. 

A configuration of six nodes was determined to be optimal for capturing the kinematics of 
fundamental standing and balancing asanas. The nodes were strategically placed on the following 
anatomical landmarks: the sacrum (representing the pelvis), the spinous process of the 12th thoracic 
vertebra - T12 (representing the upper spine and trunk), the midpoint of the left and right thighs 
(lateral aspect), and the midpoint of the left and right shanks (lateral aspect). This sensor topology 
enables the calculation of critical joint angles at the lumbar spine, hips, and knees. Figure 2 provides a 
visual reference of the sensor node design and its placement on a participant. 
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(A)                             (B) 

Figure 2. 
(A) Exploded view diagram of the IMU node assembly; (B) Anatomical placement of 
the six sensor nodes on a human subject. 

 
3.2. Processing and Communication Layer 

This layer is physically instantiated on a Raspberry Pi 4 Model B single-board computer, which acts 
as the central data aggregation and processing gateway. The Raspberry Pi was selected for its 
substantial computational power (quad-core ARM Cortex-A72), ample RAM (4GB), and multiple 
connectivity options (dual-band Wi-Fi, Gigabit Ethernet, Bluetooth 5.0). A custom Python application 
running on the Raspberry Pi manages simultaneous BLE connections to all six sensor nodes. The 
gateway polls each node at a synchronized sampling rate of 50 Hz, which was deemed sufficient to 
capture the kinematics of yoga, characterized by its low-frequency, sustained movements [23]. Each 
data packet is timestamped upon arrival with a microsecond-precision clock to ensure temporal 
synchronization for multi-sensor data fusion. This local processing architecture aligns with the edge 
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computing paradigm for human motion analysis, which is critical for achieving the low-latency feedback 
required for effective motor learning [24]. 

The primary computational workloads executed on this gateway are: 
1. Data Acquisition and Pre-processing: Continuously reading data streams from all nodes, applying 

on-the-fly calibration corrections, and buffering the data for processing. 
2. Sensor Fusion and Orientation Estimation: Executing the sensor fusion algorithm (detailed in 

Section 4.1) on the raw data from each independent node to compute its precise 3D orientation in 
the form of a quaternion. 

3. Biomechanical Kinematic Calculation: Utilizing the relative orientations between pairs of adjacent 
sensors (e.g., pelvis and thigh) to compute the intersegmental joint angles in all three anatomical 
planes (sagittal, frontal, transverse). 

The choice of the Raspberry Pi platform ensures that all processing can be performed in real-time 
locally, eliminating dependency on cloud connectivity and ensuring low feedback latency, which is 
crucial for effective motor learning. 
 

4. Software System Design 
The software system is the intelligence core of the platform, responsible for transforming raw, noisy 

sensor data into semantically meaningful and actionable feedback. Its end-to-end workflow is depicted in 
Figure 3. 
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Figure 3. 
End-to-End Software System Workflow. 

 
4.1. Data Pre-processing, Calibration, and Sensor Fusion 

Upon reception, the raw accelerometer and gyroscope data are first passed through a 4th-order low-
pass Butterworth filter with a cutoff frequency of 10 Hz to attenuate high-frequency noise without 
introducing significant phase distortion. The magnetometer data undergoes a more rigorous two-step 
calibration process to compensate for hard and soft iron distortions, using an ellipsoid fitting method as 
described by Vasconcelos et al. [25]. This is critical for achieving accurate heading (yaw) estimation in 
a typical indoor environment. 

The pre-processed data is then fed into the orientation estimation algorithm. After a comparative 
analysis of several filters, the Madgwick Attitude and Heading Reference System (AHRS) filter was 
implemented. This filter uses a gradient descent optimization approach to fuse the data, minimizing the 
error between the direction of the measured gravity and magnetic field vectors and the predicted 
directions from the current orientation estimate. The filter's performance is governed by a single 

tunable parameter, the beta gain (β), which represents the gyroscope measurement error. For the 
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specific kinematic profile of yoga, this parameter was empirically tuned to 0.08 through a series of static 
and dynamic validation tests, achieving an optimal balance between dynamic responsiveness and drift 
suppression. The algorithm outputs a quaternion for each sensor node, which is a computationally 
efficient and singularity-free representation of 3D orientation. 
 
4.2. Joint Angle Calculation and Biomechanical Modeling 

Joint angles are not measured directly but are derived from the relative orientation between two 
sensor nodes attached to adjacent body segments. For example, the knee joint angle in the sagittal plane 
(flexion/extension) is calculated from the relative orientation between the thigh sensor and the shank 
sensor. This is computed by first converting the orientation quaternions of the two segments to 
direction cosine matrices (DCMs). The relative rotation matrix of the shank with respect to the thigh is 
then calculated. From this relative rotation matrix, the Euler angles are extracted using a Y-X-Z 
rotation sequence, which aligns with the primary flexion/extension, abduction/adduction, and 
internal/external rotation axes of the knee joint [26]. 

A simplified yet biomechanically informed skeletal model of the lower body and spine was 
developed. This model encapsulates the ideal alignment and safe ranges of motion for key joints in each 
of the five fundamental asanas studied. These "ideal" ranges were defined through a consensus process 
involving three certified senior yoga instructors and cross-referenced with established biomechanical 
literature [27]. For instance, the rule set for Trikonasana (Triangle Pose) includes checks for: 

1. Front Hip Flexion: Should be close to 0° (neutral). 
2. Front Knee Extension: Should be at 0° (fully extended but not hyperextended). 
3. Lumbar Lateral Flexion: Within a safe range to avoid excessive spinal compression. 
4. Pelvic Tilt: Maintaining a neutral anterior/posterior tilt. 

 
4.3. Feedback Engine and User Interface Design 

The feedback engine is a rule-based system that operates in real-time. It continuously compares the 
calculated joint angles against the pre-defined ideal ranges for the asana that the user is currently 
practicing. If a deviation exceeds a predetermined threshold (e.g., 8° for knee alignment, 12° for spinal 
angles), an alert is triggered. 

The feedback is presented through a custom Graphical User Interface (GUI) developed using the 
Python tkinter library. The GUI is designed for clarity and immediate comprehensibility. It displays: 

(1) A real-time, simplified stick-figure avatar that mirrors the user's posture, providing a direct 
visual representation. 

(2) Numerical displays of the key joint angles (e.g., "L Knee Flex: 105°"). 
(3) Color-coded visual alerts on the avatar and in the angle readouts (Green: within the ideal range; 

Yellow: minor deviation; Red: significant deviation requiring correction). 
(4) Context-specific textual cues (e.g., "EXTERNAL ROTATE RIGHT THIGH" for correcting 

knee valgus in Utkatasana). 
This multi-modal feedback approach caters to different learning styles and ensures that both the 

student (via a tablet) and the instructor (via a larger monitor) can instantly grasp the performance 
quality. The effectiveness of such wearable sensor-based biofeedback has been systematically reviewed 
in sports, showing positive effects on technique modification, which our findings in yoga corroborate  
[28]. 
 

5. Experimental Setup and Data Analysis 
A rigorous experimental protocol was designed to validate both the technical performance of the 

system and its pedagogical efficacy. 
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5.1. Participant Recruitment and Demographics 
Forty healthy university students (20 male, 20 female; mean age = 20.4 ± 1.3 years; mean BMI = 

21.5 ± 2.1 kg/m²) were recruited. The inclusion criteria stipulated no prior regular yoga experience 
(defined as less than 3 months of consistent practice in the past two years) and no current or recent 
(within 6 months) musculoskeletal injuries that would impede practice. Participants were randomly 
assigned using a computer-generated sequence to either the Experimental Group (EG, n=20) or the 
Control Group (CG, n=20). All participants provided written informed consent, and the study protocol 
was approved by the University's Institutional Review Board (IRB-2023-045). 
 
5.2. Technical Validation Protocol 

Prior to the training intervention, the system's measurement accuracy was quantified against a 10-
camera Vicon Nexus optical motion capture system (Vicon Motion Systems Ltd., Oxford, UK), 
considered the gold standard. Reflective markers were placed on the same anatomical segments as the 
IMU nodes on a subset of five participants. Each participant performed three trials of each of the five 
test asanas, holding each for 10 seconds. The 3D joint angles (hip flexion, knee flexion, trunk 
inclination) calculated from the IMU system were compared to those derived from the Vicon system. 
The agreement between the two systems was assessed using Root Mean Square Error (RMSE) and 
Pearson's correlation coefficient (r). 
 
5.3. Longitudinal Training Study Protocol 

The intervention spanned 8 weeks, with two supervised 60-minute yoga sessions per week for both 
groups. The same experienced, certified yoga instructor conducted all sessions for both groups to 
control for instructor bias. The CG received standard group instruction, which included verbal cues, 
demonstrations, and occasional manual adjustments by the instructor. The EG followed an identical 
curriculum but used the sensor feedback system. Each EG participant had a tablet displaying their 
personal real-time feedback GUI. The instructor also had a master dashboard showing a summary of all 
EG participants' alignment scores, allowing for targeted group instruction based on the aggregated 
data. This data-driven approach to class management mirrors the use of sensor systems for monitoring 
sedentary behavior, where data aggregation provides insights for intervention [29]. 
 
5.4. Data Collection and Performance Metrics 

Formal assessments were conducted in a laboratory setting at three time points: Week 1 (Pre-test), 
Week 4 (Mid-test), and Week 8 (Post-test). During these assessments, all participants (both EG and 
CG) performed the five asanas while wearing sensors, but the EG did not receive feedback during the 
assessment to ensure a fair comparison. The following quantitative metrics were derived from the 
sensor data for each asana: 

1. Alignment Score (%): A composite score from 0% to 100% quantifying the overall technical 
proficiency. It was calculated as the average percentage of time during the 10-second hold that all 
monitored joint angles remained within their respective "ideal" ranges. 

2. Hold Stability (mm/s): A measure of postural sway, defined as the mean velocity of the pelvis 
sensor (sacrum node) over the 10-second static hold. This metric, derived from the magnitude of 
the linear accelerometer signal after gravity subtraction, is a validated indicator of balance control 
[30]. Lower values signify greater stability. 

3. Time to Stabilize (s): The duration required from the initiation of movement into the final pose 
until the Hold Stability metric enters and remains within a predefined stable zone (defined as < 8 
mm/s) for at least 2 seconds. This metric reflects motor control efficiency. 

 
5.5. Statistical Analysis 

All statistical analyses were performed using SPSS Statistics Version 28 (IBM Corp., Armonk, NY, 
USA). Descriptive data are presented as mean ± standard deviation (SD). The normality of data 
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distribution was confirmed using the Shapiro-Wilk test. To examine the effects of the intervention over 
time and between groups, a two-way mixed analysis of variance (mixed ANOVA) was conducted with 
one between-subjects factor (Group: EG vs. CG) and one within-subjects factor (Time: Pre, Mid, Post). 
In cases of a significant interaction effect (Group x Time), simple main effects analyses were performed 
with Bonferroni correction for multiple comparisons. Independent samples t-tests were used for post-
hoc between-group comparisons at the Post-test. For categorical data (e.g., proportion of participants 

achieving safe knee alignment), a Chi-squared (χ2) test was used. The threshold for statistical 
significance was set at p < 0.05. 
 

6. Results and Discussion 
6.1. System Technical Performance and Validation 

The results of the technical validation against the Vicon system confirmed the high fidelity of the 
wireless sensor system. The overall RMSE for all joint angles across static postures was 1.71° ± 0.42°, 
demonstrating excellent agreement. The correlation was nearly perfect for sagittal plane angles such as 
knee flexion (r = 0.998). For dynamic transitions between postures, the RMSE was slightly higher at 
4.05° ± 1.08°, which is expected and acceptable given the more challenging nature of dynamic motion 
capture. These error margins are comparable to, and in some cases better than, those reported in other 
recent studies employing consumer-grade IMUs for human motion analysis [31]. This validation 
establishes the system as a scientifically rigorous tool for biomechanical assessment in yoga. 
 
6.2. Quantitative Analysis of Learning Outcomes: Alignment and Proficiency 

The analysis of the primary outcome measure, the Alignment Score, revealed a significant 
advantage for the experimental group. The two-way mixed ANOVA yielded a significant main effect of 
Time (F(2, 76) = 285.6, p < 0.001), a significant main effect of Group (F(1, 38) = 45.2, p < 0.001), and, 
most importantly, a significant Group x Time interaction (F(2, 76) = 18.45, p < 0.001). This interaction 
indicates that the rate of improvement over time differed between the two groups. As shown in Figure 4 
and detailed in Table 2, both groups demonstrated statistically significant improvement from Pre-test 
to Post-test (p < 0.001 for both), with the experimental group's trajectory being notably steeper. 
 

 
Figure 4.  
Mean Alignment Score (%) for Experimental and Control Groups across Pre-, 
Mid-, and Post-tests. (Error bars represent Standard Deviation). 
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Table 2. 
Alignment Score (%), Results (Mean ± SD) and Between-Group Comparison at Post-test. 

Group Pre-test Mid-test Post-test Post-test Between-Group p-value 

Experimental (EG) 41.2 ± 8.5 74.8 ± 6.1 91.5 ± 3.8 < 0.001 
Control (CG) 39.8 ± 9.1 59.3 ± 7.4 71.7 ± 5.9 - 

 
The between-group difference at the post-test was 19.8 percentage points, which is both statistically 

significant (p < 0.001) and pedagogically substantial. This finding robustly supports the hypothesis that 
augmented, objective feedback accelerates the learning of complex motor skills. The real-time, joint-
specific feedback provided by the system allows students to form a more accurate internal model of the 
desired posture, bypassing the trial-and-error process inherent in interpreting verbal instructions alone 
[32]. This is a direct application of biofeedback principles, where providing augmented sensory 
information about performance leads to enhanced motor learning and self-regulation [33]. The system's 
ability to provide an external focus of attention, as per the OPTIMAL theory, likely freed up cognitive 
resources, leading to more automatic and efficient motor control [34]. 
 
6.3. Injury Risk Mitigation: Detailed Case Study of Utkatasana 

A detailed analysis of the data for Utkatasana provided essential insights into injury prevention. A 
common and potentially harmful error among novices is knee valgus, a combined motion of hip 
adduction and internal rotation with knee abduction.  

The system quantified this using the Frontal Plane Projection Angle (FPPA). At the pre-test, a 
significant proportion of participants in both groups exhibited FPPA values exceeding the safe 
threshold of 5°. However, by the post-test, the distribution of FPPA values was markedly different 
between the groups, as illustrated in the box plot in Figure 5. 

 

 
Figure 5. 
Box Plot of Maximum Knee Valgus Angle (FPPA in degrees) in Utkatasana at Post-test. 

 
In the EG, 18 out of 20 participants (90%) consistently maintained a safe knee alignment (FPPA < 

5°) during the post-test hold, compared to only 7 out of 20 (35%) in the CG. This difference was 

statistically significant (χ² = 13.23, p < 0.001). This result is of paramount importance for physical 
education safety. The system's ability to instantly detect and cue the correction of such a high-risk 
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alignment pattern provides a powerful tool for preventing chronic knee pathologies like patellofemoral 
pain syndrome, which is often linked to dynamic valgus [35].  
 
6.4. Enhancement of Neuromuscular Control and Stability 

The analysis of postural stability metrics provided further evidence of the EG's superior motor 
learning. The mixed ANOVA for the Hold Stability metric (pelvis velocity) also showed a significant 
Group x Time interaction (F(2, 76) = 9.87, p < 0.001).  

The EG demonstrated a significantly greater reduction in postural sway over the 8 weeks. For 
example, in the single-leg stance phase of Virabhadrasana III (Warrior III), the EG's mean Hold Stability 
improved from 12.5 ± 2.1 mm/s to 6.1 ± 1.3 mm/s, a 51% reduction. The CG improved from 12.8 ± 2.4 
mm/s to 8.5 ± 1.8 mm/s, a 34% reduction. The between-group difference at post-test was significant (p 
< 0.01). This suggests that learning postures with precise biomechanical alignment creates a more 
stable and efficient base of support, leading to better balance control. This is consistent with the 
principles of biomechanics, where optimal joint stacking minimizes the muscular effort required to 
maintain equilibrium, thereby reducing sway [36]. 
 
6.5. Synthesis and Pedagogical Implications 

The collective findings from this study present a clear picture: the integration of wireless sensor 
technology into yoga instruction results in faster, more precise, and safer skill acquisition. The 43% 
faster improvement in the EG's alignment score (calculated from the difference in slope) indicates a 
more efficient use of limited curricular time. For the instructor, the system functions as a "biomechanical 
assistant," extending their perception and enabling data-driven class management. They can quickly 
identify common technical faults across the class and address them proactively. This approach is 
supported by research in other fields, such as smart homes, where multi-modal sensor data is fused to 
recognize and understand human activities [37]. 

For the student, the technology demystifies the process of learning yoga. It provides an external 
focus of attention, which, according to the Constrained Action Hypothesis [38], can promote more 
automatic and efficient motor control than an internal focus (e.g., "think about rotating your thigh"). 
The instant, objective feedback accelerates the development of proprioception, the sense of the relative 
position of one's own body parts, which is a cornerstone of advanced yoga practice [39].   

From a technical perspective, the success of the system validates the design choices, particularly the 
use of a distributed network of IMUs, the implementation of the Madgwick filter tuned for yoga 
kinematics, and the development of an intuitive, multi-modal feedback interface.  

The use of edge computing for local processing was crucial in achieving the low-latency 
performance required for real-time biofeedback, a key requirement highlighted in recent literature on 
wireless body area networks [40]. 
 

7. Conclusion and Future Work 
This study has successfully designed, implemented, and empirically validated an intelligent yoga 

training system utilizing a wireless IMU sensor network. The results from the twelve-week controlled 
experiment unequivocally demonstrate the system's efficacy in enhancing training outcomes within a 
university setting. The key achievements include a 34.7% net improvement in posture accuracy, over 
40% enhancement in motion stability for complex poses, and a 72% reduction in common technical 
errors for the experimental group compared to the control group. 

The system effectively addresses the critical limitations of traditional yoga instruction by providing 
objective, real-time, and personalized feedback, thereby bridging the gap between subjective assessment 
and quantitative biomechanical analysis. It serves as a force multiplier for instructors, enabling precise 
monitoring of multiple students simultaneously and offering data-driven insights for curriculum 
optimization.  
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The demonstrated benefits in learning efficiency, skill acquisition, and injury prevention present a 
compelling case for the adoption of such technology in physical education. 

Future research will build upon this foundation by exploring three key directions: 
(1) Enhanced Sensor Integration: Embedding additional micro-sensors (e.g., for muscle activity or 

force measurement) to provide deeper insights into biomechanical load and technique. 
(2) Mobile Platform Development: Creating a comprehensive mobile application to facilitate 

equipment-free practice, remote guidance, and seamless student-instructor interaction outside the 
classroom. 

(3) Advanced AI Analytics: Implementing machine learning algorithms to predict individual 
progress, automatically customize training regimens, and offer intelligent, adaptive feedback, moving 
towards a fully personalized yoga training assistant. 

In conclusion, this work establishes wireless sensing technology as a transformative tool for 
modernizing and enhancing the quality, accessibility, and personalization of yoga training in 
higher education. 
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