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Abstract: Accurate short-term forecasting of photovoltaic (PV) power is essential for reliable grid
operation and renewable integration. We propose a stacked Long Short-Term Memory (LSTM)
network to predict one-hour-ahead PV output for a 1 kWp crystalline-silicon system using PVGIS-
SARAHS hourly data (2005-2023) at a central Iran location. After timestamp parsing, hourly
resampling, interpolation, and min—max normalization, 24-hour sliding windows form the model inputs.
Our architecture two LSTM layers of 50 units each followed by a single Dense output neuron, was
trained (20 epochs, batch =~ 3000, early stopping patience = 0) on 70% of the data and tested on the
remaining 30%. Evaluation on unseen data yields RMSE = 0.084 kWp, MAE = 0.065 kWp, MAPE =
11.7%, and R* = 0.88, corresponding to a 22% RMSE reduction versus a persistence baseline. Detailed
error analysis (scatter, residual histogram, hourly MAE) highlights systematic underestimation at high
irradiance and late-afternoon variability. These results demonstrate that our simple, easily-implemented
LSTM achieves performance on par with more complex deep-learning frameworks, making it suitable
for rapid deployment in operational forecasting systems.
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1. Introduction

The variability and intermittency of solar photovoltaic (PV) generation have long posed substantial
challenges to power system balancing, market operations, and reliable renewable integration [1-57. As
grid operators increasingly rely on high-penetration PV to meet energy demands, accurate short-term
forecasts ranging from minutes to several hours ahead are essential for scheduling reserves, optimizing
battery dispatch, minimizing renewable curtailment, and maintaining system stability [1, 2, 47]. Despite
decades of research, forecasting methods must still contend with complex diurnal and seasonal
irradiance patterns, abrupt cloud transients, and the nonlinear temporal dependencies inherent in
irradiance and power time series [ 3, 5-7 .

Early PV-forecasting efforts primarily employed naive persistence models assuming that future
irradiance or power would equal current or past values, which, while simple to implement, yielded
limited accuracy and no adaptability to evolving weather conditions [8, 87. Statistical approaches such
as autoregressive integrated moving average (ARIMA) models attempt to capture temporal correlations
but often struggle with nonstationary, nonlinear behaviors, particularly when irradiance exhibits rapid
fluctuations [3, 4, 6, 9]. As data availability expanded, traditional machine-learning techniques,
including support vector regression (SVR) [107, random forests [117], Gaussian processes [127], and
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shallow neural networks [137, offered enhanced performance by learning complex input—output
mappings. For instance, SVR-based models demonstrated respectable forecasting skill under certain
conditions [107], while random-forest frameworks provided robustness to outliers and feature
interactions [117]. Gaussian process regression delivers probabilistic forecasts, capturing uncertainty
more explicitly (127, and shallow neural networks achieved moderate improvements, especially when
paired with feature-selection methods such as principal component analysis (PCA) [13, 147].

Despite these advances, conventional machine-learning models often require extensive feature
engineering incorporating cloud-motion vectors, sky-camera data, or numerical weather predictions
(NWP) to adequately represent spatiotemporal variability, thereby complicating deployment in
resource-constrained environments [4, 5, 15, 16]. Hybrid architectures emerged to address this
challenge: for example, variational mode decomposition combined with fuzzy twin support vector
machines (VMD-FTSVM) exhibited improved performance by decomposing nonstationary time series
into intrinsic mode functions before forecasting [177]. Similarly, lasso-based approaches tailored to
sparse parameter estimation demonstrated promise in balancing model complexity and accuracy under
data-scarce conditions [[187. Transfer learning strategies further enabled models trained on data-rich
regions to generalize to locales with limited historical irradiance measurements [197] while explainable-
Al frameworks sought to illuminate the influence of environmental factors (temperature, humidity, wind
speed) on PV output, fostering greater interpretability and trust [20, 217].

The latest trend toward deep-learning frameworks has significantly reshaped the state of the art in
PV forecasting. Recurrent neural networks (RNNs), and in particular Long Short-Term Memory
(LSTM) architectures, excel at modeling long-range temporal dependencies and have demonstrated 20—
25 percent improvements in forecast skill over persistence baselines across diverse climates and scales
Chu et al. [47, Syed [137], Tongsopit et al. [227] and Zhang et al. [237. Zhang et al. [237] achieved a
normalized RMSE of 8 percent using a convolutional-LSTM (Conv-LSTM) with attention mechanisms,
effectively capturing both spatial and temporal irradiance dynamics [237. Li and Du [167] further
enhanced Conv-LSTM models by integrating attention modules that focused on salient features during
rapid irradiance transitions, yielding marked accuracy gains Li and Du [167]. Syed [137] introduced
clustering-based LSTM pipelines, leveraging geographic and meteorological similarities to scale
forecasts to 1000 sites while reducing computational load by 44 percent [77]. Hybrid CNN-LSTM
methods, which extract spatial features from sky-camera imagery before temporal modeling, have also
been explored, indicating considerable promise for intra-hour nowcasting [4, 247. In addition, Bayesian
LSTM frameworks have been proposed to quantify predictive uncertainty, supporting risk-aware
decision-making in power system operations [217].

Some researchers have combined deep learning with exogenous NWP inputs: Moreno et al. [25]
employed a hybrid CNN-LSTM model to fuse numerical weather forecasts with historical PV data,
resulting in improved diurnal and seasonal performance [257. Liu et al. [26] integrated extreme-
learning machines with cloud-parrot optimization algorithms to refine feature selection, demonstrating
enhanced short-term forecasting under variable weather conditions [267. Other recent works have
leveraged ensemble techniques, aggregating predictions from multiple deep models to mitigate
overfitting and improve generalization. Rahimi et al. [277] provided a comprehensive review of such
ensemble approaches, highlighting their effectiveness in reducing errors across diverse temporal
horizons [277]. Comprehensive surveys of ensemble methods and deep architectures underscore that
while pure LSTM models are competitive, incorporating attention mechanisms, NWP inputs, and sky-
camera imagery often yields further accuracy gains, particularly during highly variable irradiance
periods [5, 7,9, 15, 24, 27 .

An equally critical component of forecasting research is data provenance. High-quality, long-term
irradiance and PV-output datasets are necessary to train, validate, and compare models under realistic
conditions [6, 7, 287]. The Photovoltaic Geographical Information System (PVGIS) provides open-
access solar irradiance and temperature data across Europe, Africa, and parts of Asia. Its SARAHS3
(Surface Solar Radiation) database offers hourly global horizontal irradiance (GHI) values spanning
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2005—2023 [ 7, 287. Unlike ground-based pyranometer networks, PVGIS-SARAHS synthesizes satellite
observations and meteorological reanalyses to produce a continuous, gridded dataset imperative for
regions with sparse instrumentation. Prior studies in Europe and North America have leveraged
NSRDB (National Solar Radiation Database) datasets for deep-learning forecasts [67, but relatively few
have explored PVGIS-SARAHS data, particularly in Middle Eastern contexts characterized by distinct
climatic and atmospheric conditions [15, 227].

In parallel, reproducible preprocessing pipelines have gained traction as a means of standardizing
data ingestion, cleaning, and feature-engineering steps. Tongsopit et al. [227] proposed a framework for
gap filling and normalization tailored to South-East Asian regions with limited resources [227], while
AlFaraj et al. [157] compared multiple solar irradiance databases to assess their suitability for PV-
system design and forecasting applications [157]. Other works have emphasized the importance of
consistent timestamp handling, interpolation, and normalization to ensure fair comparisons across
models and geographies [4, 6, 287. Despite these advances, there remains a need for a transparent, end-
to-end pipeline that ingests PVGIS-SARAHS3 data, constructs training sequences, and outputs
standardized features conducive to deep-learning models, especially for locations in central Iran, where
tew studies have been conducted.

Against this backdrop, the present work proposes and implements a stacked LSTM forecasting
framework tailored to a 1kWp crystalline-silicon PV system situated in central Iran. Our methodology
integrates a reproducible preprocessing pipeline encompassing timestamp parsing, hourly resampling,
interpolation, and Min—-Max normalization with a two-layer LSTM architecture designed to capture
diurnal and seasonal irradiance patterns without reliance on external NWP or sky-camera inputs. We
train and evaluate the model on PVGIS-SARAHS3 data spanning 2005-2023, providing a comprehensive
performance assessment through RMSE, MAE, MAPE, and R? metrics. To contextualize our approach
within the broader literature, we benchmark against a persistence baseline and present a detailed error-
analysis suite including scatter plots, residual histograms, and diurnal MAE profiles to identify
systematic biases and temporal windows of elevated uncertainty.

2. Methodology

This section details the end-to-end pipeline developed for one-hour-ahead solar power forecasting
using a stacked Long Short-Term Memory (LSTM) network. We describe (1) the data source and its
characteristics, (i1) the preprocessing and cleaning steps to ensure a continuous, high-quality time series,
(iil) the feature-engineering and normalization procedures, (iv) the construction of temporal sequences
for LSTM inputs, (v) the design of the stacked LSTM architecture, (vi) the training protocol including
hyperparameter choices and validation strategy, and (vii) the evaluation metrics used to assess forecast
performance. This methodological framework emphasizes reproducibility, computational efficiency, and
comparability to baseline approaches.

2.1. Data Source

Hourly PV output and irradiance were obtained from the PVGIS-SARAHS tool [77] for a 1 kWp
crystalline-silicon system at central Iran coordinates. The CSV (2005-2023) includes metadata rows
followed by: time, P, YYYYMMDD: HHMM, (kWp).

2.2. Loading & Cleaning
Metadata rows were skipped until the header line starting with time, after which timestamps were
parsed via:

time = pd.todatetime(raw["time”] format="%Y %m%d:%H%M")
This converts raw timestamp strings into datetime objects, allowing time-based indexing and

resampling. After parsing, any rows where time or P (power) were invalid were dropped. The time
column was set as the DataFFrame index, the P column was converted to a numeric type, and data were
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resampled to hourly means. Any remaining missing values were linearly interpolated, ensuring a
continuous, uniformly spaced time series.

2.8. Feature Engineering & Normalization
Two temporal features were added:
hour t = £hour,dayofyear t = £dayofyear.

These features extract the hour of day (0—28), capturing diurnal effects, and encode seasonal
progression (1-865), capturing annual irradiance cycles. All features were scaled to [0,17 by Min—Max
normalization.

xr=___ rr—
amin . rmax —

amin

This scaling prevents features with larger magnitudes from dominating model training and helps
the LSTM converge more reliably.

2.4 Sequence Construction
Given window size w = 24, the dataset of length N yields sequences:

X=[Xw..., Xmr1] €%, y=P,
for 7= w, ..., N— 1, where p is the number of features. Each Xiis a 24-hour history of all features, and y:
is the PV output at the next hour.

2.5. LSTM Architecture
Our Keras model was defined as Sequential and contains:
LSTM(50, return_sequences=True, input_shape=(24.p)),
LSTM(50),
Dense(1),
model.compile(optimizer="adam’, loss="mse’, metrics="mae’]),
The first LSTM layer outputs a sequence (one hidden state per time step) so that the second LSTM
can further process temporal dependencies. The final Dense layer produces the one-hour-ahead power
forecast. Internally, each LSTM cell follows:

s i)
- LT(‘f"'»'r.::HI |,_T|=] { I‘-'i)

Cep= tanh(Wh; 1, x;] 4 f’:'}'f
Cr:‘frro C—1 + f@' C{-I.L,
o= o Wili—1,x] + '[1".], h
= 0. tanh(C),

where o is the sigmoid activation, controlling information flow; tanh introduces nonlinearity; and
© denotes element-wise multiplication.
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2.6. Training Protocol

The dataset was split into 70% for training and 30% for testing. Training was conducted for up to
20 epochs with early stopping patience set to 0. A batch size of approximately 3000 samples was used,
and 20% of the training data served as a validation set. The best model weights were saved to
bestmodel.h5.

2.7. Evaluation Metrics
Forecasts y"iwere assessed via:
e Mean Squared Error (MSE):

MSE = _1 Y M (y— ")z,
Mi=1

which measures the average squared difference, penalizing larger errors more heavily.
¢ Root MSE (RMSE): v

RMSE = MSE,

which returns an error in the original units (kWp), making interpretation straightforward.
e Mean Absolute Error (MAE):
1 M
MAE = _} |»= ",
M =1
which averages absolute deviations, providing a robust sense of typical error magnitude.
Mean Absolute Percentage Error (MAPE):
- _100% im0 |
e T Yi— ’
M el wm
which expresses error as a percentage of true values; sensitive when y; is near zero.
Coefficient of Determination (R2):

0=y ) 2og I

=1 1
where y~ is the mean of the true values. This indicates the proportion of variance explained by the
model (R? = 1 indicates a perfect fit).
A persistence baseline (forecast y";= y—1) yields RMSE,e;s = 0.108 kWp.

3. Results and Discussion

The performance evaluation of the stacked LSTM model indicates a notable improvement compared
to the persistence baseline. Quantitatively, the proposed architecture achieves an RMSE of 0.084 kWp,
representing a 22% reduction in error relative to the baseline value of 0.108 k€Wp. Similarly, the MAE
decreases to 0.065 kWp, which is a 21% improvement, and the MAPE reaches 11.7%, a 19% reduction.
The model also attains a coefficient of determination (R*) of 0.88, highlighting that the majority of the
variance in PV output is effectively captured. These results demonstrate that even a relatively simple
two-layer stacked LSTM can outperform naive approaches and provide sufficiently accurate forecasts
tor operational applications such as grid scheduling and battery management.

Beyond numerical metrics, the visual analyses shed light on the strengths and limitations of the
proposed framework. The scatter plot of predicted versus observed outputs shows a strong alignment
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with the identity line, confirming high agreement overall. However, systematic underestimation
becomes apparent during peak irradiance periods close to 1 kWp. The histogram of residuals
complements this observation, as most errors cluster tightly around zero, with only a small fraction of
large deviations corresponding to sudden cloud-induced irradiance fluctuations. The density-colored
scatter plot of the full test dataset further illustrates that the majority of predictions fall within the mid-
range (0.2-0.8 kWp), where model accuracy is highest. These findings suggest that while the LSTM
captures daily and seasonal cycles effectively, its performance is slightly challenged by extreme or
infrequent irradiance events.

Finally, the hourly error profile highlights temporal dependencies in model accuracy. The lowest
MAE values occur during stable morning hours, while error magnitudes rise during the late afternoon,
coinciding with higher atmospheric variability and solar-angle effects. This diurnal trend underscores
the sensitivity of PV forecasting to localized cloud movements and irradiance fluctuations, which may
not be fully captured in satellite-based datasets. Nevertheless, the stacked LSTM demonstrates strong
robustness and generalizability, offering a competitive balance between accuracy, computational
efficiency, and ease of implementation. These insights affirm that the model is well-suited for
deployment in regions with limited access to ground-based measurements, such as central Iran, while
also pointing to future improvements through hybrid modeling and the incorporation of additional
exogenous features.

3.1. Quantitative Performance

The quantitative performance metrics for the persistence baseline and the stacked LSTM model on
the test set are summarized in Table 1. The stacked LSTM achieves an RMSE of 0.084 kWp
(representing a 22% reduction in error relative to the persistence baseline), an MAE of 0.065 kWp (21%
improvement), a MAPE of 11.7% (19% improvement), and R?= 0.88.

Table 1.

Quantitative Performance Metrics.
Metric Persistence LSTM Improvement
RMSE (kWp) 0.108 0.084 22% |
MAE (kWp) 0.082 0.065 21% |
MAPE (%) 14.5 11.7 19% |
R2 0.82 0.88 -

3.2. Visual Analysis

To evaluate the predictive performance of the stacked LSTM model, we use several complementary
visualizations that provide insights beyond numerical metrics. Figure 1 shows a scatter plot of predicted
versus actual photovoltaic (PV) output for a subset of randomly selected observations. This allows for
visual inspection of agreement and potential bias in the predictions. Iigure 2 presents a histogram of
prediction errors (forecast minus observed), which helps identify bias tendencies and the distribution of
residuals. Figure 3 provides a density-colored scatter plot for the entire test set, highlighting regions of
concentrated agreement as well as systematic under- or over-prediction. Iinally, Figure 4« depicts the
mean absolute error (MAE) as a function of local hour, illustrating the model’s performance over the
diurnal cycle.
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Actual vs. Predicted Solar Production
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Figure 1.

Scatter plot of 200 randomly selected observations comparing predicted and actual PV outputs. Most points align
closely with the 45° identity line, indicating strong agreement. Minor deviations occur at very low and high output
levels due to measurement noise and rapid irradiance changes.

These visualizations collectively provide a detailed assessment of model behavior. The scatter plots
enable both fine-scale inspection and statistical trend analysis; the histogram quantifies error symmetry
and spread; and the hourly MAE curve reveals time-dependent variations in predictive accuracy.
Together, they help identify the strengths and weaknesses of the model in different operational
conditions.

Predicted vs. Actual

1.0 1

0.8 1

0.6 1

0.4 4

Predicted

0.2 1

0.0 4

0.0 0.2 0.'4 0.6 08 1.0
Actual

Figure 2.

Histogram of prediction errors (forecast minus observed PV output).
The distribution is centered near zero, showing minimal systematic
bias. Most residuals fall within 0.1 k€Wp, confirming high predictive
precision. Larger deviations correspond to rapid irradiance changes
such as transient cloud cover.
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Residuals Distribution
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Figure 3.

Density-colored scatter plot of predicted versus observed PV outputs for all test
data. The highest point densities occur between 0.2 and 0.8 kWp. Slight
underestimation near 1 kWp is visible, likely due to the underrepresentation of
peak irradiance events in the training set.

Error by Hour of Day
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Figure 4.

Mean absolute error (MAE) as a function of the local hour of the day. Error remains low in the morning, rises
during periods of high atmospheric variability in the afternoon, and declines toward sunset. This pattern reflects
the influence of irradiance fluctuations on forecast accuracy.

4. Conclusion
It has been demonstrated that a relatively simple, two-layer stacked LSTM architecture is capable
of producing accurate one-hour-ahead solar power forecasts when trained on openly available PVGIS-
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SARAHS3 data. Specifically, an RMSE of 0.084 kWp was achieved, corresponding to a 22% reduction in
error compared to a naive persistence baseline, while competitive values were maintained for MAE,
MAPE, and R2. These findings underscore the viability of LSTM-based approaches for operational
forecasting in resource-constrained environments, given that the model can be trained quickly on CPU
hardware and relies solely on historical irradiance and power measurements as inputs.

Potential avenues for further performance gains and broader applicability are identified. Extending
the model to multi-step forecasting would enable grid operators to plan reserves and dispatch over
longer horizons; however, this extension may necessitate more sophisticated sequence-to-sequence
architectures or teacher-forcing strategies. The incorporation of attention mechanisms could permit the
network to focus dynamically on the most relevant temporal patterns, such as the onset of cloud
transients, thereby improving predictive skill during periods of rapid irradiance fluctuation.
Augmentation of purely temporal inputs with exogenous meteorological forecasts (e.g., temperature,
humidity, wind speed) or sky-camera imagery holds promise for capturing spatial and physical drivers of
irradiance variability. Finally, exploration of hybrid CNN-LSTM or transformer-based frameworks may
offer an even richer representation of both local weather dynamics and long-term seasonal trends.
Collectively, these enhancements are expected to increase forecast accuracy, particularly under
challenging conditions such as partially cloudy skies and late-afternoon irradiance ramps, and to
broaden the scope of deployment to utility-scale PV plants, microgrids, and distributed-generation
management systems.
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