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Abstract: Printed Circuit Board (PCB) plays an important role in the world of electronics. Regarding 
PCBs, manufacturing defects not only worsen the product qualification rate but can also lead to 
catastrophic failure of the electronic devices themselves. This study introduces a new model to 
accurately and efficiently detect different types of PCB defects, including spur, open circuit, short, mouse 
bite, missing hole, and spurious copper. The proposed model presents and then overcomes challenges in 
detecting PCB defects using a dense layer in a Convolutional Neural Network and advanced digital 
image processing and augmentation techniques such as contrast, scaling, and rotation. This study is 
based on the MobileNetV2 framework in proposing a hybrid Convolutional Neural Network scheme 
that combines the strength of convolutional feature extraction with the beneficial reorganization of 
features by fully connected layers to enable accurate and efficient detection of common Printed Circuit 
Board defects. The hybrid Convolutional Neural Network is responsible for classification, while feature 
extraction is performed through MobileNetV2. The results certify that the proposed model achieves an 
accuracy of 96%. Moreover, ROC curves provide an AUC measure higher than 0.99 for all types of 
defects. Comparative results show a substantial improvement in performance over traditional models. 
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1. Introduction  

Nowadays, Printed Circuit Boards (PCBs) play an important role in the world of electronics. PCBs 
are the platforms used to interconnect electronic components and conduct signals among them [1-3]. 
Electronic hardware and equipment are advancing in the fields of increasing complexity, 
miniaturization, and density. Therefore, the manufacturing of PCBs is becoming more strict and 
rigorous. In the PCB production industry, there are issues such as problems with equipment stability or 
limitations in production processes that result in defects in PCBs. These defects include missing holes, 
mouse bites, open circuits, short circuits, spurs, and spurious copper [4]. The following is a description 
of several defects. Missing hole: This occurs when one or more drilled holes (such as vias or component 
mounting holes) are absent or not properly drilled. This can prevent electrical connections or 
component insertion and is often due to errors in the drilling process or missing drill data. Figure 1 (a) 
shows this type of defect. Mouse bite: Mouse bites are small, jagged edges left on a PCB after it has been 
separated from a panel using perforated breakaway tabs. These rough edges can affect board fitting and 
may require additional cleaning or filing. Figure 1 (b) shows this type of defect. Open circuit: An open 
circuit is a break in the intended electrical path, which interrupts current flow. This can result from 
incomplete copper traces, broken connections, or poor solder joints. Figure 1 (c) shows this type of 
defect. Short circuit: A short circuit occurs when two or more conductive paths unintentionally connect, 
often due to solder bridging, excess copper, or design errors. Shorts can cause malfunction or permanent 
damage to components. Figure 1 (d) shows this type of defect. Spur: Spurs are small, narrow protrusions 
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of copper that extend from a trace or pad. They are often caused by over-etching or design errors and 
can lead to unintended connections or signal noise. Figure 1 (e) shows this type of defect. 

Spurious copper: Spurious copper refers to unwanted pieces or fragments of copper left on the board 
after etching. These slivers can become loose, causing short circuits or interference with signal 
integrity. Figure 1 (f) shows this type of defect. 

These manufacturing defects not only worsen the product qualification rate but can also lead to 
catastrophic failure of the electronic devices themselves [5]. The implications are more than financial 
since defective PCBs can lead to system failure, with severe safety implications in critical applications. 
For instance, in aerospace or medical equipment, even minimal PCB defects can escalate into serious 
operational failures. Due to this, detection, diagnosis, and mitigation of PCB defects have been active 
research issues that have led to the development of advanced inspection technologies and manufacturing 
process optimization methods. Most traditional PCB defect detection methods are carried out through 
manual visual inspection or rule-based image processing algorithms [6]. 
 

 
Figure 1. 
Common defects in PCBs. 

 
Manual inspection is a simple approach but is only correct and reliable if the inspector has adequate 

experience and expertise. Furthermore, as PCB designs become more complex, manual inspection 
becomes much less efficient and is not suitable for modern high-density designs [7]. Like rule-based 
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detection algorithms, which are systematic, they are not good at capturing the diverse patterns of 
defects such as faint or irregular anomalies, and they are prone to errors in the presence of background 
interference that is complicated and noisy. These limitations indicate the necessity for more advanced 
methods to overcome such challenges [8]. As a result, there has been a strong interest from both 
academic and industrial communities in the development of smart detection methods that are robust, 
effective, and adaptable to various defect characteristics [9]. Recently, the progress of artificial 
intelligence technology has been swift and has brought many innovations in various domains, and image 
processing based on deep learning has become a hot research topic in printed circuit board (PCB) defect 
detection. Convolutional Neural Networks (CNNs) have been proven to have excellent feature 
extraction abilities, that is, to extract multi-level semantic information from raw images, making it 
possible to precisely classify and localize defect patterns that are complicated and abundant in PCB 
defects. However, when these advanced technologies are integrated into PCB defect detection 
workflows, detection accuracy and speed are further improved, and new innovative methods and 
solutions are generated to address longstanding challenges in the field [10]. The adoption of deep 
learning techniques indicates how they can be used to automate quality control processes and increase 
the reliability of PCB manufacturing systems. Due to its excellent performance, deep learning 
technology has been widely used in computer vision tasks, including target detection, image 
segmentation, and classification. As one of the core models of deep learning, a convolutional neural 
network (CNN) can gradually extract information from low-level textures to high-level semantics 
through its hierarchical structure, which is suitable for processing high-resolution PCB defect images 
[11].  

In the field of PCB defect detection, CNN has three advantages: automatic feature extraction, high 
robustness, and end-to-end training. 
 
1.1. Automatic Feature Extraction 

 Inspired by this success, Convolutional Neural Networks (CNNs) have proven to auto-learn and 
discover valuable features directly from raw data in a learning process without an automated feature 
extraction rule. Typical methods may require a lot of domain knowledge and heavily depend on 
handcrafted features, which may not be able to completely acquire the (full) complexity of data. On the 
other hand, CNNs learn adaptive representations that are suitable for the particular task at hand, 
ranging from low-level features, such as edges and textures, to high-level, such as abstract patterns 
[12]. It does not rely on knowledge of the domains and significantly improves the systems' efficiency, 
accuracy, and scalability in working with real industrial world challenges. 
 
1.2. High Robustness  

The fact that CNNs can learn from large and diverse datasets makes them extremely robust to 
defects and environmental condition variations [13]. By training on sample cases, these networks can 
generalize independently across a broad spectrum of defect samples. CNNs can effectively handle noise, 
cluttered or complex backgrounds, and subtle defect variations, resulting in reliable performance even in 
unfavorable and unpredictable environments. Specifically, this robustness is critical for the industrial 
application of PCB defect detection, where defects vary by form and under various conditions, creating a 
need for robust yet accurate defect detection. 
 
1.3. End-To-End Training  

One of the key advantages of CNNs is that they allow for end-to-end trainable architectures [14]. 
The networks map input images directly to classification or detection outcomes without requiring 
explicit lengthy preprocessing steps and human involvement. Such a simplified workflow streamlines 
the data pipeline, reduces model development complexity, and accelerates the process. Moreover, the 
end-to-end nature of CNN-based systems enhances scalability, making it effortless for the model to 



1490 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 10: 1487-1506, 2025 
DOI: 10.55214/2576-8484.v9i10.10682 
© 2025 by the authors; licensee Learning Gate 

 

generalize to new tasks and datasets. This flexibility is valuable in dynamic industrial environments 
where defect features may evolve, requiring adaptable and effective solutions [15, 16].  

However, the successful functioning of CNN generally relies on the support of large-scale annotated 
datasets. In PCB defect detection, defect datasets are small and imbalanced, which discourages the 
application of CNN, and ample calculations are excessively resource-consuming. To solve this problem, 
transfer learning technology emerged. Transfer learning exploits models pre-trained on large-scale 
general datasets (e.g., ImageNet) and applies them to targeted tasks by fine-tuning parameters. 
Lightweight networks, represented by MobileNetV2, are highly suitable for transfer learning scenarios 
[17, 18]. Low computational cost and high feature extraction capabilities enable them to remain 
effective even in small dataset scenarios [19].  

This approach minimizes training time and effort and democratizes access to cutting-edge machine 
learning techniques, enabling researchers and practitioners with limited computational resources to 
train high-performing models [20, 21]. The conservation of resources is particularly valuable in 
industrial and academic environments, where efficiency and affordability take top priority. The reduced 
training time facilitates increased iterative experimentation in research settings, with the potential to 
experiment with various model architectures and hyperparameter tuning with far less time investment. 
Combining transfer learning and deep learning architectures results in substantial improvements in 
accuracy and computational efficiency. 

Deep neural network models, particularly convolutional neural networks (CNNs), excel at 
extracting hierarchical, high-dimensional features directly from raw image data, capturing intricate 
details such as edges, textures, and abstract patterns [22, 23]. Transfer learning enhances this 
capability by providing a pretrained foundation of extracted features, reducing the time and 
computational cost of training from scratch. This accelerates model convergence and allows 
practitioners to construct high-performing models with relatively limited computational resources. 
 

2. Materials and Methods 
2.1. Dataset Preparation 
2.1.1. Data Source and Description 

The quality and diversity of the dataset are the basis for training deep learning models. The dataset 
for this study focuses on six typical defects in PCB manufacturing: missing holes, mouse bites, open 
circuits, short circuits, spurs, and spurious copper. The following link provides datasets related to these 
six types of PCB defects: https://www.kaggle.com/datasets/dajianwan/pcbdatasets. These defects 
exhibit different physical manifestations in actual industrial scenarios. For example, missing holes 
usually appear as the absence of regular geometric patterns, while rat bites and burrs present irregular 
edge features. To better simulate real-world application scenarios, data samples were collected from 
multiple PCB manufacturers, including samples produced under different processes and conditions. This 
diversity enhances the model's adaptability in real environments. During the data annotation process, 
standard image annotation tools were used, and experts familiar with PCB defect detection performed 
the annotations. The defect type and the precise bounding box position of each defect are provided as 
annotation content. This information is stored in a structured manner within XML format annotation 
files, which can be used later for data pre-processing and cropping. Additionally, to ensure the 
representativeness of the test set, the data was split using a stratified sampling strategy to maintain the 
same distribution ratio of each defect category in both the training and test sets. 
 
2.1.2. Data Trimming and Normalization 

The process of preprocessing input images is important in deep learning-based PCB defect detection 
models to improve their training performance and efficiency. As original images usually contain a lot of 
background information that is not useful to the model learning, cropping the image only to contain 
defective regions is a good way to boost the learning efficiency of the model. Bounding box annotations 

https://www.kaggle.com/datasets/dajianwan/pcbdatasets
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in the dataset are used to carry out the image cropping. Python’s OpenCV library is used to 
automatically crop the operation to ensure accuracy and consistency in the dataset. 

After cropping, all images are resized to a uniform resolution of 128×128 to ensure that input sizes 
are consistent. The resolution represents a balance between computational load and feature retention. 
High resolution incurs more computational load, which may strain hardware, especially in the current 
era of supercomputers, while lower resolution loses critically important defect features needed for 
classification. The chosen resolution also ensures that computational demands are manageable and 
detail is retained. 

Another important stage in deep learning workflows is normalizing images. Normalization 
decreases the impact of varying numerical ranges on training gradient updates by scaling pixel values to 
a consistent range [0, 1]. Normalization stabilizes and improves the optimization process and enables 
faster convergence. Normalization also avoids amplifying numerical differences between samples and 
thus minimizes variance, and the model becomes less sensitive to outliers. This results in a more stable 
gradient descent algorithm, improving generalization and test-time performance. 
 
2.1.3. Data Augmentation  

In industrial scenarios, uneven distribution of data categories is a common problem. This study 
designed a series of data enhancement strategies to improve the model's learning ability for small 
sample categories. Unlike conventional geometric transformations, experiments were conducted with 
targeted extended designs based on the characteristics of PCB defects. 
 
2.1.3.1. Random Rotation 

The rotation transformation is intended to replicate angular errors that are ubiquitous in PCB 
boards due to assembly errors in real-world production processes. The model is exposed to a wider 
range of orientations by applying random rotations in the range [–20°, 20°], which helps generalize 
unseen data. Experimental results show that this range of random rotation enhances model performance 
to a point robust to defects at all angles. 
 
2.1.3.2. Panning and Scaling  

Defect samples are generated at random locations in the image and presented at random scales by 
panning and scaling. The effect augments the spatial and scale-related features available to the model 
during training, increasing variation in defect distributions whilst improving the model's robustness to 
variations in defect distribution. 
 
2.1.3.3. PCB Defects Inheritance  

Vertical and horizontal flipping are impactful and meaningful, since numerous PCB defects are 
geometrically symmetric by inheritance. In this regard, we apply mirroring transformations to augment 
the dataset. 
 
2.1.3.4. Uneven Condition  

There are some uneven conditions that commonly occur during PCB imaging, such as uneven 
shooting or uneven lighting. These conditions obscure defect patterns. To address this issue, brightness 
and contrast are adjusted to simulate images captured under different lighting environments. This 
augmentation method enables the model to learn from a broader set of lighting variations, improving its 
ability to detect defects under various real-world lighting conditions. 

During data enhancement, the Image Data Generator module of the Keras library was used. The 
built-in functions of the method support several enhancement methods and can be used seamlessly with 
the training process. 
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2.2. Model Design 
2.2.1. Selection of Transfer Learning Model 

Transfer learning is highly suitable for PCB defect detection when dealing with small sample size 
problems. Traditional training methods are less effective with PCB defect datasets than with general-
purpose datasets because the datasets tend to be less diverse and smaller. Transfer learning fills this gap 
by providing robust feature representations that can be fine-tuned for PCB defect-specific 
characteristics, such as fine textures or geometric patterns. 

Transfer learning demonstrates advantages in industrial applications by utilizing MobileNetV2 as a 
representative of lightweight convolutional neural networks. Its modular design, which includes 
depthwise separable convolutions and inverted residual blocks, achieves high computational efficiency 
without compromising feature extraction capabilities. This efficiency makes MobileNetV2 highly 
suitable for real-time and resource-constrained environments, such as automated PCB inspection 
systems. The study presents an effective approach to obtaining accurate and efficient PCB defect 
detection by combining the powerful yet lightweight structure of MobileNetV2 with the benefits of 
transfer learning. 
 
2.2.2. Hybrid Convolutional Network Architecture 

This study was based on the MobileNetV2 framework in proposing a hybrid CNN scheme that 
combines the strength of convolutional feature extraction with the beneficial reorganization of features 
by fully connected layers. The architecture is detailed as follows. 
 
2.2.2.1. Convolution Part 

This part uses the pre-trained weights of MobileNetV2 to extract the basic features of the input 
images, such as textures, edges, etc. Although these features are low-level, they are considered strong 
for detecting small defects in PCB images. 
 
2.2.2.2. Architecture of a Global Pooling Layer 

This layer reduces the high-dimensional convolutional feature maps to a small vector. In fact, this 
layer summarizes the most salient features across its spatial dimensions to offer a condensed but 
complete representation of the input image without losing essential information in the transformation. 
It also lowers computational complexity, enabling downstream processing to be done efficiently. 
 
2.2.2.3. Fully Connected Custom Layer  

This is a fully connected 3-layer network designed to adapt the extracted features to the specific 
task of PCB defect classification. Such high-dimensional feature transformation is enabled by these 
layers, which have 128, 256, and 512 neurons, respectively. Each layer is designed to enhance high 
discriminative capabilities. The fully connected layers reorganize and refine the feature representations, 
allowing the model to focus on defect-specific characteristics and improve discrimination among 
different defect categories. Furthermore, the fully connected layers strengthen the depth of feature 
learning through their hierarchical structure, enabling the model to handle complex classification tasks. 
 
2.2.2.4. Advanced Regularization Techniques 

A mechanism for regularization is incorporated to stabilize training and prevent model overfitting. 
Fully connected layers are interspersed with Batch Normalization layers to normalize feature 
distributions (reducing the internal covariate shift) and speed up convergence. Moreover, dropout layers 
are incorporated to deactivate neurons randomly during training with stochasticity in learning. This 
simplifies the model and improves the generalization performance while having robust behavior on 
unseen data. 
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2.2.2.5. Softmax Activation Function 
A final classification is made using the Softmax activation function, which provides a probability 

distribution over the six predefined defect categories. It guarantees that the classification result for any 
input sample is clear and interpretable. The use of Softmax offers a probabilistic understanding of the 
model predictions, which is useful in real-life applications. This enables these architectural components 
to work together to create a highly efficient and accurate PCB defect detection model capable of 
overcoming the unique challenges of this domain. 
2.2.3. Model Optimization Strategy 

Achieving good performance and generalizability from deep learning models is a critical step, which 
is best accomplished by optimizing the model. The cross-entropy loss function, used by the Categorical 
Cross-Entropy, guides the model optimization process. This function calculates the Kullback-Leibler 
(KL) divergence between the predicted probability distribution and the true label distribution. The 
approach aims to align the model’s output with the ground truth, focusing on correct classification while 
also being effective with imbalanced and multi-class datasets. An adaptive learning rate schedule is 
employed to enhance training efficiency. The initial learning rate is set at 0.001, facilitating rapid 
convergence from a good starting point. A combination of L2 regularization and Dropout is used to 
mitigate overfitting and improve the model's generalization ability. L2 regularization constrains the 
weights of the model, keeping their magnitude small and producing a solution less likely to overfit the 
data. Dropout randomly drops neurons during training, adding noise to the network and encouraging 
the model to learn robust feature representations. Together, these regularization techniques produce a 
well-regularized model that performs effectively on unseen data. 

The experiment then divided the training into two stages: in the first stage, the low-level 
convolution weights of MobileNetV2 are frozen, and only the fully connected layers are trained; in the 
second stage, the high-level convolution layers are unfrozen for fine-tuning to utilize the connections of 
the pre-trained features and the target task features. 
 
2.3. Experimental Setup 
2.3.1. Dataset Division  

The dataset is divided into a training set and a test set in an 80:20 ratio, ensuring a balanced 
allocation for model development and performance evaluation. To further enhance the reliability of the 
training process, a 5-fold cross-validation technique is applied within the training set. 
 
2.3.2. Comparative Experimental Design  

To comprehensively evaluate the model performance, this study conducted comparative 
experiments with the BP neural network. The input of the BP neural network is a manually extracted 
feature vector, the network structure is a single hidden layer multi-layer perceptron (MLP), and the 
activation function is ReLU. The experimental results demonstrate that the classification accuracy of 
the BP neural network is significantly lower than that of the transfer learning model, especially in high-
dimensional feature learning and complex pattern recognition. 
 

3. Results and Discussion 
Based on the rules of transfer learning, the developed Hybrid CNN model outperformed other 

models in the PCB defective classification task. The model's high overall test set accuracy was 96%, 
which is much higher than a BP neural network (comparison model), with 55%. This remarkable 
improvement is attributable to the fact that the Hybrid CNN can extract and utilize features from 
complex datasets more efficiently than the CNN. 

The stability of the Hybrid CNN is also confirmed by a thorough analysis of the classification report 
and the confusion matrix. In most categories of defects, the model exhibited high precision and recall, 
indicating its strong generalization ability. This demonstrates that the Hybrid CNN not only accurately 
classifies common defect types but also performs consistently across various and challenging categories. 
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More specifically, the difference in performance between the Hybrid CNN and the BP neural 
network is quite significant, especially in classifying the complex defect categories. For simple defect 
categories like missing holes, the BP neural network was sufficient, but performance was very poor for 
more complex categories, such as burrs and spurious_copper. These results indicate the inherent 
constraint of the BP neural network’s ability to extract features that cannot be distinguished by the 
network and cannot sufficiently describe the complicated and high-dimensional features necessary for 
discriminating intricately complex defects. 

Whereas the Hybrid CNN leverages the fact that deep feature extraction of convolutional layers and 
task-specific flexibility brought about by transfer learning can be fully concurrent. It is able to 
effectively detect simple as well as complex defects, and thus offers a more comprehensive and better 
solution to the problem of PCB defect detection. The practical significance and industrial relevance of 
the Hybrid CNN in enhancing the accuracy and efficiency of automatic quality control systems are 
reflected in these results. 
 
3.1. Classification Performance of Hybrid CNN Model 

As per the classification report, the Hybrid CNN demonstrates a very consistent performance in 
terms of precision and recall across the six defect categories in the test set. Its F1 score reflects the 
overall effectiveness of the model in the classification task, as analyzed below: 

1. The F1 value of the Missing_hole category defect is spot-on at 1.00, indicating the model 
achieves errorless detection for every sample from this category. Such high accuracy results from crisp 
and well-defined features belonging to Missing_hole defects, such as defined boundaries and very 
distinguishable appearances. Additionally, the training set has a good amount of sample support for this 
type of defect, and the model has enough data to learn and generalize well. These factors contribute to 
the model classifying missing_hole defects perfectly with high precision and recall. 

2. For the Mouse_bite category, the model has a precision of 0.91 and a recall of 0.98, indicating 
that it can strongly identify these defects with few false negatives. Nevertheless, a few of these false 
positives appear to be based on similarities in local edge characteristics between Mouse_bite defects and 
other categories, like burrs. When these similarities exist, the model can misclassify some samples. 
Overall, the performance is quite high. However, should the false positives be addressed through 
enhanced feature differentiation or improved edge-based learning, the accuracy can be improved for this 
category. 

The model is able to achieve F1 scores of 0.98 for both Open_circuit and Short defect categories, 
which indicates the model’s stability and precision in defect detection. The deep learning model is likely 
to perform well due to its ability to accurately capture localized features, such as breakpoints in open-
circuit defects or short-circuit connections in Short defects. These specific characteristics enable the 
model to maintain consistent and steady performance in both categories, even in complex cases. 

4. The Spur F1 score is 0.91, which is slightly lower than other categories. We further analyzed the 
Spur defect samples and found that some of them had a recall rate of 0.85 with fuzzy morphology of 
features or partial overlap with Mouse_bite. The model can be further improved in the future in terms 
of recognition ability for this category by increasing the diversity of the samples or by optimizing the 
feature extraction module. 

5. The classification ability of the model is demonstrated by the fact that it achieves an F1 score of 
0.97 for the Spurious_copper category. Nevertheless, there are still a few misclassifications that might 
occur, possibly because of overlaps with other defect categories or noise in the dataset. These minor 
errors do not impact the performance of the model in identifying Spurious_copper defects. The 
corresponding classification capabilities of the model can be further refined, for example, through more 
sophisticated regularization techniques or by augmenting the training data to eliminate these remaining 
misclassifications. From a macro-indicator perspective, the weighted Hybrid CNN model has an average 
F1 score of 0.96, which indicates that it can still perform excellent classification on a class-imbalanced 
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dataset. The strong robustness of the model stems from the pre-training characteristics of transfer 
learning prediction, which enables it to achieve efficient feature expression on limited data. 

Figure 2 shows partial prediction results of the Hybrid CNN model. 
 

 
Figure 2. 
Partial prediction results of the Hybrid CNN model. 

 
3.2. Classification Performance of BP Neural Network 

In contrast, the performance of the BP neural network on complex defect categories is significantly 
insufficient. Although it performs well on the Missing_hole category (F1 score of 0.99), the F1 scores of 
other categories are below 0.70, and even Open_circuit and Spur are close to 0, reflecting the limited 
ability of the BP neural network to capture high-dimensional features. 
 
3.2.1. Judging from Specific Performance 

1. The recall rate for the Mouse_bite defect category reaches 0.91, suggesting that the BP neural 
network successfully identifies most instances of this defect type. Nevertheless, the precision rate is only 
0.46, which indicates a high false positive rate. The imbalance here implies that the network 
overpredicts this category by misclassifying samples of other defect types as Mouse_bite. Such 
overprediction may be a result of the model being unable to perform well in differentiating the subtle 
features that distinguish Mouse_bite defects from categories similar to it, e.g., Spur or burrs. Both the 
high false detection rate and the poor feature extraction ability of the BP neural network reduce the 
model's reliability, and therefore, the model should not be used if the high false detection rate cannot be 
reduced. 

2. As can be seen, the BP neural network almost completely fails to classify the open-circuit and 
spur defects, which indicates that it is not suitable for these categories. Often, these defects present with 
complex and variable morphological characteristics, requiring the extraction of high-dimensional 
features, which tend to be unmanageable by the BP neural network. These defect types demonstrate 
intricate patterns that the single-layer perceptron architecture and manually extracted features used in 
the BP neural network cannot capture well, which is why the poor performance is evident. 

3. The Spurious_copper category has an F1 score of 0.46, which is very close to random 
classification. The low score indicates that the BP neural network is not very effective in discriminating 
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Spurious_copper defects from other categories. While the network may have learned some basic features 
of this defect type, it does not possess the robustness to consistently and accurately classify these 
defects, especially in the presence of noise or overlapping features with other categories, thus providing 
only a slight improvement over random performance. 

One limitation of BP neural networks in learning features and another proof of the superiority of 
transfer learning models in complex tasks is reflected in these results. 

The Hybrid CNN model performed exceptionally well in all defect categories, with an average F1 
value of 0.96. It achieved perfect classification, especially on simple defects such as a Missing hole 
(F1=1.00), and also performed well on complex defects such as a Spur (F1=0.91). The BP neural 
network has limited effectiveness on simple defects like a Missing hole (F1=0.61) and is almost unable 
to classify complex defects such as an Open circuit and a Spur (F1≈0). The table illustrates that the 
hybrid CNN is significantly superior to the BP neural network in classification performance, especially 
with obvious advantages when dealing with complex defects. 
Figure 3 shows some prediction results of the BP neural network model. 

Table 1 shows the comparison of classification performance between the hybrid CNN model and the 
BP neural network. 
 
Table 1.  
Classification Performance Comparison between Hybrid CNN and BP Neural Network. 

Classification Performance Analysis (F1 Value) 
Missing 

hole 
Mouse 

bite 
Open 

circuit 
Short 
circuit 

Spur 
Spurious 
copper 

Hybrid CNN Model 1.00 0.94 0.98 - 0.91 0.97 

BP Neural Network 0.61 - Not suitable - 
Not 

suitable 
0.46 

 
 

 
Figure 3. 
Sample of prediction results of the BP Neural Network. 
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3.3. Confusion Matrix of Hybrid CNN Model 
The confusion matrix provides a detailed insight into the classification performance of the Hybrid 

CNN model across specific defect categories, highlighting both its strengths and areas for improvement: 
1. The primary diagonal of the confusion matrix displays consistently high values, signifying the 

model's exceptional accuracy in correctly classifying the majority of samples within their respective 
categories. For instance, the diagonal values for the Missing_hole and Spurious_copper categories are 
112 and 96, respectively, each accounting for 100% of the total samples within these categories. These 
results confirm the model's ability to reliably detect certain defect types with absolute accuracy, 
particularly for categories with distinct and easily recognizable features. 

2. The off-diagonal elements, representing misclassified samples, are sparse, indicating that the 
model demonstrates robust discrimination across most categories. However, the misclassifications 
observed are primarily concentrated between the Mouse_bite and Spur defect types. A closer 
examination of these samples reveals that the edge features of these two defect types exhibit substantial 
visual similarities, especially along their feature boundaries. This overlap in feature representation may 
lead to confusion in the model when distinguishing between these categories. Figure 4 presents a 
chaotic matrix regarding the hybrid CNN model. 
 

 
Figure 4. 
Chaotic matrix display of the Hybrid CNN model. 

 
3.4. Confusion Matrix of BP Neural Network 

However, as shown in Figure 4, the confusion matrix of the BP neural network exhibits significant 
deficiencies in classification performance, particularly in complex PCB defect detection tasks. It is 
important to note that: 
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1. Most defect categories are significantly lower for the main diagonal elements, which represent 
correctly classified samples. For example, the main diagonal value for Open circuit is 0, meaning that 
there is no correct classification of any samples in this category. This result shows the inability of the 
BP neural network to learn and represent some features distinguishing certain defect types. 
Unfortunately, the network is unable to achieve successful classifications for Open circuit defects, which 
are known to be high-dimensional and intricate representations. 

2. There are high values for the off-diagonal elements, which indicate that there is significant 
misclassification between categories. One such example is the Spur defect category, in which most 
samples are misclassified as Short or Spurious_copper. This result suggests that the BP neural network 
has difficulty classifying between defect types that have overlapping or similar features, such as edge 
patterns or texture variations. Since the model relies on manually engineered features and has a shallow 
architecture, it cannot capture the nuances and complexities between defect categories that are closely 
related. 

The phenomenon in Figure 5 indicates that it is difficult for the BP neural network to effectively 
learn the complex distribution of PCB defect features, and the classification results are very different. 
 

 
Figure 5. 
Chaotic matrix display of BP Neural Network. 

 
The diagonal value of the confusion matrix of the Hybrid CNN model is high, indicating accurate 

classification. Only a few samples were misclassified between the Mouse bite and Spur categories due to 
feature similarity. The diagonal values of the confusion matrix of the BP neural network are generally 
low. Especially, the classification of Open circuit defects completely fails (the diagonal value is 0), and 
misclassification is widespread (for example, a Spur is misjudged as Short or Spurious copper). The table 
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illustrates that the classification stability of the Hybrid CNN is significantly higher than that of the BP 
neural network, and the latter has difficulty distinguishing defect categories with similar features. 
Table 2 presents the comparison of the confusion matrix between the hybrid CNN and the BP Neural 
Network. 
 
Table 2.  
Comparison of the Confusion Matrix between Hybrid CNN and BP Neural Network. 

Analysis of the Confusion 
Matrix 

Missing 
hole 

Mouse bite Open 
circuit 

Short circuit Spur Spurious 
copper 

Hybrid CNN 
Model 

Diagonal High values High values High values High values High values High values 

Off-diagonal Low 
confusion 

Robust Robust Low 
confusion 

Robust Robust 

BP Neural 
Network 

Diagonal Low values 0 Low values Low values Low values Low values 

Off-diagonal high values high values high values high values high values high values 

 
3.5. Training Characteristics of Hybrid CNN 

The loss and accuracy curves clearly show that the training process of the Hybrid CNN model is 
effective, and the model exhibits robust convergence behavior. 
 
3.5.1. Loss Curve 

The training loss shows a very quick decrease in the first 10 epochs, as this indicates that the model 
is able to quickly pick up on the major information from the dataset. The model’s architecture is able to 
extract meaningful patterns from the input data, thus leading to the swift learning phase. Then, after 
this brief descent, the loss stabilizes around 20 epochs, indicating that the model has reached a plateau in 
learning and that training has been sufficiently completed without overfitting. 
 
3.5.2. Accuracy Curve 

The accuracy curve reveals that the validation set accuracy steadily improves throughout training, 
ultimately converging to approximately 96% in the later epochs. This high validation accuracy aligns 
closely with the test set performance, confirming that the model generalizes well to unseen data. 

Figures 6 and 7 present the loss curve and accuracy curve of the chaotic matrix of the Hybrid CNN 
model, respectively. 
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Figure 6. 
Loss curve of the chaotic matrix of the Hybrid CNN. 

 

 
Figure 7. 
Accuracy curve of the chaotic matrix of the Hybrid CNN. 

 
The convergence property also benefits from the efficiency of pre-trained weights transfer learning, 

which shortens the time to reach a convergence state. On the other hand, the introduction of Dropout 
and regularization technology also significantly decreases the risk of overfitting of the model. 
 
3.6. Training Characteristics of BP Neural Network 

The training curve of the BP neural network is highly unstable and exhibits poor learning dynamics 
compared to the model's ability to learn the complexities of PCB defect detection tasks. 
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3.6.1. Loss Curve 
The loss curve shows a very distinct difference between the training and validation performance. 

The first stage of the training loss declines steadily, indicating that the model is learning from the 
training data. However, the last stage of validation loss begins to rise, which is a sign of overfitting, 
such that the model becomes too specialized to the training data and performs poorly on unseen data in 
general. The poor generalization ability in the validation set hints at the BP neural network’s inability 
to learn features that are indicative of the overall defect patterns in the dataset. 
 
3.6.2. Accuracy Curve 

The accuracy curve for the validation set presents the model’s inability to learn further. The 
validation accuracy increases for the first time until approximately 55% after which it plateaus and 
remains stagnant until the end of the training process, with no noticeable improvement in later epochs. 
The model fails to extract higher-level or hierarchical features, which are required to distinguish 
between the complex defect categories, thus resulting in this stagnation. This also implies that, while 
the shallow architecture of the BP neural network and manual extraction of features are not enough to 
handle the high-dimensional and intricate defective data. 

This phenomenon reflects the inadaptability of BP neural networks to high-dimensional input data, 
and its structure is too simple to learn the complex characteristics of PCB defects, as shown in Figures 8 
and 9. 
 

 
Figure 8. 
Loss curve of the chaotic matrix of the BP Neural Network. 
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Figure 9. 
Accuracy curve of the chaotic matrix of the BP Neural Network. 

 
The loss curve of the Hybrid CNN model converges rapidly and stably. The accuracy rate of the 

validation set reaches 96%, and there is no overfitting phenomenon, thanks to the pre-training weights 
and regularization techniques. The loss curve of the BP neural network shows that the training loss 
decreases but the verification loss increases, and the verification accuracy rate stagnates at 55%, 
indicating that the model is overfitted and unable to learn high-dimensional features. The table 
illustrates that the training process of the Hybrid CNN is efficient and has strong generalization ability, 
while the BP neural network is limited due to its simple structure and manual feature extraction. 

Table 3 presents a comparison of loss analysis and accuracy between the hybrid CNN and the BP 
neural network. 
 
Table 3.  
Comparison of Loss and Accuracy curves between Hybrid CNN and BP Neural Network. 

Analysis of loss and accuracy iteration curves (Training Characteristics) 

Hybrid 
CNN Model 

Loss curve 
The model has reached a plateau in learning, and training has been sufficiently completed 
without overfitting. 

Accuracy curve The model generalizes well to unseen data 

BP Neural 
Network 

Loss curve Inability to learn features that are indicative of the overall defect patterns in the dataset. 

Accuracy curve 
The shallow architecture of the BP neural network and manual extraction of features are 
not sufficient to handle high-dimensional and intricate defective data. 

 
3.7. ROC Curve Analysis 
3.7.1. ROC curve of hybrid CNN 

Figure 10 illustrates the ROC (Receiver Operating Characteristic) curve of the Hybrid CNN, 
demonstrating its exceptional ability to distinguish between six defect categories in PCB images. The 
AUC (Area Under the Curve) values for all categories exceed 0.99, highlighting the model's outstanding 
classification performance across diverse defect types. This high level of accuracy indicates that the 
model maintains excellent sensitivity and specificity, effectively balancing the trade-off between true 
positive and false positive rates across all categories. Notably, the AUC values for Missing_hole and 
Spurious_copper are close to 1.00, suggesting that the model's classification performance for these two 
defect types is nearly perfect. 
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Figure 10. 
Chaotic matrix of the Hybrid CNN model. 

 
3.7.2. ROC Curve of BP Neural Network 

The ROC curve of the BP neural network reflects significant shortcomings. For instance, the AUC 
values of Mouse_bite and Spurious_copper are not ideal, as they are near 0.85. This implies that the BP 
neural network is not able to effectively learn the characteristic distribution of these two types of 
defects, as shown in Figure 11. 
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Figure 11. 
Chaotic matrix of BP Neural Network. 

 
Table 4 presents a comparison of ROC curve analysis between the hybrid CNN model and the BP 

neural network. 
 
Table 4.  
Analysis comparison of ROC curves between Hybrid CNN and BP Neural Network. 

Analysis of ROC curves 

Hybrid CNN 
Model 

Exceptional capability to distinguish defect categories. The better AUC values, excellent sensitivity, 
and specificity. 

BP Neural 
Network 

The ROC curve has shortcomings: the AUC values are not ideal; it is not able to well learn the 
characteristic distribution of these two types of defects. 

 
The loss curve of the Hybrid CNN model converges rapidly and stably. The accuracy rate of the 

validation set reaches 96%, and there is no overfitting phenomenon, thanks to the pre-training weights 
and regularization techniques. The loss curve of the BP neural network shows that the training loss 
decreases but the verification loss increases, and the verification accuracy rate stagnates at 55%, 
indicating that the model is overfitted and unable to learn high-dimensional features. The table 
illustrates that the training process of Hybrid CNN is efficient and has strong generalization ability, 
while BP neural network is limited due to its simple structure and manual feature extraction. 

To further demonstrate the effectiveness of the proposed method, Table 5 presents a comparison of 
the classification performance (F1-score) between the proposed Hybrid CNN model and the traditional 
BP Neural Network across six typical PCB defects. It is evident that the Hybrid CNN has achieved 
significant improvements across all defect types, with an average F1-score reaching 0.96, substantially 
higher than the 0.51 obtained by the BP neural network. This result underscores the outstanding 
accuracy, robustness, and generalization ability of the Hybrid CNN model in PCB defect classification 
tasks. 
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Table 5.  
Performance (F1 Score) comparison of the hybrid CNN and the BP Neural Network. 

Defect Category Hybrid CNN (F1-score) BP Neural Network (F1-score) 

Missing hole 1.00 0.61 
Mouse bite 0.94 0.61 

Open circuit 0.98 -- 
Short circuit 0.98 -- 

Spur 0.91 -- 
Spurious copper 0.97 0.46 

Average 0.96 0.51 

 

4. Conclusion 
This study adopts a new type of hybrid convolutional neural network (Hybrid CNN) method based 

on the principle of transfer learning, aiming to solve common problems in the defect detection of printed 
circuit board (PCB) manufacturing. By combining the pre-trained MobileNetV2 architecture with a 
custom fully connected layer, the proposed model achieves a strong balance between efficiency and 
accuracy, and is particularly suitable for the classification of six types of PCB defects. This enables the 
model to fully leverage the advantages of transfer learning by integrating pre-trained features and 
architectures designed for task requirements, and effectively address the unique demands of PCB defect 
detection. 

Through a large number of experiments and verifications, this method is superior to the traditional 
BP neural network in terms of classification accuracy, robustness against diverse defects, and 
generalization ability on different datasets. The above-mentioned advantages further highlight the 
practical application value and promotion potential of this method. 

The results of this study also emphasize the adaptability and scalability of deep learning methods in 
industrial applications. These advancements will accelerate the intelligent transformation of the 
electronics manufacturing industry and provide innovative solutions for quality control in various 
industrial fields. Through the coordinated development of data, models, and hardware, future research 
in this field is expected to completely transform the industrial quality assurance system, drive 
operational efficiency and product reliability to new heights, thereby enhancing PCB inspection 
efficiency, reducing production costs, and strengthening enterprise competitiveness. 
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