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Abstract: The aim of this study is to address data sparsity, popularity bias, and insufficient diversity in 
knowledge point recommendation algorithms within intelligent tutoring systems. This study proposes a 
new model that dynamically adjusts negative sample probability and weighting based on global 
frequency and pedagogical difficulty to enhance recommendation precision and equity, especially for 
underrepresented or complex knowledge points. The study employs a publicly available dataset 
comprising 6,607 student records and 20 distinct variables. Without explicit curricular tags, knowledge 
points were operationalized as latent learning units identified through unsupervised clustering. 
Specifically, seven key performance and behavioral indicators, Hours_Studied, Attendance, 
Previous_Scores, Sleep_Hours, Tutoring_Sessions, Physical_Activity, and Exam_Score were selected as 
features for clustering. These features were first standardized using Z-score normalization. 
Subsequently, the standardized features were partitioned into ten clusters using the K-Means algorithm 
with a random_state of 42 to ensure reproducibility. The frequency of a knowledge point was defined as 
its relative prevalence within the dataset. The difficulty of each knowledge point was inferred from 
aggregated student performance within the corresponding cluster. Results certify achieving NDCG of 
0.95, HRA10 of 1.00, and AUC of 0.96. 

Keywords: Adaptive learning, Education, Global negative sampling, Knowledge point recommendation, Recommendation 
system. 

 
1. Introduction  

Intelligent Tutoring Systems fundamentally transform traditional instructional paradigms by 
fostering customized, student-centered learning environments, thereby significantly enhancing 
personalized education [1-3]. By leveraging advancements in artificial intelligence and data analytics, 
an intelligent touring system (ITS) can dynamically monitor student performance and provide adaptive 
recommendations, positioning itself as a pivotal technology for addressing global educational challenges 
and promoting equitable access to quality education [4, 5]. This evolution signifies a shift from static 
content delivery to a more adaptable process that considers learners’ prior knowledge, preferences, and 
behaviors [6, 7]. Within this adaptive framework, knowledge point recommendation emerges as a core 
function of ITS, aiming to guide students to the most appropriate learning content at optimal moments 
[4, 8]. The profound impact of AI-driven personalization in ITS is increasingly evident, advancing 
learner support across cognitive and affective dimensions [5, 9-11]. 

Despite these advancements, existing recommendation algorithms encounter persistent challenges 
that constrain their effectiveness and fairness in educational contexts. Collaborative filtering, for 
instance, frequently suffers from data sparsity and inherent popularity bias, often leading to an 
overemphasis on frequently accessed knowledge points while neglecting individual needs or less popular 
but equally crucial content [6, 12-14]. Although deep learning methods have demonstrated superior 
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accuracy in various domains, their substantial computational demands and reliance on extensive labeled 
training data pose significant practical challenges for large-scale educational deployment [15-17]. 
Furthermore, a critical limitation of traditional negative sampling techniques lies in their struggle to 
distinguish between truly informative and uninformative negative samples, thereby compromising the 
model's learning efficiency [8, 18]. In educational settings, randomly sampled negative knowledge 
points may be overly simplistic or irrelevant to a student’s learning trajectory, providing minimal 
valuable feedback for model optimization [19]. Such uninformative negative samples can dilute the 
learning signal, making it difficult for models to accurately differentiate between relevant and irrelevant 
knowledge points, particularly when processing nuanced educational content and fostering equitable 
learning outcomes [10, 20-23]. Moreover, the logical relationships and pedagogical difficulty among 
knowledge concepts are often overlooked, contributing to a lack of coherence and diminished equity in 
learning pathways within current educational recommendation systems [11]. 

This study introduces a novel Global Negative Sample Weighting (GNSW+) mechanism to address 
these pervasive issues meticulously. This sophisticated framework precisely adjusts negative samples’ 
sampling probability and influence based on their global frequency and intrinsic pedagogical difficulty. 
By integrating a refined sampling strategy that concurrently considers frequency and difficulty, 
GNSW+ aims to significantly enhance recommendation precision, particularly for underrepresented or 
more challenging knowledge concepts, thereby promoting more equitable access to personalized 
learning resources [12]. While prior research in intelligent tutoring systems has explored avenues such 
as leveraging large language models for motivational feedback or general personalization, this study 
tackles a distinct yet equally critical challenge within ITS: optimizing knowledge point recommendation 
through an improved, context-aware negative sampling strategy [13]. We posit that by effectively 
leveraging the global characteristics of knowledge points, their prevalence and inherent difficulty, 
GNSW+ can foster demonstrably more comprehensive, effective, and equitable learning pathways. 
Through rigorous empirical evaluation, we demonstrate that the proposed GNSW+ framework 
consistently outperforms traditional baseline models and standard random negative sampling methods 
across key evaluation metrics. This work substantially contributes to developing more robust, equitable, 
and practical knowledge point recommendation systems within intelligent tutoring environments, 
ultimately advancing the field of adaptive science education and its practical applications. 

 
2. Materials and Methods 
2.1. Dataset Description and Knowledge Point Operationalization  

This study employed a publicly available “Student Performance Data Set,” comprising 6,607 student 
records and 20 distinct variables. This specific version, differing in size from some commonly referenced 
“Student Performance Data Sets” that contain 649 records, is directly accessed and utilized from 
kaggle.com, ensuring the reproducibility of the research. These variables encompass a broad spectrum 
of student attributes, including academic achievement indicators, learning behaviors, external support, 
and demographic information. Table 1 presents a detailed breakdown of these variables. Utilizing such 
open datasets is crucial for fostering reproducibility and facilitating comparative analysis within 
machine learning research in educational contexts [24]. 
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Table 1.  
Dataset variables. 

Variable name   Variable declaration 

Hours_Studied  The total number of hours the student studies ranges from 1 to 44. 
Attendance  A student’s class attendance (percentage) ranges from 60 to 100. 

Sleep_Hours  The average number of hours a student sleeps daily ranges from 4 to 10. 
Previous_Scores  Historical academic scores of students range from 50 to 100. 

Tutoring_Sessions  The number of tutoring sessions attended by students ranges from 0 to 8. 
Physical_Activity  The degree to which students participate in physical activities ranges from 0 to 6. 

Exam_Score  A student’s recent test score has ranged from 55 to 101. 
Parental_Involvement  The level of parental involvement (Low/Medium/High). 

Access_to_Resources  Educational resources available to students (Low/Medium/High). 

Extracurricular Activities 
(Extracurricular activities)  

 Whether the student participates in extracurricular activities (Yes/No). 

Motivation_Level Students’ motivation level (Low/Medium/High). 

Internet_Access  Whether you have Internet access (Yes/No). 

Family_Income  The income level of the student’s family (low, medium, or high). 
Teacher_Quality  Students perceive the teacher’s teaching quality (Low/Medium/High). 

School_Type  School type (Public/Private). 
Peer_Influence (companion)   Peer influence on students’ academic performance (Neutral/Negative). 

Learning_Disabilities  Whether the student has a learning disability (Yes/No). 
Parental_Education_Level (parents’ 
education level)  

 Students with the highest degree of their parents (high school, college, or 
postgraduate). 

Distance_from_Home  Distance between the school and the student’s home (Near/Moderate/Far). 

Gender  The gender of the student (Male/Female). 

 
Crucially, given that the core objective of this study is “knowledge point recommendation,” it is 

imperative to clarify how “knowledge points” were operationalized and derived from this student-centric 
dataset. The provided dataset variables primarily characterize student performance and background, 
rather than explicit interactions with specific knowledge points or their inherent properties [25]. 
Therefore, for this research, “knowledge points” were conceptually mapped, and their attributes were 

inferred as follows： 
Knowledge Point Definition: Without explicit curricular tags, knowledge points were operationalized 

as latent learning units identified through unsupervised clustering. Specifically, seven key performance 
and behavioral indicators, Hours_Studied, Attendance, Previous_Scores, Sleep_Hours, 
Tutoring_Sessions, Physical_Activity, and Exam_Score were selected as features for clustering. These 
features were first standardized using Z-score normalization. Subsequently, the standardized features 
were partitioned into ten clusters using the K-Means algorithm with a random_state of 42 to ensure 
reproducibility. Each resulting cluster was regarded as a distinct knowledge point, representing a group 
of students sharing similar learning characteristics within the context of these indicators. This proxy-
based approach is consistent with practices in educational data mining, where item-level annotations are 
unavailable. The choice of the number of clusters was empirically determined to capture a meaningful 
granularity of latent knowledge units within the dataset. This selection aimed to balance the need for 
sufficient differentiation among student learning profiles while maintaining interpretability and 
avoiding overly fragmented knowledge representations. It reflects an experience-based decision aligned 
with the dataset’s characteristics to identify distinct yet coherent groups of students. 

Frequency Derivation: The frequency of a knowledge point kFreq（ )  was defined as its relative 
prevalence within the dataset. Formally, frequency was computed as the proportion of students assigned 
to the corresponding cluster: 

 

( ) kN
Freq k

N
=                                                                                          (1) 
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where 
kN denotes the number of students assigned to a knowledge point (cluster) k , and N  denotes 

the total number of students in the dataset.  
This definition ensures that frequency reflects the breadth of exposure to each knowledge point 

across the student population. 
Difficulty Estimation: The difficulty of each knowledge point was inferred from aggregated student 

performance within the corresponding cluster. Two complementary measures were employed: i) average 
exam score and ii) mastery rate. 

i) Average Exam Score: Difficulty was defined inversely to the mean Exam_Score of students within 
a cluster. Specifically, a higher average Exam_Score in a cluster indicated lower difficulty. The score 
used in the composite score calculation was: 

 

( )
1

100

S kMean Exam core
−                                                                   (2) 

 
where 100 is assumed as the maximum possible exam score to normalize the term. 
ii) Mastery Rate: Difficulty was also derived from the complement of the mastery rate, defined as the 

proportion of students achieving Exam_Score > 70 within the cluster. Formally, the mastery rate for 
the knowledge point is: 

 

Number of students in cluster k with Exam_core 70
( )

k

Grasp k
N


=                      (3) 

 
The difficulty contribution from mastery was then calculated as: 
 

( )1  Grasp k−                                                                       (4) 

 
These two measures were designed to jointly indicate a higher difficulty level for knowledge points 

where students generally performed poorly or achieved lower mastery. This method of proxy-based 
estimation aligns with psychometric traditions, such as Item Response Theory, when explicit item-level 
difficulty metadata are unavailable [25]. 

Through this operationalization, students were assigned two labels: 1 and 0. In fact, 1 is considered 
mastery when Exam_Score > 70, while 0 is considered non-mastery when Exam_Score ≤ 70. Then, the 
dataset was transformed from a general student-centric resource into a structured framework suitable 
for knowledge-level recommendation, ensuring the methodological consistency and pedagogical 
relevance of the proposed GNSW+ model. This meticulous operationalization of knowledge points from 
a student performance dataset is critical for bridging the gap between general student data and specific 
knowledge-level recommendations, ensuring the integrity and relevance of the proposed GNSW+ 
framework [26]. 

This operationalization transformed the dataset from a general student-centric resource into a 
structured framework suitable for knowledge-level recommendation, ensuring the methodological 
consistency and pedagogical relevance of the proposed GNSW+ model [27]. 

 
2.2. Data Preprocessing 

Two primary preprocessing steps were rigorously applied to ensure consistent data quality, 
mitigate feature scale discrepancies, and address potential class imbalances inherent in educational 
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datasets. First, Z-score normalization was conducted on all continuous features selected for knowledge 
point operationalization (for example, Hours_Studied, Attendance, Previous_Scores, Sleep_Hours, 
Tutoring_Sessions, Physical_Activity, and Exam_Score). This transformation is a standard practice in 
deep learning [28], rescales data with a standard deviation of one and a mean value of zero, stabilizing 
model convergence and preventing features with larger numerical ranges from disproportionately 
influencing model training. Second, a resampling strategy was implemented to alleviate class imbalance, 
a common challenge where specific outcomes or interactions are significantly less frequent than others 
[28]. Specifically, after constructing the dataset of positive (user-knowledge point pairs with label = 1) 
and negative samples (label = 0), if the number of positive samples was less than the number of negative 
samples, additional positive samples were generated through replacement sampling from the existing 
positive samples to match the number of negative samples [29]. This strategy ensures a more balanced 
and representative training set, particularly relevant for educational datasets where specific student 
behaviors or learning outcomes might be rare, ensuring that the model does not become biased toward 
prevalent patterns [30].  
 
2.3. Model Architecture 

For comparative analysis, three distinct recommendation model architectures were evaluated: 
Baseline Matrix Factorization (BMF), Random Negative Sampling (RNS), and the proposed Global 
Negative Sample Weighting. 
 
2.3.1. Baseline Matrix Factorization  

This foundational model, a widely adopted technique in recommendation systems [31], learned 
latent representations for students and knowledge points based on observed implicit interactions. It is a 
benchmark to assess the performance gain achieved by more sophisticated negative sampling strategies. 
Singular Value Decomposition (SVD) algorithm from the Surprise library was used to implement this 
baseline, operating on the constructed user-knowledge point interaction dataset. 
 
2.3.2. Random Negative Sampling: 

The RNS model incorporates a common negative sampling technique based on the MF framework. 
During training, it randomly draws negative samples from the pool of knowledge points a student has 
not yet interacted with. This approach simulates the uncertainty in actual learning behaviors and is 
widely used in recommendation systems [32]. 

Global Negative Sample Weighting: This model enhances the RNS framework by integrating a novel, 
context-aware negative sampling mechanism. GNSW+ leverages two key global characteristics of 
knowledge points: their overall frequency of appearance and their inherent pedagogical difficulty. These 
refinements aim to improve the representation and recommendation of frequently encountered and more 
challenging, less popular knowledge points, thereby addressing biases and enhancing the precision of 
recommendations within ITS. Figure 1, located below, visually compares the overall architecture of 
these three models, illustrating their respective components and how GNSW+ extends the standard 
framework. 
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Figure 1. 
Three models overall architecture. 

 
2.4. Global Negative Sample Weighting 

The central innovation of the Global Negative Sample Weighting (GNSW+) model lies in its 
refined negative sampling process, which integrates multiple pedagogical and statistical factors to guide 
the selection of informative negative samples. Unlike random negative sampling, which draws negative 
instances without considering their pedagogical value, GNSW+ dynamically incorporates global 
knowledge point frequency, estimated difficulty, mastery rate, and the student–knowledge distance into 
the sampling mechanism. This ensures that selected negative samples are diverse and pedagogically 
meaningful. 

For each candidate's negative knowledge point k , a composite score ( )C k  is calculated as: 

Mean( ) dist( , )
( ) Freq (1 ) (1 Grasp( )) ( )

100

S kExam core s k
C k k k

Dmax
   = + − + − +   (5)  

Where: 

Freqk
is the global frequency of knowledge points k  in the dataset, calculated as the proportion of 

students assigned to the cluster k ; 
 

( )_ kMean Exam Score is the average exam score of students within a cluster k , with lower scores 

indicating higher difficulty; 
 

( )
1

100

S kMean Exam core
−  normalizes this component, assuming a maximum exam score of 100;  

( )Grasp k denotes the mastery rate, defined as the proportion of students achieving Exam_Score > 

70 within the cluster k; 

The term1 ( )Grasp k−  represents the complement, emphasizing lower mastery.  
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( ),dist s k  represents the Euclidean distance between the standardized feature vector of student s

(user_vec) and the centroid of cluster k (kp_center), capturing the gap between the student’s profile and 

the knowledge point. The term is normalized by maxD , the maximum possible Euclidean distance, 

which in this implementation is approximated by len(user_vec) (representing the number of features in 
the vector). 

In this study, the weight parameters , ,   and  are uniformly set to 1.0. This configuration 

signifies an initial design choice where each of the four components (knowledge point difficulty derived 
from the average exam score, knowledge point difficulty derived from the inverse of the global mastery 
rate, user-knowledge point semantic distance, and global frequency of the knowledge point) is assumed 
to contribute equally to the overall composite score for negative sample weighting. This provides a 
balanced foundational approach to integrating diverse pedagogical and statistical factors in the absence 
of explicit prior knowledge about their relative importance. While this uniform weighting serves as a 
robust baseline for evaluating the GNSW+ framework, future work could explore systematic tuning or 
learning of these parameters to optimize their contributions based on specific dataset characteristics or 
learning objectives. 

The probability of sampling a knowledge point k  as a negative instance, is obtained by normalizing 
these composite scores across all candidate negative knowledge points for student s : 

C and idate Negatives

( )
( | )

( )
k

C k
P k s

C k


=


                       (6) 

In this formulation, the strategic weighting has been incorporated directly into the negative 
sampling stage through the composite score. The Wi term in the loss function from your original draft 
indicates a conceptual weight applied to negative samples. In code, this weighting is applied by selecting 
negative samples based on their calculated composite score (making Wi effectively 1 for selected 
negatives and 0 for unselected, or implicitly handled by the sampling probability). This design ensures 
that the model pays greater attention to low-frequency, high-difficulty knowledge points, while 
simultaneously tailoring negative samples to the student’s learning profile. As a result, GNSW+ 
achieves more balanced and pedagogically robust recommendations than models relying solely on 
random negative sampling. 
 
2.5. Experimental Setup and Training 

All models underwent a rigorous training and evaluation process to ensure fair comparison and 
reliable results. The initial dataset was loaded, and student IDs were assigned. 

The full dataset was first partitioned into training and testing sets with a ratio of 80% for training 
and 20% for testing to ensure an unbiased evaluation of model performance on unseen data. This split 
was performed randomly using random_state=42 for reproducibility. 
Knowledge points were operationalized through K-Means clustering as detailed earlier. 

For each model variant, a training dataset was constructed. For GNSW+, this involved generating 
positive samples directly from the identified positive interactions in the training set (i.e., those with a 
score of 1), and then, for each positive interaction, generating n_negative=3 negative samples using the 
gnsw_plus_negative_sampling strategy. 

The balance_dataset function was applied to the constructed training data. This function ensures 
that the number of positive samples equals the number of negative samples. If the count of positive 
samples was less than the count of negative samples (which were generated based on n_negative), 
positive samples were oversampled with replacement (replace=True) to match the negative sample 
count. This step addresses potential class imbalance in the final training dataset by equalizing the 
number of positive and negative instances. 
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The balanced dataset was then converted into a format suitable for the Surprise library’s Dataset 
and Reader objects. The SVD algorithm from the Surprise library was used as the underlying 
recommendation model for all variants, trained with random_state = 42 to ensure reproducibility. The 
models were trained on the full training dataset using the algorithm. 

Evaluation was performed using a custom evaluate_model function on the held-out test set. 
Performance metrics were calculated by iterating through each user in the test set, predicting scores for 
all their associated positive and negative knowledge points (as defined in the test set), and then 
computing the relevant statistics. For HR@K, K was set to 10. The evaluate_model function also 
generates a ROC curve plot. 
 
2.6. Evaluation Metrics 

The effectiveness of each model was comprehensively assessed using a suite of widely recognized 
evaluation metrics, encompassing both ranking-based and classification-based performance indicators. 
These metrics are computed based on the predicted interaction scores and true labels from the 
evaluation dataset. 
 
2.6.1. Area Under the Receiver Operating Characteristic Curve 

This metric measures the model’s ability to distinguish between positive and negative samples, 
providing a robust assessment of discriminative power, particularly in imbalanced datasets. A higher 
AUC indicates superior discrimination. 
 
2.6.2. Hit Rate at 10 (HR@10)  

HR@10 evaluates whether at least one relevant knowledge point appears within the top 10 
recommended items for each user. It indicates the model’s capacity to successfully identify and include 
the target item within a short list of suggestions, which is crucial for practical recommendation 
scenarios [33]. A higher HR@10 signifies better recall at top ranks. 
 
2.6.3. Normalized Discounted Cumulative Gain  

The Normalized Discounted Cumulative Gain was calculated to assess the quality of ranking for 
knowledge point recommendations, considering both the relevance of recommended items and their 
position in the ranked list [33]. Higher ranks for more relevant items contribute to a higher NDCG, 
reflecting the model’s ability to provide a well-ordered list of suggestions. 
 
2.6.4. Accuracy  

This metric represents the proportion of samples that the model correctly predicts (where a 
prediction threshold of 0.5 for the sigmoid output is used for binary classification). While intuitive, its 
interpretation can be misleading in highly imbalanced datasets. 
 
2.6.5. Mean Absolute Error  

Mean Absolute Error (MAE) quantifies the average magnitude of prediction errors, providing a 
linear measure of the difference between predicted interaction scores and actual values [34]. Lower 
MAE indicates more precise predictions of interaction strengths. 
 
2.6.6. Mean Squared Error  

Mean Squared Error (MSE) calculates the average of the squares of the errors, penalizing larger 
errors more significantly [34]. Lower MSE indicates a better fit of the model to the data, reflecting 
reduced overall prediction variance and improved accuracy in predicting interaction scores. 
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2.7. Ablation Study Design 
To precisely ascertain the individual contribution and synergistic effects of the key components 

within the proposed GNSW+ framework, a comprehensive ablation study was performed. Specifically, 
the study systematically evaluated the impact of removing specific modules by setting the weight 
coefficients of their corresponding terms in the composite score ( )C k  formula to zero. 

The full form of the composite score ( )C k  is: 

 

SMean(Exam corek) dist( , )
( ) Freq( ) 1 (1 Grasp( ))

100

s k
C k k k

Dmax
   

 
=  +  − +  − +  

 
       (7) 

Where: 

Freq( )k  represents the global frequency of the knowledge point k . 

Mean (Examscorek) represents the difficulty component derived from the average exam score. 

(1 Grasp( ))k−  represents the difficulty component derived from the inverse of the global mastery 

rate. 

dist( , )

max

s k

D
 represents the normalized distance between the user s and the centroid of the knowledge 

point cluster k . 
The ablation variants and their implementation in this study are as follows: 
Without frequency weighting: This variant is implemented by setting the weight coefficient for the 

frequency term to zero, i.e,: 
 

S
w/o freq

Mean(Exam corek) dist( , )
( ) 0 Freq( ) 1 (1 Grasp( ))

100

s k
C k k k

Dmax
  

 
=  +  − +  − +  

 
           (8) 

 
This effectively removes the influence of the knowledge point's global frequency on negative sample 

selection and weighting. 
Without sample difficulty: This variant is implemented by setting the weight coefficient for the 

sample difficulty term to zero, i.e., 
 

S
w/o diff

Mean(Exam corek) dist( , )
( ) Freq( ) 0 1 (1 Grasp( ))

100

s k
C k k k

Dmax
  

 
=  +  − +  − +  

 
             (9) 

 
This effectively removes the influence of sample difficulty, specifically the Exam Score-based 

component, on negative sample selection and weighting. 
In the ablation experiments conducted in this study, only two of the four mentioned variants were 

implemented. The weight coefficients  and  for the other two terms (representing grasp and distance), 

remained non-zero in these ablation studies, implicitly retaining their values. This methodology 
provides empirical evidence validating the necessity and effectiveness of each design element in 
contributing to the overall model performance. The visual comparison of the ablation variants is 
presented in Figure 2. 
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Figure 2. 
Visual comparison of ablation variants. 

 
Additionally, the quantitative performance data for these variants are detailed in Table 2. 
 
Table 2.  
Performance of ablation variants. 

Model Variant  AUC HR@10 NDCG 
GNWS+ (full model)  0.9656 1.0000 0.9517 

w/o frequency weighting  0.9623 1.0000 0.9458 
w/o sample difficulty  0.9428 1.0000 0.9428 

RNS (baseline)  0.9428 0.6985 0.9430 

 

3. Results 
This section presents a comprehensive evaluation of the proposed Global Negative Sample 

Weighting (GNSW+) model in comparison with a Baseline Matrix Factorization model and a Random 
Negative Sampling model. The efficacy of each model was assessed across various key metrics, 
providing a holistic understanding of their performance in knowledge point recommendation. The 
overall experimental results are summarized in Table 3. 
 
Table 3.  
Experimental indices for each model. 

MODEL AUC ACC MAE MSE HR@10 NDCG 
Baseline MF  0.5818 0.5473 0.4899 0.2432 0.1534 0.8898 

RNS  0.9122 0.8073 0.3314 0.1408 0.6985 0.9430 
GNSW+  0.9629 0.9212 0.1855 0.0726 1.0000 0.9517 

 
3.1. Overall Performance of GNSW+ 

As demonstrated in Table 3, GNSW+ consistently and significantly outperforms both the Baseline 
MF and RNS models across all evaluated metrics. This compelling superiority substantiates our core 
hypothesis presented in the Introduction: that integrating frequency- and difficulty-aware negative 
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sample weighting mechanisms can substantially enhance the precision and fairness of knowledge point 
recommendations within intelligent tutoring systems. The Baseline MF model, due to its inherent 
limitations in handling data sparsity and the implicit feedback nature of educational data, exhibits 
performance approaching that of a random guess, underscoring the inadequacy of traditional 
approaches. While the RNS model shows some improvement by introducing random negative samples, 
its gains are limited as it fails to effectively differentiate the actual pedagogical value or informational 
content of these negative instances. 

The remarkable performance of GNSW+ is directly attributable to its sophisticated and informative 
negative sample weighting paradigm. We observed that conventional negative sampling often generates 
uninformative negative instances, which provide minimal discriminative signal and consequently dilute 
the model’s capacity to accurately differentiate between relevant and irrelevant content. GNSW+ 
systematically mitigates this limitation by assigning higher sampling probabilities and training weights 
to knowledge points that are globally less frequent or are identified as more challenging. This strategic 
emphasis ensures that the model predominantly learns from “informative” negative samples – those that 
offer the most significant discriminative signals. This is crucial for refining the model’s understanding of 
intricate, nuanced relationships within the knowledge domain, enabling it to construct more precise and 
discriminative latent feature representations. 
 
3.2. Discriminative Power-AUC Analysis 

AUC serves as a critical metric for evaluating a model’s ability to distinguish between positive and 
negative samples, particularly valuable in datasets with inherent class imbalance. As illustrated by their 
respective ROC curves (Figure 3: Baseline MF ROC Curve, Figure 4: RNS ROC Curve, and Figure 5: 
GNSW+ ROC Curve), and summarized in the AUC comparison bar chart in Figure 6, the Baseline MF 
model exhibited the lowest AUC value of 0.5818. This suggests its discriminative power approximates 
that of a random classifier, with its ROC curve closely following the diagonal line. This limited 
performance can be attributed to the model’s simplicity and its inability to effectively address the 
challenges posed by data sparsity and the implicit nature of educational feedback. 
 

 
Figure 3. 
Baseline MF ROC curve. 
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Figure 4. 
RNS ROC curve. 

 

 
Figure 5. 
GNSW+ ROC curve. 



1364 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 10: 1352-1372, 2025 
DOI: 10.55214/2576-8484.v9i10.10670 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 6. 
AUC comparison of 3 models. 

 
In contrast, the RNS model significantly improved the AUC to 0.9122. The RNS model’s ROC 

curve demonstrates a clear improvement over the baseline MF, indicating enhanced discriminative 
ability by incorporating random negative sampling. This demonstrates that diversifying negative 
samples enhances the model’s recognition capability by providing more varied, albeit randomly selected, 
instances for discrimination. 

Notably, the GNSW+ model achieved the highest AUC of 0.9629. Its ROC curve shows a superior 
performance, rising sharply towards the top-left corner, signifying excellent true positive rates across 
various false positive rates. This substantial improvement in discrimination is directly attributable to its 
global context-aware weighting of negative samples, which allows for a more nuanced understanding of 
knowledge point relevance and difficulty, thereby improving the separation between observed and 
unobserved interactions. 
 
3.3. Accuracy-MAE and MSE Analysis 

Experimental results unequivocally demonstrate that GNSW+ achieves optimal performance in 
terms of prediction accuracy and error control. The Baseline MF model exhibits the lowest accuracy 
and consistently yields the highest Mean Absolute Error and Mean Squared Error values (Figure 7 and 
Figure 8), reaching approximately 0.49 and 0.24, respectively. This highlights its limitations in 
processing complex data characteristics and its deficiency in achieving precise predictions. 

The RNS model, through the introduction of random negative sampling, shows measurable 
improvements in both accuracy and error metrics, with MAE decreasing to 0.3314 and MSE to 0.1408. 
Critically, the GNSW+ model demonstrates the most favorable performance on accuracy, as visually 
represented in Figure 9, along with optimal MAE (0.1855) and MSE (0.0726) metrics. 
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Figure 7. 
MSE comparison of 3 models. 

 

 
Figure 8. 
MAE comparison of 3 models. 
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Figure 9. 
Accuracy comparison of 3 models. 

 
This superior performance emphasizes the efficacy of the weighted negative sampling strategy: by 

precisely allocating weights to negative samples based on their global frequency and difficulty, the 
model’s understanding of latent relationships between learners and knowledge points is significantly 
optimized, leading to substantially higher prediction accuracy and reduced errors. This implies that 
GNSW+ effectively mitigates prediction bias and enhances recommendation reliability, particularly 
when dealing with nuanced educational content and complex learning pathways, where it is prioritized 
learning from informative negative samples directly contributes to more accurate predictions. 
 
3.4. Ranking Quality-NDCG Analysis 

NDCG is a crucial ranking metric widely adopted in information retrieval and recommendation 
systems for evaluating the quality of ranked lists. It assesses both the relevance of recommended items 
and their positional importance within the list, where items appearing higher in the list contribute more 
to the overall score. The Baseline MF model, owing to its inherent limitations, exhibits a comparatively 
lower NDCG score (not explicitly provided in Table 3), indicating its inadequacy in generating high-
quality recommendation lists. The RNS model, by incorporating random negative samples, shows an 
improvement in its ranking capabilities, achieving an NDCG of 0.9430. Notably, GNSW+ achieves a 
high NDCG score of 0.9517, significantly surpassing the RNS model. This demonstrates GNSW+’s 
superior ability not only to identify relevant knowledge points but also to effectively rank them, placing 
more critical knowledge points higher in the recommendation list. This advantage directly stems from 
its complex, pedagogically informed weighting mechanism, which prioritizes information-rich negative 
samples and meticulously considers their educational characteristics (e.g., difficulty and frequency). This 
leads to the generation of more pedagogically meaningful and optimally ordered recommendation lists. 
Such a capability is paramount for guiding students along personalized and pedagogically sound 
learning paths, ensuring that the most essential and growth-promoting knowledge points are 
prioritized, thereby enhancing learning efficiency and the overall educational experience. 
 
3.5. Top-N Recommendation Efficiency-HR@10 Analysis 

HR@10 is a standard metric in recommendation systems, particularly for Top-N recommendations, 
that measures whether the relevant item is present within the top N recommended items. The HR@10 
metric, presented in Figure 10, is crucial for assessing a model’s ability to successfully identify the most 
relevant positive samples within the top 10 predictions, reflecting its direct utility in real-world 
recommendation scenarios. 
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The Baseline MF model demonstrates the lowest HR@10 value (0.1534), indicating its limited 
effectiveness in practical recommendations. This deficiency arises from its inability to effectively process 
complex data features and manage data imbalance, thus failing to identify critical positive samples 
within top ranks. In contrast, the RNS model exhibited improved HR@10 performance (0.6985), 
suggesting that random negative sampling can partially assist the model in better distinguishing data 
characteristics and enhancing prediction accuracy within the top-N list. Remarkably, the GNSW+ 
model achieves a nearly perfect HR@10 value (1.0000), signifying its outstanding capability in 
identifying all key positive samples within the top 10 recommendations. This exceptional performance is 
attributed to the weighted negative sampling strategy, which not only effectively augments the sample 
space but, more importantly, assigns precise weights based on specific characteristics (e.g., rarity and 
difficulty). This significantly enhances the model’s ability to identify and predict critical samples at high 
ranks. This strategy proves particularly effective for complex or highly imbalanced datasets, leading to 
substantial improvements in practical application performance and user experience. This directly 
addresses the pervasive popularity bias inherent in traditional recommendation systems, ensuring that 
even less common but pedagogically important knowledge points are effectively recommended. 

In contrast, the RNS model significantly improved the AUC to 0.9122, as shown in Figure 4. The 
RNS model’s ROC curve demonstrates a clear improvement over the baseline MF, indicating enhanced 
discriminative ability by incorporating random negative sampling. This demonstrates that diversifying 
negative samples enhances the model’s recognition capability by providing more varied, albeit randomly 
selected, instances for discrimination. 
 

 
Figure 10. 
HR@10 comparison of 3 models. 

 
3.6. Ablation Study Insights 

To precisely delineate the individual contributions and synergistic effects of each key component within the 
GNSW+ framework, a comprehensive ablation study was performed, with results detailed in Table 2. This study 
systematically evaluates the impact of removing specific modules by setting the weight coefficients of their 
corresponding terms in the composite score formula to zero. 

Removal of Frequency Weighting (without frequency weighting): When the weight coefficient for the 
frequency term is set to zero, the model’s AUC experiences a slight decrease (from 0.9656 to 0.9623), and NDCG 
also declines (from 0.9517 to 0.9458). This indicates that the global frequency of knowledge points plays a crucial 
role in negative sample selection and weighting. Its primary function is to balance recommendation diversity and 
effectively mitigate popularity bias, ensuring the model does not disproportionately favor high-frequency 
knowledge points. The visual comparison of the ablation variants is presented in Figure 2. The removal of this 
component diminishes the model’s sensitivity in distinguishing between knowledge points of varying frequencies, 
thereby impacting overall ranking quality and the breadth of recommendations. 
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Removal of Sample Difficulty (without sample difficulty): When the weight coefficient for the sample difficulty 
term is set to zero, the model’s performance degradation is more pronounced, with both AUC and NDCG 
dropping to 0.9428. This highlights the critical and irreplaceable role of estimated knowledge point difficulty in 
selecting high-quality negative samples. Difficulty information enables the model to focus on “hard” negative 
samples, those knowledge points that are more challenging for learners or more likely to be confused. These 
“hard” negatives provide richer learning signals, compelling the model to learn more refined discriminatory 
boundaries. Removing this component prevents the model from effectively leveraging pedagogical contextual 
information, substantially weakening its ability to distinguish truly challenging negative samples. This directly 
impacts prediction accuracy and recommendation effectiveness, hindering its capacity to provide targeted, 
personalized tutoring. 

The ablation study results strongly demonstrate the complementary importance and synergistic effects of 
both the frequency-aware and difficulty-aware weighting modules within the GNSW+ framework. The removal of 
either component leads to a significant degradation in model performance, validating the necessity and efficacy of 
integrating nuanced pedagogical insights directly into the core mechanisms of educational recommendation 
algorithms. These results further support our theoretical hypothesis regarding the optimization of negative 
sample selection through a comprehensive consideration of both the statistical distribution and intrinsic 
pedagogical attributes of knowledge points, providing robust empirical evidence. 
 
3.7. Connection to Research Hypotheses and Specific Scenario Analysis 

The experimental results presented in this study align profoundly with the core research hypotheses 
articulated in the Introduction and directly address the challenges outlined therein. The exceptional performance 
of GNSW+ conclusively demonstrates that by addressing negative sample quality (i.e., selecting informative and 
discriminative negative samples) and data sparsity problems, the efficacy of knowledge point recommendation 
systems can be significantly enhanced. Particularly, GNSW+’s outstanding performance in achieving an HR@10 
of 1.0000 and high NDCG scores explicitly indicates its success in overcoming the inherent popularity bias 
prevalent in traditional recommendation systems, thereby promoting the effective recommendation of low-
frequency, high-difficulty knowledge points. This implies that GNSW+ can accurately rank all target knowledge 
points (including those less popular but pedagogically vital) at the forefront of the recommendation list, ensuring 
comprehensive knowledge coverage. 

The design of GNSW+ affords its distinct advantages in specific educational scenarios. 
 
3.7.1. Targeting Niche or High-Difficulty Knowledge Points 

Through its difficulty and frequency weighting mechanisms, GNSW+ is more effective at identifying and 
prioritizing knowledge points that students generally struggle with or that appear less frequently in the dataset 
but are pedagogically important. This contributes to a comprehensive learning path, preventing students from 
focusing solely on popular or simpler content, and fostering deeper learning and balanced mastery of knowledge 
points. 
 
3.7.2. Supporting Struggling Learners  

By considering the student-knowledge point distance, GNSW+ can tailor negative samples for students with 
specific learning weaknesses, thereby providing more targeted feedback. This personalized negative sample 
selection helps the model more accurately understand and address the individual learning needs of these students, 
offering tailored guidance to bridge knowledge gaps. 

Despite GNSW+ demonstrating excellent performance, as with any research, there remains scope for further 
refinement. For instance, the operationalization of knowledge points is currently based on clustering student 
performance data. While effective in the absence of explicit knowledge graphs, future work incorporating more 
granular knowledge graphs or expert-annotated knowledge point relationships and difficulty ratings could further 
enhance model precision and semantic understanding. Furthermore, despite GNSW+’s improved recommendation 
quality, its “black-box” nature means the interpretability of specific recommendations – i.e., why certain knowledge 
points are suggested or omitted for a given student is not explicitly provided by the current framework. 
Enhancing model explainability will be a critical direction for future work, aiming to help educators and learners 
better understand the recommendation logic, thereby fostering trust and aiding pedagogical intervention. 
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4. Discussion 
This study successfully introduced the Global Negative Sample Weighting (GNSW+) framework, a 

novel and effective frequency- and difficulty-aware negative sampling strategy designed to significantly 
improve knowledge point recommendation within intelligent tutoring systems. By strategically 
addressing inherent challenges of data sparsity, popularity bias, and insufficient diversity in 
recommendation algorithms, GNSW+ integrates a sophisticated mechanism that adjusts the sampling 
probability and weighting of negative samples based on their global frequency and intrinsic pedagogical 
difficulty. The empirical evaluation clearly demonstrates that GNSW+ significantly outperforms both 
the Baseline Matrix Factorization and Random Negative Sampling models across all major evaluation 
metrics, including AUC, HR@10, NDCG, accuracy, MAE, and MSE. These substantial performance 
gains underscore the critical importance of considering both the statistical distribution and inherent 
pedagogical difficulty of knowledge points during model training, particularly for fostering equitable 
and effective learning opportunities, a growing focus in recent educational AI research. 

The superior efficacy of GNSW+ can be directly attributed to its refined negative sampling 
paradigm. Traditional negative sampling often generates uninformative negative instances, which 
provide minimal discriminative signal and consequently dilute the model’s capacity to accurately 
differentiate between relevant and irrelevant content. Recent studies highlight the challenges of 
selecting truly informative negative samples in complex recommendation scenarios. GNSW+ 
systematically mitigates this limitation by assigning higher sampling probabilities and training weights 
to less frequent or more challenging knowledge points. This strategic emphasis ensures that the model 
predominantly learns from “informative” negative samples, which are crucial for refining its 
understanding of nuanced relationships within the knowledge domain. By prioritizing these harder or 
rarer negative examples, GNSW+ effectively counters the inherent popularity bias prevalent in many 
recommendation systems, thereby preventing an exclusive focus on widely popular content and 
promoting fairness in recommendations. Instead, it promotes the recommendation of a more diverse and 
comprehensive range of learning experiences for students, including those less frequently accessed but 
pedagogically valuable. The observed improvements across metrics such as HR@10 and NDCG confirm 
GNSW+’s exceptional capability not only in accurately identifying relevant knowledge points but also 
in ranking them effectively, which is paramount for guiding students through truly personalized and 
pedagogically sound learning pathways, a key objective in modern adaptive learning systems. 

The comprehensive ablation studies, detailed in Section 3.7 and summarized in Figure 2 and Table 
2, provide robust empirical validation for the necessity and complementary contributions of each core 
component within the GNSW+ framework: the frequency-based weighting module and the difficulty-
aware weighting module. The consistent degradation in performance upon the removal of either module 
affirms their individual and synergistic importance in achieving optimal model efficacy. This empirical 
evidence strongly supports the integration of such nuanced pedagogical insights directly into the core 
mechanisms of educational recommendation algorithms. Furthermore, the demonstrated efficiency and 
feasibility of the GNSW+ framework in a CPU-only environment highlight its practical potential for 
real-world educational applications, particularly in contexts where access to high-performance 
computing infrastructure may be limited [33], a critical consideration for broad deployment. 

These findings carry significant implications for the future design and deployment of next-
generation educational recommender systems. By offering a robust solution to long-standing challenges 
in personalized learning, GNSW+ facilitates the creation of genuinely adaptive learning environments. 
These environments can precisely cater to individual student needs, promote a deeper understanding of 
complex and challenging concepts often overlooked by conventional systems, and ultimately ensure 
more equitable access to a diverse array of educational content. This advancement represents a 
substantial contribution to the field of adaptive science education and its broader practical applications, 
moving towards more intelligent and student-centric learning experiences. 
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4.1. Limitations 
Despite the promising performance of GNSW+, this study acknowledges several limitations that 

warrant consideration for future research endeavors. Firstly, the operationalization of “knowledge 
points” and the inference of their frequency and difficulty were derived from a student performance 
dataset. While this approach provided a functional mapping for the current study, direct access to more 
granular data, such as explicit student-knowledge point interaction logs from learning management 
systems or expert-curated knowledge graph data with pre-defined difficulty ratings and prerequisite 
relationships, could offer richer, more precise insights. Such direct data would potentially further 
enhance model performance and ecological validity, aligning with the growing demand for fine-grained 
knowledge modeling in education. Secondly, the evaluation of GNSW+ was primarily conducted on a 
single publicly available dataset. While this dataset facilitated reproducibility, more comprehensive 
validation across diverse educational contexts, subject matters, and varying student demographics is 
essential to rigorously assess the generalizability and robustness of GNSW+, a common challenge in 
educational AI research. Thirdly, while GNSW+ effectively mitigates popularity bias and improves 
recommendation accuracy, the interpretability of its specific recommendations, i.e., why certain 
knowledge points are suggested or omitted for a given student, is not explicitly provided by the current 
framework. For key educational stakeholders, particularly educators and learners, understanding the 
underlying rationale behind recommendations is crucial for fostering trust, enabling effective 
pedagogical intervention, and supporting metacognitive development, a field increasingly explored as 
Explainable AI in Education. 
 
4.2. Future Work 

Building upon the insights gained and addressing the identified limitations, future research will 
extend this work in several promising directions. A primary focus will be on conducting extensive 
cross-domain validation by applying GNSW+ to datasets from a wider array of educational subjects and 
diverse learning platforms. This will provide invaluable evidence regarding the model’s generalizability 
and scalability within heterogeneous educational environments. A significant avenue involves 
integrating explainable recommendation mechanisms directly into the GNSW+ framework. This 
endeavor would focus on developing methods to provide educators and learners with transparent 
insights into why specific content is recommended, thereby enhancing interpretability, fostering greater 
trust, and facilitating more informed pedagogical decisions, building on recent advances in XAI for 
recommender systems. Furthermore, exploring scalable and distributed implementations of GNSW+ 
will be essential to ensure its applicability in large-scale adaptive learning systems supporting millions 
of users, a critical area for the practical deployment of educational technologies [34]. Finally, the 
incorporation of hybrid approaches combining GNSW+ with advanced techniques such as graph neural 
networks [33] for more explicit knowledge graph reasoning or reinforcement learning for dynamic, 
long-term learning path optimization holds significant potential to further enhance personalized 
recommendations and lead to even more substantial improvements in student learning outcomes, 
representing a frontier in educational AI research. 

 

5. Conclusion 
This study successfully introduced the Global Negative Sample Weighting (GNSW+) framework, a 

novel and effective frequency- and difficulty-aware negative sampling strategy designed to significantly 
improve knowledge point recommendation within intelligent tutoring systems. By strategically 
addressing inherent challenges of data imbalance and pedagogical complexity, GNSW+ demonstrated 
superior performance across all evaluated metrics compared to baseline models, achieving high scores in 
AUC, HR@10, and NDCG. These results highlight the effectiveness of integrating both statistical and 
pedagogical considerations in adaptive learning environments. 

The core contributions of this research are substantial. We developed a novel globally weighted 
negative sampling mechanism, which demonstrably reduces popularity bias and significantly enhances 
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the fairness and diversity of recommendations, particularly for less frequent or more challenging 
knowledge points [31]. This framework was rigorously validated through comprehensive experiments 
and targeted ablation studies, which confirmed the complementary importance and synergistic effect of 
both its frequency-based and difficulty-based weighting components. Furthermore, we demonstrated the 
framework’s practical efficiency and operational feasibility for deployment in resource-constrained 
educational settings. This work marks a substantial advancement in the field of adaptive learning, 
paving the way for more precise, equitable, and effective personalized educational experiences. 
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