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Abstract: The integration of digital technology in mathematics education has expanded learning 
opportunities while simultaneously introducing multitasking demands that may impact student 
performance. Despite substantial research on the negative effects of multitasking, large-scale empirical 
evidence comparing sequential and concurrent multitasking within mathematical problem-solving 
contexts remains limited. This study aims to examine and compare the effects of sequential and 
concurrent multitasking on students' mathematical problem-solving performance using extensive 
computer-based assessment data. A quantitative, comparative, ex-post-facto design was employed, 
analyzing 21,484 student responses from digital mathematics assessments. Performance metrics 
included accuracy rates, response times, and task viewing times across two multitasking conditions. 
Results showed that concurrent multitasking demonstrated superior performance across all measured 
indicators: higher accuracy (18.6% vs. 17.7%), faster response times (110.4 vs. 172.6 seconds), and 
shorter viewing times (119.1 vs. 191.9 seconds) compared to sequential multitasking. Sequential 
multitasking required 56.3% longer response times, indicating high task-switching costs. These findings 
challenge conventional assumptions about the detrimental effects of concurrent multitasking in 
educational contexts. For digital education, the results suggest that interface designs supporting 
concurrent problem access may enhance learning efficiency by reducing cognitive overhead associated 
with task switching. Educational technology developers should consider implementing concurrent 
presentation formats for related mathematical problems rather than enforcing sequential processing 
approaches. 
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1. Introduction  

In the digital era, integrating technology into mathematics learning has opened up new 
opportunities for enhancing access to content, learner engagement, and the quality of instruction. 
Ideally, digital learning environments are expected to improve students' problem-solving abilities by 
fostering cognitive efficiency and adaptive learning strategies. However, the same technological 
advancements that enable richer learning experiences have also contributed to increased distractions, 
particularly multitasking. The widespread use of smartphones, laptops, and social media platforms has 
led students to frequently divide their attention across multiple tasks, even during cognitively 
demanding activities like solving mathematical problems. 

Recent studies have documented that multitasking, whether in sequential (task switching) or 
concurrent (simultaneous) forms, negatively affects learning outcomes, memory retention, and academic 
performance [1, 2]. Although some students view multitasking as a modern skill aligned with digital 
fluency [3], the cognitive costs are well established. Sequential multitasking typically incurs switching 
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costs that slow down performance, while concurrent multitasking, such as texting during a lesson, often 
results in higher cognitive load and greater performance interference [4, 5]. Despite increased exposure 
to digital tools, the disadvantages of multitasking persist, reinforcing the need for empirical insights 
into how these behaviors specifically impact mathematics learning. 

In practice, much of the existing research on multitasking remains limited to small-scale 
experiments and self-report studies. These methods, while insightful, fail to capture the complexity and 
authenticity of multitasking in digital learning environments, particularly those involving computer-
based testing (CBT). For instance, self-reported multitasking often underestimates actual behavior [6], 
and educational interventions to reduce multitasking have shown limited long-term effectiveness [7]. 
Furthermore, the existing body of research lacks a rigorous examination of multitasking in 
mathematics-specific contexts, especially when students must integrate conceptual, procedural, and 
strategic knowledge. 

There remains a notable gap in large-scale studies that directly compare sequential and concurrent 
multitasking in digital mathematics learning. While some recent studies have begun to address this, 
such as Sommerhoff et al. [8], which examined instructional approaches for mathematical 
argumentation, most findings are context-dependent and do not reflect broader patterns across diverse 
student populations. Research from multimedia learning contexts supports the claim that both types of 
multitasking impair learning, but concurrent multitasking is consistently more disruptive [9]. No 
comprehensive empirical framework directly examines the performance implications of multitasking 
styles using large-scale CBT data. 

The present study introduces a data-driven analytical approach using actual CBT performance 
metrics to address this gap. It focuses on two key indicators: task switching cost for sequential 
multitasking and task interference ratio for concurrent multitasking. By analyzing these metrics, the 
study aims to offer a more accurate depiction of how different multitasking strategies affect accuracy 
and efficiency during digital mathematics problem solving. This approach provides empirical evidence of 
student performance and offers a foundation for rethinking how digital learning tasks should be 
structured concerning students' multitasking behaviors. 

The primary objective of this study is to compare the accuracy and completion time associated with 
sequential and concurrent multitasking to generate actionable recommendations for digital assessment 
and instructional design. The study's contributions are both theoretical and practical: it introduces a 
performance-based framework for understanding multitasking in digital learning contexts. It provides 
insights for educators and assessment developers seeking to optimize task design, reduce cognitive 
overload, and enhance students' problem-solving experiences in mathematics. 

This study employs large-scale CBT data to examine student behavior patterns under sequential 
and concurrent multitasking conditions, using response accuracy and task duration as primary 
performance indicators. The results show substantial differences in efficiency and precision between the 
two multitasking approaches, offering meaningful insights for instructional design and assessment 
planning. Overall, the research contributes to developing cognitively sustainable digital learning 
environments by linking multitasking theory with real-world student performance in mathematics. 
 

2. Theoretical Framework 
2.1. Multitasking and Mathematical Problem Solving 

A suitable theoretical foundation for this study integrates insights from cognitive theories of 
multitasking and mathematical problem solving, particularly regarding how attention, working 
memory, and executive control operate under multitasking conditions in digital contexts. Formal 
cognitive models of multitasking offer structured explanations for performance dynamics in 
multitasking environments, highlighting mechanisms such as task switching costs in sequential 
multitasking and interference ratios in concurrent multitasking. These models provide essential tools 
for quantitatively analyzing efficiency and accuracy, allowing researchers to assess how individuals 
allocate cognitive resources across tasks [10]. 
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Complementing this, the computational complexity framework emphasizes the intrinsic cognitive 
demands of mathematical problem solving. It acknowledges that human strategies are often 
heuristically driven and suboptimal compared to algorithmic ideals, particularly under divided attention. 
This perspective underscores the necessity of studying real-world performance in multitasking 
scenarios, focusing on how cognitive limitations and strategy choices influence mathematical outcomes 
[11]. Integrating this lens allows for a more realistic understanding of problem-solving behavior in 
digital environments. 

The RAMPS (Regulated Attention in Mathematical Problem Solving) framework also brings a 
metacognitive and affective dimension to the analysis, emphasizing how attention regulation, working 
memory, and emotional factors such as math anxiety shape problem-solving effectiveness. Particularly 
relevant in multitasking contexts, RAMPS highlights the critical role of metacognitive monitoring in 
navigating cognitive load and maintaining focus on mathematical tasks [12]. These three theoretical 
models, formal cognitive multitasking models, computational complexity, and RAMPS, form a 
comprehensive foundation to analyze how sequential and concurrent multitasking impact students' 
mathematical performance in digital learning environments. 

 
2.2. Related Studies on Multitasking and Mathematical Problem Solving 

Several prior studies offer essential insights into the effects of multitasking on students' 
mathematical problem solving, particularly within digital or computer-based environments. While few 
directly replicate a large-scale comparative design, their findings enrich this research's conceptual and 
methodological foundation. For instance, Nisa et al. [13] examined students' cognitive strategies in 
multitasking-based math problems and found that variations in problem-solving approaches were 
influenced by experience and practice. This suggests that multitasking affects accuracy, time, and the 
choice of strategy and cognitive stages involved in solving mathematical tasks. 

Additionally, Lin et al. [14] explored the dynamics of multitasking, specifically, task switching and 
dual tasking in virtual collaborative problem-solving settings. Their findings revealed that when paired 
with peer collaboration, multitasking can enhance efficiency and accuracy, offering an essential nuance 
to the typical narrative that multitasking is purely detrimental. Lin et al. [14], although not directly 
studying multitasking, investigated how pressure and working memory load affect mathematical 
performance. Their findings support distraction theories and show how divided attention, a core feature 
of multitasking, impairs performance on complex or unfamiliar problems. Furthermore, Ruitenburg et 
al. [15] demonstrated that active problem solving, as opposed to passive example-based learning, leads 
to more robust long-term mathematical understanding, underscoring the importance of cognitive 
engagement, which may be compromised by multitasking. 

These studies help contextualize the present research by illustrating how cognitive load, attentional 
control, collaborative settings, and strategy use interact within digital mathematics learning. They 
inform the comparative analysis between sequential and concurrent multitasking and support the 
development of empirically grounded recommendations for digital assessment and instructional design. 
By situating this study within these empirical contributions, the research builds on existing evidence 
while addressing the current gap in large-scale performance-based comparisons. 
 
2.3. Research Gap  

A significant research gap persists in comparing students' mathematical problem-solving 
performance under sequential (alternating) and simultaneous (concurrent) multitasking conditions, 
particularly within large-scale, computer-based settings. While earlier studies have explored students' 
cognitive processes during multitasking in math tasks, these investigations have been mainly qualitative 
or based on small samples, without systematically measuring performance metrics such as accuracy and 
completion time across multitasking types [13]. Moreover, existing research tends to focus on general 
cognitive flexibility, collaborative problem solving, or the impact of pressure and working memory on 
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mathematical performance [16, 17] rather than directly examining how multitasking structures 
influence task efficiency and precision in real-world digital environments. 

By introducing a large-scale, quantitative approach, this study directly addresses these gaps by 
comparing students' performance under sequential and concurrent multitasking using computer-based 
testing data. It incorporates performance metrics such as task switching costs [18-20] and interference 
ratios [9, 21, 22]. Analyze differences in efficiency and accuracy, providing empirical insights that 
previous studies have lacked. The findings are expected to contribute to theoretical understanding and 
practical improvements in the design of digital assessments and instructional strategies. This area 
remains underexplored in current educational research. 
 

3. Method 
3.1. Sampling 

The study utilized total sampling, analyzing all available data from the population of students who 
participated in the computer-based multitasking mathematics assessment. This approach ensures that 
the sample (21,484 student responses) fully represents the population, minimizing bias and enhancing 
the generalizability of the findings [23, 24]. 
 

3.2. Instrumentation 
Two multiple-choice mathematics questions served as the research instruments, each designed to 

represent a different multitasking condition. One question assessed sequential (alternating) 
multitasking, while the other evaluated concurrent (simultaneous) multitasking. Careful instrument 
selection is crucial to ensure the reliability and validity of the data collected [23]. 
 
3.3. Data Collection 

Data were automatically collected from the computer-based testing (CBT) system. The system 
recorded student answers, answer keys, the time taken to answer each question, and the time spent 
viewing each question. Automated data collection enhances precision and reduces the risk of human 
error, supporting accurate measurement of key variables [23]. 
 
3.4. Data analysis 

Initial data processing involved determining the correctness of answers and grouping responses by 
multitasking type. Descriptive statistics were calculated for accuracy, response time, and question 
viewing time. For inferential analysis, independent t-tests or ANOVA were planned to test for 
significant differences in performance between the two multitasking conditions. Data visualization, 
including tables and bar charts or boxplots, was used to clearly present comparative results [23]. 
 

4. Results 
Descriptive analysis shows differences in student performance between sequential and concurrent 

multitasking conditions in CBT-based mathematical problem solving. The findings indicate that 
student accuracy was slightly higher in the concurrent multitasking condition (18.6%) compared to the 
sequential condition (17.7%). This suggests that performing tasks simultaneously does not necessarily 
impose a greater cognitive load; instead, the result may be influenced by the nature of the questions or 
the problem-solving strategies employed by the students. 

In contrast, response and question-viewing times were notably longer in the sequential condition 
(average response time: 172.6 seconds; viewing time: 191.9 seconds) compared to the concurrent 
condition (average response time: 110.4 seconds; viewing time: 119.1 seconds). This implies that 
completing one task before switching to another may involve a switching cost or require additional 
cognitive effort to retain and reactivate contextual information. These patterns highlight that task 
structure can meaningfully influence the efficiency and effectiveness of students' mathematical problem-
solving in digital environments. 
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Figure 1. 
Accuracy Comparison. 

 
Figure 1 presents a bar chart comparing students' accuracy rates in mathematical problem solving 

under two multitasking conditions: concurrent and sequential. The results show that accuracy in the 
concurrent multitasking condition was slightly higher, exceeding 18%, compared to just under 17% in 
the sequential condition. Although the difference between the two groups is relatively small, it suggests 
that students employing concurrent multitasking tend to produce more accurate answers than those 
using a sequential approach. Beyond speed advantages observed in prior analyses, concurrent 
multitasking also demonstrated a marginal improvement in accuracy, indicating that performing tasks 
simultaneously does not diminish and may even enhance students' precision in answering. Nevertheless, 
the statistical significance of this difference requires further validation through inferential tests, such as 
independent t-tests or Mann–Whitney tests. These findings have potential pedagogical implications, as 
they suggest that concurrent multitasking could be strategically integrated into mathematics learning 
activities to improve efficiency and accuracy, provided task design and cognitive load are carefully 
managed. 
 



822 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 12: 817-826, 2025 
DOI: 10.55214/2576-8484.v9i12.11483 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 2. 
Distribution of Response Time. 

 
Figure 2 presents a boxplot illustrating the distribution of students' response times (in seconds) for 

mathematics problems under two multitasking conditions: sequential (performed step-by-step) and 
concurrent (performed simultaneously). The descriptive statistics indicate that the median response time 
in the sequential condition was higher than in the concurrent condition, reflecting generally slower task 
completion. Sequential multitasking also displayed a wider range of response times and more extreme 
outliers, as shown by longer whiskers and more data points outside the box. In contrast, concurrent 
multitasking exhibited a more concentrated and narrower distribution, albeit with some outliers 
remaining. Visually, students in the sequential condition tended to require more time to complete the 
tasks than those in the concurrent condition. These results suggest that concurrent multitasking 
enabled students to work more efficiently overall, with a more stable distribution of response times. In 
contrast, sequential multitasking showed greater variability in performance, possibly indicating 
inconsistent effectiveness across students. Outliers in both conditions highlight that specific individuals 
took unusually long to respond, particularly in the sequential group. Overall, the findings support the 
potential of concurrent multitasking to improve time efficiency in mathematical problem solving, 
provided that questions of answer quality and cognitive load are addressed in future research. 
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Figure 3. 
Distribution of Question Viewing Time. 

 
The descriptive analysis of Figure 3, which compares question-viewing times under sequential and 

concurrent multitasking conditions, reveals distinct differences in students' engagement patterns. The 
median viewing time was higher in the sequential condition, with a wide interquartile range (IQR) 
indicating substantial variability. Viewing times ranged from nearly 0 seconds to almost 500 seconds, 
and several extreme outliers exceeded 450 seconds. By contrast, the concurrent condition showed a 
lower median viewing time and a narrower IQR, suggesting more consistent viewing behavior, with 
maximum times reaching only around 400 seconds despite multiple outliers. These patterns indicate 
that students in the sequential condition generally spent more time viewing questions, with greater 
variability. In contrast, those in the concurrent condition tended to have shorter and more uniform 
viewing durations. This may suggest that sequential multitasking gives students a greater opportunity 
to focus and reflect on the problem. In contrast, concurrent multitasking could impose additional 
cognitive load, leading to shorter or fragmented viewing periods. From an instructional perspective, 
these findings imply that the choice of multitasking strategy should align with learning objectives and 
task complexity. Sequential multitasking may be more effective for tasks requiring deep comprehension 
and sustained attention, allowing students sufficient time and focus to process the problem thoroughly. 

Data visualization (Figures 1–3) supports these findings. The bar chart in Figure 1 shows that 
although the difference in accuracy is slight, it consistently favors the concurrent condition. The 
boxplot in Figure 2 shows a narrower distribution of response times in the simultaneous condition, with 
a lower median, while the sequential condition shows a broader range and many outliers. Figure 3 
shows that the time spent viewing questions in the sequential condition tends to be longer and more 
variable than in the concurrent condition. 
 

5. Discussion 
These findings indicate that concurrent multitasking does not always reduce students' performance 

in solving mathematical problems. In fact, in the context of this study, concurrent multitasking resulted 
in shorter completion times with slightly higher accuracy than sequential multitasking. This contradicts 
some literature emphasizing the negative impact of multitasking on academic performance [4, 5] but 
aligns with the findings of Lin et al. [14], who discovered that under certain conditions, multitasking 
can enhance efficiency. 
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Cognitively, these results can be explained by task-switching costs in sequential multitasking. 
When students complete one task and move on to another, they must reactivate their mental context 
and working memory, which requires additional time and cognitive resources [10]. Conversely, in 
concurrent multitasking, although there is the potential for increased cognitive load, tasks can be 
completed simultaneously, reducing the need to reactivate the context. 

However, it should be noted that the difference in accuracy between the two types of multitasking is 
relatively small. This indicates that the kind of multitasking is not the only factor determining 
performance; other factors, such as the level of difficulty of the questions, the strategy used to solve 
them, and the students' numerical abilities, are likely to play a role [13, 16]. 

The practical implication of these findings is that digital-based learning strategies may consider 
using concurrent multitasking models if time efficiency is a priority, such as in quick drills or short 
quizzes. However, if the learning objective is deep understanding and complex conceptual processing, 
sequential multitasking may be more appropriate as it allows for more extended periods of focus on each 
subtask. 

The limitations of this study include: (1) only two questions were analyzed, limiting the 
generalizability of the results; (2) there was no control for individual student factors such as working 
memory or math anxiety; (3) multitasking was classified based on question numbers without an explicit 
experimental design; and (4) the analysis was still descriptive without inferential tests to examine the 
significance of differences. Therefore, further research is recommended to apply a randomized 
experimental design, include more questions with varying cognitive levels, and incorporate students' 
mental and affective variables. Qualitative analysis of students' strategies is also essential to understand 
the thinking patterns that occur during multitasking. 
 

6. Conclusion 
This study shows that students' abilities in mathematical multitasking are not necessarily worse in 

concurrent situations. Sequential multitasking tends to be more time-consuming, most likely due to the 
need to store and manage information sequentially. These findings support previous studies suggesting 
that students' multitasking strategies should be adjusted according to the context of the mathematical 
tasks they face. 

This study has several limitations, including the analysis of only two problems, which restricts the 
generalizability of the results. There was no control over individual student factors such as 
mathematical ability or working memory, which could affect multitasking performance. The 
classification of multitasking types based on item numbers was not based on an explicit experimental 
design, which may introduce bias. Moreover, the large data scale was not accompanied by response 
quality filtering, and the analysis was purely descriptive without any inferential statistical testing to 
confirm the significance of differences. 

Future research should use an explicit experimental design by randomly assigning students to 
sequential and concurrent conditions. Cognitive variables such as working memory and attentional 
focus should also be included, as well as variation in problem types and mental levels. Inferential 
statistical tests such as t-tests or ANOVA should be employed to test for significance. A qualitative 
approach is also recommended to understand students' strategies during multitasking and to categorize 
them based on learning profiles, thereby examining the influence of individual factors. 
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