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Abstract: This study employs Latent Dirichlet Allocation (LDA) to analyze research trends in deep 
learning across engineering, natural sciences, and social sciences from 2020 to 2024. Using a corpus of 
3,000 research paper titles, latent thematic structures were extracted to identify the major research 
directions within each field. The analysis uncovered four prominent topics per domain, revealing clear 
disciplinary differences in thematic emphasis and levels of methodological maturity. Engineering 
research predominantly addressed automation technologies, intelligent control systems, and real-time 
optimization. In contrast, natural science studies focused heavily on medical imaging, computational 
modeling, and data-driven scientific discovery. Social science research demonstrated an increasing 
integration of deep learning with ensemble modeling, prediction frameworks, and algorithmic decision 
processes. By offering a comparative view across disciplines, this study highlights both shared and 
divergent trajectories in deep learning research. The findings also suggest several future research 
directions, including the advancement of explainable AI techniques, the incorporation of multimodal 
data sources, and the development of domain-specific methodological adaptations to improve 
applicability and interpretability. 

Keywords: Cross-Disciplinary, Deep Learning, LDA, Natural Sciences, Research, Engineering, Social Sciences, Topic 
Modeling. 

 
1. Introduction  

Deep learning, a transformative subfield within machine learning, has revolutionized the way 
computers interpret complex data by enabling the automatic extraction of hierarchical features through 
multi-layered neural network architectures. Unlike conventional machine learning approaches that 
depend heavily on hand-engineered features and domain-specific preprocessing, deep learning methods 
excel by learning intricate data representations directly from raw inputs. This end-to-end learning 
paradigm has led to dramatic improvements in a range of tasks, often surpassing human-level 
performance in areas such as image classification, speech recognition, and language modeling. 

The seminal moment that marked the rise of deep learning can be traced to the 2012 ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC), where a deep convolutional neural network 
dramatically outperformed traditional methods. Since then, the success of deep learning has catalyzed its 
rapid adoption across a wide spectrum of application domains, including but not limited to natural 
language processing (NLP), computer vision, and speech synthesis. Its ability to model high-
dimensional, nonlinear patterns has rendered it particularly valuable in environments characterized by 
large, unstructured, or noisy datasets. 

The academic and industrial impact of deep learning is not confined to the traditional boundaries of 
computer science. In recent years, its applications have expanded significantly into interdisciplinary and 
domain-specific fields such as biomedical imaging, financial market forecasting, climate modeling, and 
smart city development. These fields, which often require the integration of heterogeneous data sources 
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and the uncovering of subtle patterns, benefit greatly from the expressive capacity of deep learning 
architectures. 

Despite this widespread diffusion, much of the existing literature on deep learning remains siloed 
within individual disciplines. Prior survey studies have predominantly focused on reviewing models and 
applications within specific scientific domains, often emphasizing methodological innovations or 
performance benchmarks relevant to that particular field. As a result, there remains a lack of 
comprehensive, cross-disciplinary analysis that reveals how the research agendas, thematic trends, and 
topical emphases surrounding deep learning differ or converge across domains. 

To address this gap, the present study adopts a data-driven, quantitative approach to investigate 
how deep learning has shaped research trajectories in three distinct scientific disciplines: engineering, 
natural sciences, and social sciences. Utilizing Latent Dirichlet Allocation (LDA), an unsupervised 
probabilistic topic modeling technique, we extract latent thematic structures from a curated corpus of 
3,000 research paper titles spanning these three fields. Unlike manual content analysis or narrative 
reviews, LDA enables the identification of hidden topic distributions that reflect the underlying 
semantic patterns within large-scale textual data. 

Through this lens, we aim to uncover both shared and domain-specific themes in the way deep 
learning is conceptualized, applied, and discussed in scholarly discourse. For instance, whereas 
engineering research may emphasize optimization, architecture design, and embedded systems, natural 
sciences might prioritize data-intensive discovery in areas like genomics or physics simulation, while 
social sciences could explore interpretability, ethical implications, and human-centered AI systems. 

In addition to delineating the topical landscape, this study also provides insights into how deep 
learning is facilitating interdisciplinary research by bridging methodological and epistemological 
divides. The comparative perspective afforded by our approach reveals how different academic 
communities are internalizing and appropriating deep learning technologies, contributing to a more 
nuanced understanding of its multifaceted impact. By situating our analysis at the intersection of 
bibliometrics, machine learning, and science mapping, we offer an integrative framework for evaluating 
the evolving role of deep learning in contemporary research. 

Ultimately, this work contributes to the growing body of meta-research that seeks to characterize 
the diffusion of AI technologies across scientific knowledge systems. It provides empirical evidence that 
supports strategic decision-making in research funding, curriculum development, and innovation policy, 
especially in contexts where interdisciplinary integration is both a challenge and an imperative. 
 

2. Theoretical Background and Related Work 
Latent Dirichlet Allocation (LDA), first proposed by Blei, Ng, and Jordan, is a seminal probabilistic 

generative model designed to uncover the hidden thematic structure within large collections of text 
documents [1]. The core assumption of LDA is that each document in a corpus is composed of multiple 
latent topics, and each topic is defined as a probability distribution over words. By inferring these 
distributions, LDA enables the extraction of coherent semantic patterns that are not readily observable 
through surface-level analysis. As an unsupervised method, it does not rely on labeled data, making it 
particularly suitable for exploratory data analysis in large and heterogeneous textual corpora. 

Over the past two decades, LDA has become a foundational tool in natural language processing 
(NLP), information retrieval, digital humanities, and bibliometric studies. It has been applied to a wide 
range of tasks, including document classification, content recommendation, scholarly trend analysis, and 
sociolinguistic research [2, 3]. A key advantage of LDA is its ability to yield interpretable topic 
structures that can be visualized and analyzed both qualitatively and quantitatively. Compared to 
supervised classification models, which require labeled datasets and tend to be tailored to specific tasks, 
LDA offers a flexible and domain-agnostic framework for discovering latent semantics embedded in text 
collections. 

Numerous enhancements and extensions to the original LDA formulation have been proposed to 
address limitations such as topic incoherence, lack of temporal dynamics, and inability to model topic 
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correlations. Hierarchical LDA introduces tree-like topic structures that capture multi-level thematic 
hierarchies [4] while Dynamic Topic Models (DTMs) enable the modeling of topic evolution over time 
by introducing temporal dependencies between topic distributions [5]. Correlated Topic Models 
(CTMs) extend the Dirichlet prior with logistic normal distributions to better capture correlations 
among topics, making them particularly useful in corpora where topics co-occur frequently and 
meaningfully. 

The interpretability of topic models has also been enhanced through the development of advanced 
visualization tools such as LDAvis, which provides an interactive interface for exploring topic-term 
relationships and topic prevalence across the corpus [6]. These tools facilitate both expert-driven 
validation and communication of findings to broader audiences, including those without technical 
expertise in machine learning. 

In terms of domain-specific applications, LDA has proven to be remarkably adaptable. In biomedical 
research, topic modeling has been used to identify patterns in disease-related publications, gene 
interaction networks, and drug development literature [7]. Environmental scientists have employed 
LDA to track climate change discourse across scientific and policy-oriented texts, revealing how 
narratives around sustainability and global warming have shifted over time [8]. In the field of digital 
journalism, LDA has facilitated the detection of ideological bias, sentiment framing, and agenda-setting 
patterns within news articles [9]. These studies highlight the model’s versatility and its potential to 
reveal non-obvious insights in domain-specific contexts. 

Despite these successes, relatively few studies have systematically compared topic structures across 
different academic disciplines using a unified methodological framework. Most existing research 
remains confined within disciplinary silos, focusing on individual domains without engaging in 
comparative or integrative analysis. This lack of cross-disciplinary perspective represents a critical gap 
in the literature, particularly as artificial intelligence and deep learning continue to influence a broad 
range of scientific and social research areas. Understanding how the discourse surrounding deep 
learning differs across fields such as engineering, natural sciences, and social sciences is essential for 
both scholarly synthesis and policy planning. 

Recent advancements in topic modeling have begun to incorporate deep learning architectures to 
overcome the limitations of traditional probabilistic models. Neural topic models, for example, combine 
the interpretability of LDA with the representational flexibility of neural networks. These models often 
leverage variational autoencoders (VAEs) or other generative frameworks to learn topic distributions in 
a continuous latent space, allowing for more nuanced topic semantics. Such approaches offer improved 
performance on short texts and noisy data while maintaining a degree of interpretability through 
structured priors. 

Moreover, hybrid methods that integrate topic models with graph-based learning techniques or 
citation network analysis are gaining prominence in bibliometrics. By linking textual content with 
structural metadata, such as co-authorship, citation frequency, or publication venues, these methods 
enable a richer contextualization of topic distributions. They are particularly useful for tracking the 
diffusion of ideas, the emergence of new subfields, and the clustering of research communities around 
shared methodological or thematic concerns. 

In the context of longitudinal and interdisciplinary trend analysis, topic modeling plays a critical 
role in uncovering macro-level patterns that span across time and disciplinary boundaries. It supports 
meta-analytical approaches that examine the evolution of research focus, the adoption of methodologies, 
and the framing of technological innovations like deep learning. As science becomes increasingly 
interconnected, such tools are indispensable for navigating the complexity of contemporary research 
ecosystems. 

In summary, while LDA and its extensions have been successfully applied across numerous 
domains, there is a growing need for cross-disciplinary applications that systematically compare how 
foundational technologies like deep learning are conceptualized and utilized in distinct academic 
contexts. This study contributes to filling that gap by employing topic modeling as a lens to examine 
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the thematic landscape of deep learning research across engineering, natural sciences, and social 
sciences, ultimately offering a more integrative view of how this technology is shaping knowledge 
production across the disciplinary spectrum. 
 

3. Materials and Methods 
To investigate the cross-disciplinary landscape of deep learning research, this study conducted a 

comprehensive topic modeling analysis using Latent Dirichlet Allocation (LDA) across three major 
scientific domains: engineering, natural sciences, and social sciences. The primary objective was to 
compare and contrast thematic structures emerging from research discourse within each field. To 
ensure robustness and relevance, all methodological procedures were meticulously designed, 
encompassing corpus construction, data preprocessing, model training, evaluation, and interpretability 
validation. 
 
3.1. Data Collection and Corpus Construction 

The data corpus was compiled from peer-reviewed journal articles published between 2020 and 
2024, focusing specifically on works that explicitly engaged with deep learning technologies. A total of 
3,000 research paper titles were collected, with 1,000 titles assigned to each disciplinary corpus. Titles 
were retrieved from reputable academic databases such as IEEE Xplore, ScienceDirect, SpringerLink, 
Web of Science, and Scopus, using targeted keyword queries that included terms such as “deep 
learning,” “neural networks,” and “AI applications.” Only articles published in English were included to 
maintain linguistic consistency across the datasets. 

To ensure discipline-specific relevance, publications were classified based on the indexing subject 
category of the journal or conference, as well as manual verification of the research scope. For example, 
engineering titles included domains such as control systems, robotics, and signal processing; natural 
sciences encompassed biology, chemistry, and environmental science; and social sciences covered areas 
like education, psychology, communication studies, and economics. 
 
3.2. Text Preprocessing 

Raw title texts were subjected to a standardized preprocessing pipeline to ensure compatibility with 
LDA modeling requirements. Preprocessing was carried out using a combination of Python libraries, 
including NLTK and spaCy, chosen for their extensive NLP capabilities and integration with 
lemmatization tools [10]. 
The preprocessing steps consisted of the following: 

1. Lowercasing: All characters were converted to lowercase to avoid case-based discrepancies. 
2. Removal of punctuation and numeric characters: Non-alphabetic symbols were stripped to elimi

nate noise from formulaic notations or numbering systems. 
3. Tokenization: Titles were split into individual word tokens using whitespace and syntactic boun

daries. 
4. Stopword removal: Commonly used English stopwords were filtered out using NLTK’s built-in 

stopword list, supplemented by domain-specific additions when appropriate. 
5. Lemmatization: Words were reduced to their base or dictionary form to consolidate variants (e.

g., “studying,” “studies,” and “study” were all lemmatized to “study”). 
Documents with fewer than three valid tokens after preprocessing were excluded from further 

analysis to ensure sufficient textual substance for topic modeling. 
 
3.3. LDA Model Implementation and Training 

For topic extraction, we utilized the Gensim implementation of LDA, which is widely recognized 
for its computational efficiency and compatibility with large-scale text corpora [4]. To maintain 
consistency and interpretability across all three disciplinary corpora, the number of topics was initially 
fixed at four. This decision was informed by prior studies suggesting that lower topic numbers enhance 
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interpretability in short-text contexts such as titles, and was later verified through coherence score 
optimization. 
Each LDA model was trained independently on its respective disciplinary corpus. The following 
hyperparameters were employed: 

• Number of topics: 4 

• Alpha: Set to ‘auto’ to allow dynamic adjustment of the Dirichlet prior 

• Passes: 10 

• Random seed: 42, to ensure model reproducibility 
Additionally, multiple models with topic numbers ranging from 3 to 10 were trained during the 

exploratory phase to assess the optimal topic structure. This process involved human-in-the-loop 
inspection in combination with coherence scoring and perplexity-based evaluation. 
 
3.4. Evaluation Metrics and Model Selection 

Model evaluation was conducted using both intrinsic and extrinsic metrics. The primary coherence 
metric used was the c_v score, which assesses the degree of semantic similarity among the top keywords 
within each topic. This measure is known to align well with human judgments of topic quality [11]. To 
complement this, the U_MASS coherence score was also computed to provide a probabilistic estimate of 
internal consistency. For generalizability assessment, perplexity scores were calculated on held-out 
validation subsets to estimate how well the model could predict unseen data [12]. 

To ensure robustness, all three disciplinary LDA models were subjected to the same evaluation 
pipeline. Final topic models were selected based on the highest average c_v coherence score, with 
u_mass and perplexity serving as secondary diagnostics. 
 
3.5. Visualization and Topic Interpretation 

Interpretability of the resulting topic models was addressed using both quantitative and qualitative 
methods. Quantitatively, we employed LDAvis, an interactive visualization tool that enables users to 
explore the relationship between topics and their constituent keywords in two-dimensional space using 
multidimensional scaling (MDS) [6]. This visualization facilitated the assessment of inter-topic 
distance, topic dominance, and keyword salience, which proved critical in assigning meaningful labels to 
each topic. 

Qualitatively, manual topic validation was performed by three domain experts, each specializing in 
one of the target disciplines. These experts reviewed the top-ranked keywords and a sample of 
associated titles for each topic, providing descriptive labels and assessing thematic coherence. 
Discrepancies in interpretation were resolved through consensus. 
 
3.6. Domain-Specific Model Structuring 

To minimize interpretational confounding due to topic overlap across domains, we adopted a 
domain-separated modeling strategy. Rather than combining all titles into a single global model, which 
could obscure field-specific nuances, we trained independent LDA models for each domain. This 
approach preserved the internal semantics of each corpus while enabling more precise comparisons 
across domains. 

Furthermore, we computed the marginal topic distributions for each corpus to examine topic 
prevalence and identify dominant research directions. This helped contextualize how deep learning is 
framed and emphasized differently across disciplines. For example, a topic centered around "model 
optimization" may be dominant in engineering, while "data ethics and fairness" may surface more 
prominently in social sciences. 
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3.7. Methodological Summary 
In sum, the materials and methods employed in this study integrate rigorous preprocessing, robust 

unsupervised modeling, domain-specific validation, and state-of-the-art visualization. By combining 
LDA-based topic modeling with expert-driven interpretation and cross-domain comparison, we provide 
a comprehensive methodological framework for analyzing the intellectual structure of deep learning 
research across multiple scientific disciplines. This approach ensures both analytical depth and 
interpretive clarity, thereby enabling the subsequent sections to offer empirically grounded insights into 
the thematic evolution of deep learning in contemporary scholarship [13]. 
 

4. Results 
This section presents a detailed account of the LDA topic modeling outcomes across the three 

target domains: engineering, natural sciences, and social sciences. For each discipline, four distinct 
latent topics were identified based on their most representative keywords. These thematic structures 
were further interpreted in the context of domain-specific research practices and scientific objectives. To 
assess the robustness and validity of the generated topics, evaluation metrics such as coherence score 
and perplexity were employed. These quantitative indicators were complemented by qualitative 
assessments to ensure interpretability and semantic coherence. 

The modeling outcomes reveal that deep learning research manifests with distinctive thematic 
priorities across the three disciplines, reflecting their epistemological orientations, data practices, and 
technological maturity. In the engineering domain, topics are strongly centered around system-level 
implementation and control architecture. For instance, Topic 1 shows frequent use of keywords such as 
model, control, and monitoring, indicating the integration of deep learning into embedded systems and 
automation workflows. This thematic focus suggests a discipline primarily concerned with optimizing 
real-time responsiveness, fault detection, and reliability in intelligent systems. The recurrent presence of 
terms like network, channel, and tracking further supports this observation, indicating a convergence 
between communication engineering and reinforcement learning techniques. 

In the natural sciences, the topic structures were markedly shaped by data-driven experimentation 
and imaging technologies. Keywords such as MRI, assessment, tomography, and diagnostic 
prominently emerged, highlighting the application of deep learning in biomedical image analysis and 
structured data modeling. This aligns closely with ongoing efforts in computational biology, radiology, 
and environmental sensing, where AI methods are used to enhance diagnostic accuracy, automate 
complex measurement pipelines, and facilitate data-intensive discovery. The relatively high coherence 
scores obtained in this domain underscore the conceptual tightness and maturity of deep learning 
research in the natural sciences, where model performance is often evaluated within highly standardized 
experimental protocols. 

In contrast, the social sciences exhibited a more diverse and exploratory set of topic patterns. 
Thematic clusters included ensemble learning methods, socioeconomic forecasting, behavioral analytics, 
and policy modeling. Representative keywords such as forecasting, ensemble, framework, and algorithm 
point to a growing interest in integrating computational models into the analysis of complex human 
systems. The relatively lower coherence scores observed for this domain reflect the epistemic 
heterogeneity of the social sciences, where qualitative and quantitative methodologies often coexist. 
This diversity, however, should not be interpreted as a deficiency; rather, it suggests that deep learning 
is still in the process of being culturally and methodologically assimilated into social science research 
practices. 

Despite these disciplinary distinctions, the topic models also revealed several shared methodological 
trends. Across all domains, keywords such as model, analysis, approach, and framework were frequently 
observed. This convergence indicates that while the applications of deep learning differ by field, the 
underlying computational strategies are becoming increasingly standardized. The widespread adoption 
of hybrid modeling frameworks, sensor-integrated architectures, and automated image-based systems 
suggests a cross-disciplinary movement toward modular, reusable deep learning solutions. 



72 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 12: 66-80, 2025 
DOI: 10.55214/2576-8484.v9i12.11273 
© 2025 by the author; licensee Learning Gate 

 

4.1. Engineering 
The engineering domain revealed highly coherent and application-driven topics, reflecting the 

field’s long-standing emphasis on technological implementation, system optimization, and real-time 
control. The four dominant themes identified through topic modeling encapsulate key areas where deep 
learning is being operationalized to enhance system intelligence, autonomy, and adaptability. 

• Reinforcement learning and MIMO communication systems: One major topic cluster focused on
 the integration of reinforcement learning algorithms with multiple-input multiple-output (MI
MO) architectures. The presence of keywords such as mimo, channel, reinforcement, and tracking in
dicates a strong research focus on adaptive signal processing, network throughput optimization,
 and real-time learning in wireless communication environments. This area benefits from deep l
earning’s ability to model dynamic, high-dimensional input spaces and adjust decision policies in
 uncertain or variable conditions. 

• Image-based automation and hybrid neural networks: Another key topic involved the use of con
volutional and hybrid neural network models for automated image analysis. Keywords like imag
e, automatic, review, and optical suggest that engineering applications are advancing in areas such
 as industrial inspection, object detection, and computer-aided visual assessment. These technolo
gies are increasingly deployed in manufacturing pipelines, quality assurance systems, and roboti
c vision, where accuracy, speed, and scalability are paramount. 

• Sensor-integrated control and monitoring systems: Deep learning is also being embedded in cyb
er-physical systems where sensor data must be interpreted and acted upon in real time. Topic te
rms such as monitoring, control, modeling, and sensing indicate a fusion of traditional control theor
y with neural inference mechanisms. Applications span from smart grids and HVAC systems to 
autonomous vehicles, where sensor fusion and predictive modeling enable context-aware control
 under uncertain or rapidly changing conditions. 

• Frameworks for robust pattern recognition: The fourth thematic cluster centers around architec
tural frameworks and algorithmic designs for robust feature extraction and pattern classificatio
n. Keywords like framework, features, planning, and architecture imply a concerted effort to develop
 generalizable systems that can be adapted across various engineering domains. This research is 
particularly relevant for scalable deployment in edge AI and embedded inference applications. 

 
Table 1.  
Top 10 keywords extracted from LDA topics for each domain. 

 
Table 1 summarizes the 10 main keywords for each topic, and Figure 1 in the appendix visualizes 

the results. The coherence score for the engineering corpus was 0.5607, and the perplexity was 
measured at -8.3560, indicating a favorable balance between topic clarity and predictive performance. 
Notably, frequently appearing terms such as network, channel, and monitoring reinforce the inference that 
deep learning is being strategically positioned within the infrastructure of real-time systems. These 
findings are consistent with contemporary advances in robotics, autonomous navigation, and smart 
manufacturing domains [13, 14]. 

Furthermore, the emergence of terms like fault, vehicle, and sensor reveals an increasing concern with 
reliability and responsiveness hallmarks of modern engineering systems operating at the edge. The 

Discipline & Topic Top Keywords Interpretation 
Engineering - Topic 
0 

MIMO, image, reinforcement, systems, massive, 
networks, network, channel, tracking, assisted 

MIMO systems and RL in 
communications 

Engineering - Topic 
1 

image, imaging, approach, network, automatic, review, 
automated, optical, images, analysis 

Image processing and automated review 
systems 

Engineering - Topic 
2 

framework, images, fast, planning, data, detection, 
automated, architecture, analysis, features 

High-speed image processing frameworks 

Engineering - Topic 
3 

model, approach, method, systems, control, channel, 
modeling, image, monitoring, sensing 

Modeling and sensing for control systems 
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integration of deep learning into these contexts is facilitating more adaptive, intelligent control 
mechanisms that go beyond rule-based logic, enabling proactive diagnostics, context-sensitive 
actuation, and continuous system optimization. 

Taken together, the engineering domain’s topic landscape reflects a mature and technologically 
aligned adoption of deep learning, emphasizing functionality, performance, and operational efficiency. This 
suggests not only that deep learning has found a stable foothold within engineering workflows but also 
that it is actively transforming the design principles and architectures of next-generation engineered 
systems. 
 
4.2. Natural Sciences 

In the natural sciences, the LDA topic modeling revealed four thematically distinct and analytically 
cohesive topic clusters, each reflecting a strong orientation toward empirical research, quantitative 
rigor, and domain-specific problem solving. Compared to engineering and social sciences, the topics in 
this field were markedly characterized by high-dimensional data analysis and precision diagnostics. 
These results align with the natural sciences’ methodological emphasis on reproducibility, data 
accuracy, and hypothesis-driven inquiry. 

• Medical image analysis for cancer detection using MRI and CT: The most prominent topic cent
ers around the application of deep learning techniques in clinical radiology, particularly for onco
logy-related tasks. Keywords such as image, cancer, MRI, tomography, and automatic indicate inten
sive use of convolutional neural networks (CNNs) and transformer-based models in detecting an
d classifying cancerous tissues from MRI, CT, and PET scans. This research area is critical for a
dvancing early diagnosis, reducing false positives, and enabling non-invasive screening protocol
s. 

• Geospatial and seismic data modeling: Another major topic dealt with the modeling of Earth sci
ence data, especially seismic signals and geographic information systems (GIS). The appearance 
of keywords like seismic, surface, mapping, and workflow points to a growing adoption of deep lear
ning for geophysical signal processing, landform recognition, and hazard prediction. These tech
niques are used to improve the resolution and speed of earthquake detection, map fault lines, and
 support natural resource exploration. 

• Computer-aided diagnosis systems and treatment planning: A third topic focused on systems de
signed to support or automate clinical decision-making. Keywords such as assessment, dose, prosta
te, assisted, and study suggest efforts to refine treatment protocols in radiation therapy, urology, a
nd personalized medicine. Deep learning is applied here to predict patient outcomes, optimize th
erapeutic regimens, and assist radiologists and oncologists with interpretive tasks. 

• Multimodal assessment frameworks: The fourth topic was more methodological, involving the f
usion of heterogeneous data types for integrated analysis. Terms such as data, cell, framework, an
d models reflect the use of deep learning to combine imaging, genomic, and biophysical data strea
ms. This multimodal approach is central to systems biology and translational research, where u
nderstanding complex interactions requires synthesizing data across scales and modalities. 

 
Table 2.  
Top 10 keywords extracted from LDA topics for Natural Science. 

Discipline & Topic Top Keywords Interpretation 

Natural Sciences - Topic 0 image, cancer, model, method, approach, automatic, 
tomography, framework, analysis, MRI 

Medical imaging and cancer 
detection 

Natural Sciences - Topic 1 image, analysis, method, review, mapping, system, 
workflow, surface, framework, seismic 

Seismic and surface data analysis 

Natural Sciences - Topic 2 image, MRI, study, assisted, approach, data, dose, 
prostate, novel, models 

MRI-based clinical support 
studies 

Natural Sciences - Topic 3 image, data, model, assisted, assessment, approach, 
analysis, seismic, cell, system 

Scientific data assessment and 
modeling 
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Table 2 summarizes the 10 main keywords for each topic, and Figure 2 in the appendix visualizes 
the results. The coherence score for the natural sciences domain was 0.5868, the highest among all three 
fields, indicating a particularly strong internal thematic consistency. The associated perplexity score, 
while not explicitly reported here, was also found to be lower than that of the social sciences corpus, 
reinforcing the interpretive clarity and semantic tightness of the topics. The recurrence of terms like 
MRI, assessment, and quantitative reflects the domain’s prioritization of precise measurement, 
methodological standardization, and clinical applicability [15, 16]. 

These findings are consistent with broader trends in biomedical and environmental sciences, where 
large-scale structured data such as imaging arrays, time-series signals, and spatial measurements play a 
foundational role. In biomedical contexts, deep learning accelerates the pace of diagnostic innovation, 
reducing diagnostic latency and enabling more proactive disease management. In environmental 
applications, similar models are used to process satellite imagery for land cover classification, track 
climate change indicators, and monitor biodiversity through remote sensing. 

Moreover, the adoption of explainable AI (XAI) principles is gaining traction within this domain, as 
clinical and scientific end-users increasingly demand interpretability alongside performance. Models 
must not only be accurate but also justifiable in terms of medical and scientific reasoning. This has led 
to a rise in hybrid models that combine deep learning with rule-based systems or statistical inference 
frameworks, particularly in high-stakes applications. 

In sum, the topic landscape in natural sciences demonstrates a sophisticated and domain-integrated 
use of deep learning. These technologies are no longer experimental tools but are being embedded into 
core scientific workflows, from hypothesis generation and experimental design to diagnostic reporting 
and environmental monitoring. The methodological rigor and high coherence of the topics suggest that 
the natural sciences are among the most mature domains in applying deep learning to domain-specific 
challenges, both in theoretical sophistication and translational impact. 
 
4.3. Social Sciences 

The social sciences domain exhibited the most diverse, exploratory, and methodologically pluralistic 
set of topic structures among the three disciplines analyzed. The LDA results suggest that while deep 
learning is less entrenched in this field compared to engineering or natural sciences, its presence is 
nonetheless growing, particularly in areas concerned with prediction, behavioral modeling, and 
algorithmic governance. The four topics identified reflect this early-stage but expanding adoption of 
computational methods. 

• Social and economic forecasting models: One major topic centered on the use of deep learning to
 model and predict complex socio-economic phenomena. Keywords such as forecasting, model, dat
a, and networks suggest applications in economic trend prediction, public health surveillance, and
 labor market modeling. The incorporation of deep neural networks allows social scientists to en
gage with larger, more dynamic datasets, including time-series and spatiotemporal social indicat
ors, which traditional econometric models may not fully capture. 

• Image and network-based social data analysis: Another topic revealed a methodological shift to
ward visual and network-centric data interpretation. Keywords such as image, network, design, ne
ural, and automatic indicate the use of deep learning for analyzing digital artifacts such as social 
media images, facial expression data, and online interaction networks. This theme intersects wit
h computational communication and media studies, where neural network models are increasing
ly applied to understand the diffusion of ideas, visual culture, and online behavior patterns. 

• Ensemble and hybrid modeling approaches: A third topic focused on ensemble methods and mul
ti-model integration strategies. Terms like ensemble, hybrid, prediction, and framework reflect the fi
eld’s experimentation with combining deep learning models with traditional statistical techniqu
es such as regression, decision trees, or Bayesian inference. This hybridization trend suggests th
at researchers in social sciences are seeking to retain interpretability while leveraging the predic
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tive power of deep models, particularly in contexts involving uncertainty and heterogeneous dat
a sources. 

• Algorithmic policy frameworks and behavior modeling: The final topic concerned the role of alg
orithms in policy-making and behavior analysis. Keywords including policy, algorithm, power, fra
mework, and behavior point to a growing interest in understanding the societal impact of algorith
mic systems, as well as using AI for behavioral forecasting and governance simulation. This the
me bridges computational social science with public administration, ethics, and political science, 
suggesting that deep learning is beginning to inform policy design, regulation, and evaluation. 

 
Table 3.  
Top 10 keywords extracted from LDA topics for Social Science. 

Discipline & Topic Top Keywords Interpretation 
Social Sciences - Topic 0 Approach, model, data, forecasting, image, networks, system, 

novel, cancer, modeling 
Forecasting and social 
modeling 

Social Sciences - Topic 1 Image, network, analysis, model, automatic, networks, design, 
neural, MIMO, massive 

Image and neural network-
based analysis 

Social Sciences - Topic 2 Approach, model, image, ensemble, modeling, prediction, 
predicting, method, framework, hybrid 

Ensemble/hybrid prediction 
approaches 

Social Sciences - Topic 3 Model, forecasting, analysis, framework, data, method, 
methods, approach, power, algorithm 

Algorithmic models for 
policy/power data 

 
Table 3 summarizes the 10 main keywords for each topic, and Figure 3 in the appendix visualizes 

the results. While the coherence score (0.4709) was lower than that of the other two domains, this result 
should be interpreted in light of the epistemological heterogeneity characteristic of social sciences. 
Unlike engineering and natural sciences, which often deal with well-structured and quantitatively 
robust data, social sciences engage with more ambiguous, interpretive, and contextual information. 
Thus, lower coherence may reflect thematic diversity rather than model weakness. Keywords such as 
framework, forecasting, and modeling underscore a growing methodological convergence toward data-
centric inquiry [17, 18]. 

Importantly, the appearance of the term algorithm across multiple topics reflects a deeper 
methodological transformation. Social scientists are increasingly shifting from traditional qualitative 
techniques such as ethnography, interviews, and archival analysis toward approaches that mine, classify, 
and predict behavior using unstructured digital traces. These traces include user-generated content 
from social media, GPS and mobility data from smartphones, and interaction patterns from online 
platforms. The capacity of deep learning to analyze such data in real time creates new opportunities for 
evidence-based decision-making, policy intervention, and behavioral simulation. 

This represents a paradigm shift in social science research, where AI tools are not only used to 
analyze existing social systems but also to model hypothetical policy outcomes, explore causal 
relationships, and predict future societal trends. Moreover, concerns about algorithmic bias, data 
privacy, and explainability are spurring meta-research into the ethics and governance of AI within the 
social realm. 

In conclusion, the social sciences are undergoing a transitional phase with respect to deep learning 
adoption. Although still in its formative stages compared to other disciplines, the field is showing 
promising signs of embracing algorithmic thinking, hybrid modeling, and large-scale data analytics. 
This evolution signals a move toward computational reflexivity, where the tools of analysis themselves 
become part of the subject of study. As deep learning matures within social research, it holds the 
potential to transform how we understand, model, and shape human behavior, institutions, and societal 
change. 
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5. Discussion and Conclusions 
This study set out to examine the evolving landscape of deep learning research through a cross-

disciplinary lens, employing Latent Dirichlet Allocation (LDA) topic modeling to analyze 3,000 research 
paper titles drawn from engineering, natural sciences, and social sciences. Through this 
methodologically rigorous and data-driven approach, we identified four latent thematic clusters per 
discipline, uncovering distinctive research priorities and methodological tendencies in each field. Our 
results highlight the divergent yet occasionally overlapping ways in which deep learning has been 
conceptualized, implemented, and adapted across disciplinary boundaries. 

In the domain of engineering, the results strongly indicate a focus on pragmatic applications of deep 
learning. The prominence of topics related to real-time control, embedded neural architectures, and 
autonomous systems reflects the field’s alignment with hardware integration, reliability, and 
performance optimization. Such trends are emblematic of engineering’s emphasis on system-level 
implementation, where deep learning is increasingly serving as the backbone for automation in areas 
like robotics, industrial diagnostics, and communication systems. The co-occurrence of terms such as 
“channel,” “monitoring,” and “vehicle” underscores this applied orientation. 

By contrast, the natural sciences exhibit a pattern centered on empirical precision, clinical 
integration, and diagnostic automation. Topics such as MRI-based image analysis, dose optimization, 
and multimodal data assessment indicate the growing maturity of deep learning within biomedical and 
geophysical contexts. The high coherence scores in this domain support the idea that natural sciences 
are leveraging AI not merely as an analytical supplement but as a fundamental methodological core. In 
fields such as radiology, oncology, and seismology, deep learning models are increasingly embedded in 
scientific workflows that demand interpretability, reproducibility, and high-dimensional data handling. 

The social sciences, in comparison, present a broader and more pluralistic thematic landscape. The 
diversity of topics from ensemble forecasting models to algorithmic governance reflects an ongoing shift 
toward computational social science. While the coherence scores are comparatively lower, this aligns 
with the field’s interpretive flexibility and epistemological heterogeneity. Importantly, terms such as 
“policy,” “behavior,” and “algorithm” suggest a growing engagement with the ethical, societal, and 
human-centered implications of artificial intelligence. In this context, deep learning is not simply a 
predictive instrument but a lens through which social systems, norms, and inequalities are being re-
examined. 

Notwithstanding these disciplinary distinctions, several cross-cutting patterns emerged. The 
frequent appearance of terms such as “model,” “framework,” “analysis,” and “system” across all domains 
signals a convergence toward shared methodological practices. Deep learning appears to be catalyzing 
an epistemic realignment in which modeling and data-driven reasoning act as unifying paradigms. This 
not only facilitates interdisciplinary dialogue but also enables methodological transfers such as applying 
diagnostic tools from medical imaging to behavioral prediction in policy settings. Such convergence 
underscores the growing importance of computational thinking as a lingua franca across sciences. 

From a methodological perspective, the use of LDA topic modeling proved to be an effective meta-
analytical strategy for synthesizing scientific discourse. Beyond identifying thematic prevalence, this 
approach illuminated the internal organization of research domains and revealed how terminological 
clusters evolve and cohere. Evaluation metrics like coherence and perplexity provided quantitative 
measures of topic quality, while qualitative interpretation allowed for context-sensitive domain 
mapping. This dual-mode approach reinforces the value of unsupervised learning in bibliometric and 
science-of-science studies [19, 20]. 

Looking ahead, future research may benefit from several extensions. First, incorporating full-text 
analysis rather than title-only data would enrich the semantic granularity of topic modeling, allowing 
for deeper insights into argumentation patterns and methodological nuances. Second, moving beyond 
disciplinary groupings to explore subdomain-level differences (e.g., within engineering: energy systems 
vs. robotics) could yield a finer-grained understanding of research specialization. Third, integrating 
LDA with citation network analysis, co-authorship data, or author-topic modeling would illuminate 
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patterns of collaboration, intellectual lineage, and knowledge diffusion. Finally, the inclusion of human-
in-the-loop feedback mechanisms could help refine topic validity and enhance model interpretability for 
interdisciplinary audiences. 

In summary, this study affirms that deep learning is not merely a technological phenomenon but a 
transformational force that is reshaping scientific inquiry across domains. It acts as both an enabler of 
discovery and a catalyst for methodological innovation. By adopting a comparative framework, we offer 
a novel perspective on how different academic communities are internalizing and operationalizing AI 
technologies. Ultimately, this work contributes to a broader conversation on the epistemological and 
institutional implications of machine learning, encouraging further meta-analytical research that bridges 
disciplinary divides and fosters integrative knowledge production. 
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Topic Visualization by Domain. 

 

 
Figure 1.  
Intertopic Distance Map and Top Terms for the Engineering Domain. 
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Figure 2.  
Intertopic Distance Map and Top Terms for Natural Sciences Domain. 
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Figure 3.  
Intertopic Distance Map and Top Terms for Social Sciences Domain 

 


