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Abstract: The substitution of powdered white pepper on the commercial market with similar, but
cheaper powders extracted from various food products can make it more profitable, but reduce its
quality. Near-infrared hyperspectral imaging (NIR-HSI) is a technique that has been successfully used
to detect contamination in other food products. Therefore, NIR-HSI was tested on powdered white
pepper that had been adulterated with various levels of roasted rice powder, using partial least squares
discriminant analysis (PLS-DA), support vector machine classification (SVMC), partial least squares
regression (PLSR), and support vector machine regression (SVMR) methods to test whether
adulteration could be detected, and if so, at what level. The results showed that the highest predictive
accuracy of classification was 100% by using PLS-DA. The calibration model was also developed to
determine the level of adulteration in white pepper powder by roasted rice powder. The SVMR model
gave the highest predictive accuracy with a coefticient of determination for prediction (R2p) of 0.95, and
root mean square error of prediction (RMSEP) of 6.82%. The results indicate that NIR-HSI has the
potential for detecting adulteration of powdered white pepper and can be successfully applied in food
quality control for ensuring consumer confidence.
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1. Introduction

Food adulteration is primarily used to dilute the product stated on the label with a similar, cheaper
product, mainly for economic reasons. However, it remains a serious global concern with significant
implications for food safety, consumer health, and the economy. It has been reported that spices are
among the various food products that are adulterated, particularly pepper [1, 27, with white pepper
being popularly used for flavoring in many culinary dishes, especially in sauces, soups, and meat-based
meals [37]. Substances that have been reported to be used to adulterate white paper include tapioca flour,
corn flour, and mung bean flour [4-67. Such fraudulent practices often compromise the quality of the
spice and may also pose health risks, as some adulterants could introduce harmful substances [77] but
adulterants may be difficult to detect.

Adulteration of white pepper with roasted rice, for example, is particularly challenging to detect due
to the similarity in appearance and texture of the adulterant compared to genuine white pepper. Roasted
rice is often used because it is cost-effective, readily available, and can easily mimic the ground form of
white pepper. However, while both substances may appear similar under visual observation, their
chemical compositions and spectral properties differ, making them detectable through advanced
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technologies. This type of adulteration is especially concerning because it not only affects the sensory
qualities of the product but also undermines consumer trust and market fairness [57.

The traditional methods of detecting food adulteration have relied heavily on physical inspection,
chemical analysis, or microscopic techniques. However, these methods have limitations in terms of being
time-consuming, costly, and using resources that could otherwise be sold. Observing physical properties
through visual inspection may be difficult and can miss subtle traces of adulterants, while chemical
analytical methods require sample preparation, chemical management, and complicated procedures.
Microscopic techniques, although useful, are not always practical for large-scale or real-time
applications. Therefore, there is an increasing demand for faster, more accurate, and non-destructive
techniques to identify adulteration in food products [8, 97.

Near Infrared (NIR) spectroscopy is known as a powerful analytical tool that has been successtully
used for detecting food adulteration by providing non-destructive and rapid results [10, 117]. NIR
spectroscopy relies on the interaction of light, in the near-infrared spectrum, with the sample, providing
information about its chemical composition based on the absorption of specific wavelengths of light.
This method has been successfully applied in various fields, including the identification of food
adulterants in oils, milk powder, butter, cheese, spices, paprika powder, and Sichuan pepper [12-17].
The successful use of NIR spectroscopy to detect adulterants, both qualitative and quantitative, has
made it one of the most promising techniques for ensuring food authenticity [187].

A recent advance in NIR technology is hyperspectral imaging, which combines traditional NIR
spectroscopy with spatial imaging. This method captures both the spectral and spatial information of a
sample, allowing for detailed analysis of the sample’s chemical composition and distribution [19, 207.
Hyperspectral imaging provides a comprehensive view of the sample, making it more sensitive and
accurate in detecting adulterants even at low concentrations. The technique can detect variations in the
chemical composition of both the adulterant and the food product, enabling the identification of even
subtle differences [217. This makes hyperspectral imaging particularly useful for detecting adulteration
in food products, where adulterants are often mixed in small amounts to avoid detection [227. Several
studies have reported that NIR hyperspectral imaging (NIR-HSI) can be successfully used to detect
adulteration in particulate food products, including peanut flour [287, tapioca starch [247], ground
coffee [257), wheat flour [26, 277, chickpea flour [287], whey protein [297, Ceylon black tea 307, Poria
cocos (317 and red pepper powder [327].

Additional advantages of hyperspectral imaging compared with traditional techniques include that
it is a non-invasive method, which means it does not destroy samples, and also requires no chemical
additives [83, 347]. Furthermore, hyperspectral imaging allows for real-time monitoring, making it
possible to inspect large batches of food products quickly and efficiently [357. These advantages make
hyperspectral imaging particularly suitable for quality control in the food industry, where speed and
accuracy are essential.

A further advantage for its application in commercial practice is that NIR hyperspectral imaging
can be integrated with machine learning algorithms to enhance its detection capabilities. Machine
learning models can be trained using spectral data from known samples to classify and predict the
presence of adulterants in unknown samples. This integration of hyperspectral imaging and machine
learning can significantly improve the reliability and accuracy of adulteration detection systems. By
continuously refining these models with new data, the system can adapt to different types of
adulteration, ensuring robustness in various real-world scenarios [ 36, 37 .

The application of NIR hyperspectral imaging in food fraud detection not only benefits food safety
but also contributes to the broader goal of transparency in the food supply chain. The ability of its
application to verify the authenticity of food products enhances consumer confidence and helps maintain
fair trade practices. As food fraud continues to increase, the use of innovative technologies like NIR
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hyperspectral imaging can play a critical role in safeguarding the integrity of the global food system
[38].

The objective of this research was therefore to explore the use of NIR hyperspectral imaging in
identifying adulterated white pepper powder mixed with roasted sticky rice powder, thus developing a
robust classification model for distinguishing between pure white pepper powder and adulterated white
pepper powder. A further aim of this study was to develop a reliable model for determining
concentrations of roasted sticky rice powder in adulterated white pepper powder based on the
correlation between spectral data and known concentrations of roasted sticky rice powder.

2. Materials and Methods
2.1. Sample Preparation

Dried white pepper (Piper nigrum L.) seeds and ‘San Patong’ sticky rice were purchased from a local
market in Bangkok, Thailand. The white pepper seeds were ground by a grinder (Philips HR2223/00
Series 5000), and the acquired powder was screened through an 80-mesh sieve. Samples of the pure
white pepper powder (N=100) were placed in zip-lock plastic bags and stored at 25 °C for the next step
of the experiment. Sticky rice was roasted in a hot pan at 150 °C and stirred continuously until the color
of the sticky rice changed to a golden yellow. The roasted sticky rice was ground using a grinder
(Philips HR2223/00 Series 5000), and then the roasted sticky rice powder was screened using an 80-
mesh sieve. Adulterated white pepper powder samples (N=118) were prepared by adding the roasted
sticky rice powder into the white pepper powder, starting from 1% (weight/weight) and increasing by a
similar interval until reaching 99% (weight/weight). All adulterated samples were well mixed and
carefully placed in zip-lock plastic bags, and stored at 25 °C for further steps of the experiment.

2.2. Measurements of Properties

The appearance of the pure white pepper powder and the roasted sticky rice powder was visually
similar; however, triplicate measurements for some properties of the pure white pepper powder and the
roasted sticky rice powder, using randomly selected samples, were performed.

2.2.1. Color Measurement

The colors of pure white pepper powder and roasted sticky rice powder were measured by a
colorimeter (Konica Minolta CR-400, Japan). L*, a*, b* color values, where L* indicates lightness (0 =
black, 100 = white), a* represents the red/green (positive = red, negative = green), and b* represents
the yellow/blue (positive = yellow, negative = blue), were acquired.

2.2.2. Protein Determination

The total nitrogen content of both the pure white pepper powder and the roasted sticky rice powder
was measured using an automatic nitrogen analyzer (LECO IFP528, Leco Corp., St. Joseph, MI, USA).
The total protein content was determined using equation (1). The total protein content of pure white
pepper powder was calculated by multiplying the nitrogen content by a conversion factor of 6.25, while
the protein content of roasted sticky rice powder was calculated by multiplying the nitrogen content by
a conversion factor of 5.95 [397].

Protein (%) = %Nitrogen x Conversion Factor (1)

2.2.8. Water Activity Measurement
The water activity (aw) of both the pure white pepper powder and the roasted sticky rice powder was
measured using a water activity meter (Lab Touch-aw, Novasina AG, Switzerland).
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2.2.4. Mousture Content Determination
The moisture content of both the pure white pepper powder and the roasted sticky rice powder was
determined following the AOAC official method [407] using a hot air oven (BINDER, D 115,

Germany). The moisture content was calculated by equation (2).

Moisture (%) = #2220 x 100 2)
1

where: W, = weight of sample before drying (g)
W, = weight of sample after drying (g)

2.8. NIR-HSI Measurement

The spectral information of each sample was acquired using a hyperspectral camera (Specim IFx17e,
Spectral Imaging Ltd, Oulu, Finland) in the wavelength range from 935 nm to 1720 nm. The lamp
consisted of six halogen lamps (three lamps on each side and 45° to the sample) with a scanning speed of
20 mm/s. A dark reference image was measured when the shutter was closed, and the camera was
covered with a black lid. A white reference image was measured at every scan using a rectangular
Spectralon bar.

2.4. Statistical Analysis
2.4.1 Principal Component Analysis (PCA)

PCA was applied as an unsupervised multivariate technique to reduce the dimensionality of the
spectral data while preserving the maximum variance. This technique was used to transform correlated
variables into a new set of principal components (PCs), enabling the visualization of patterns, group
separation, and the detection of outliers. As reported by McKenzie et al. [417], PCA is widely used as a
preliminary step prior to classification. In this study, the pure white pepper powder (N=100) and the
roasted sticky rice powder (N=100) were analyzed using PCA.

2.4.2. Partial Least Squares (PLS)

PLS was employed as a supervised multivariate technique for both classification and quantitative
prediction. Partial least squares discriminant analysis (PLS-DA) is an extension of PLS used to classify
samples into categories [427]. While PLS regression (PLSR) was used to test the linear relationship
between spectral data and dependent variables.

2.4.8. Support Vector Machine (SVM)

SVM 1is a powerful supervised machine learning technique widely used for classification and
regression modeling. SVM operates by finding the optimal hyperplane that maximizes the margin
between different classes in the feature space, making it especially suitable for handling high-
dimensional, nonlinear, and complex datasets. Kernel functions are commonly employed to transform
input data into a higher-dimensional space where linear separation is feasible [437].

2.5. Qualitative and quantitative analysis
2.5.1 Qualitative analysis

A total of 100 pure white pepper powder samples and 118 adulterated white pepper powder samples
were analyzed using PLS-DA and support vector machine classification (SVMC) methods described
above. For classification evaluation, the pure white pepper powder samples were labeled as 0, while the
adulterated white pepper powder samples were labeled as 1. Samples were provided for both a
calibration set and a prediction set. The spectral pretreatment methods, including smoothing, 1t
derivative, 2" derivative, MSC, SNV, and combined methods, were investigated using cross-validation
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of samples in the calibration set. This was done in order to select the best method for classification. The
performance of the classification was evaluated using several key metrics: accuracy, error rate,
sensitivity, and specificity [447] in order to provide a comprehensive evaluation of the classification
capability in both the calibration and prediction sets.

In this case, accuracy was defined as the proportion of correctly classified samples (both true
positives and true negatives) to the total number of samples. An accuracy value close to 100% implies a
low error rate, indicating that the classification model performed well in classifying the samples
correctly according to Equation (3):

o (TP + TN)
Accuracy (%) = TP TN+ FP 4PN~ 100 (3)
Error rate is the proportion of incorrectly classified samples presented in Equation (4):
Error rate (%) = (EP + FI) X100 (4)

(TP + TN + FP + FN)
Sensitivity (true positive rate) refers to the classification model’s ability to correctly identify positive

samples (adulterated white pepper powder) and was calculated as:

Sensitivity (%) = (TPZ—PFN)X 100 (5)

Specificity (true negative rate) measures the accuracy of the classification model in correctly
identifying negative samples (pure white pepper powder) and was calculated as:
Specificity (%) = ——~—x 100 (6)
pecificity (%) = v rpy
where T'N is the true negative samples, TP is the true positive samples, I'N is the false negative
samples, and F'P is the false positive samples.

2.5.2. Quantitative Analysis

A total of 122 samples, including adulterated white pepper powder samples (N=118), two pure
white pepper powder samples, and two pure ground roasted rice samples, were used for the calibration
and prediction sets. The calibration models were established using partial least squares regression
(PLSR) and support vector machine regression (SVMR). The spectral pretreatment methods, including
smoothing, first derivative, second derivative, multiplicative scatter correction (MSC), standard normal
variate (SNV), and combined methods, were investigated using cross-validation of samples in the
calibration set. This was done to select the best method for establishing the calibration model. The
performance of the calibration models was determined using the coefficient of determination (R®) and
the root mean square error (RMSE), where high R* values and low RMSE (%) values in both the
calibration and prediction sets indicated that the calibration model was accurate for predicting the level
of roasted sticky rice powder in the adulterated white pepper powder.

The data were statistically analyzed using the SPSS software (version 24.0, IBM Corp., Armonk,
NY, USA), the Unscrambler X software (version 10.4, CAMO Software AS, Oslo, Norway), and the
Prediktera Evince software (version 2.7.9, Prediktera AB, Umea, Sweden).

3. Results and Discussion
3.1. Properties Comparison

The levels of L* and a* of the roasted sticky rice powder were both significantly higher (p < 0.05)
than those of the pure white pepper powder, while the level of b* of the pure white pepper powder was
significantly higher (p < 0.05) than that of the roasted sticky rice powder. The protein content of the
pure white pepper powder was significantly higher than that of the roasted sticky rice powder (p <
0.05). In addition, the water activity and moisture content of the roasted sticky rice powder were
significantly higher than those of the pure white pepper powder (p < 0.05) (Table 1). These findings
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indicate clear differences in the properties of the pure white pepper powder and the roasted sticky rice

powder, although they are quite similar in visual appearance.

Table 1.

Properties of the pure white pepper powder and the roasted sticky rice powder.

Parameter Pure White Pepper Powder Roasted Sticky Rice Powder
L* 66.47+0.284 78.9940.46P
Color a* 1.16£0.652 2.63%0.51P
b* 24.61%1.202 19.38+0.16
Protein (%) 12.90£0.012 7.54%0.06°
Water activity 0.04%0.002 0.10+0.00P
Moisture content (%) 3.9910.094 4.5810.09b

Note: Values are presented as mean * standard deviation.
Different letters (a, b) in the same row of each parameter indicate significant differences (p < 0.05).

0.15 | = Pure white pepper powder 0.002 T whlte‘ pep p.er PO
Roasted sticky rice powder — Roasted sticky rice powder
g
>4 0.001 -
2 0.104 _g ‘
£ Z
2 = 0.000-
= 0.05- 1450 nm 2
2 E 973 nm T
£ £ —0.001 -
= 0.004 - 1470 nm
= E 1200 1360 nm 1585 nm
N —0.002 o
A B 1440 nm
0.05 1200 nm 1273 nm
T T T T T T T T =0.003 T T T T T T T
1000 1100 1200 1300 1400 1500 1600 1700 1000 1100 1200 1300 1400 1500 1600 1700
‘Wavelenght (nm) Wavelenght (nm)
() (b)
Figure 1.

The original absorbance spectra (a) and the 2»d derivative absorbance spectra (b) of the pure white pepper powder and the
roasted sticky rice powder.

3.2. Spectral Characteristics

The absorbance peaks from the original spectra at around 1200 nm and 1450 nm (Figure 1) were
associated with the characteristic absorption bands of water. These peaks correspond to the O—H bond
in water molecules. Specifically, the 1200 nm peak corresponds to the second overtone of O-H
stretching, while the 1450 nm peak is attributed to the first overtone of O—H stretching as described by
Workman and Weyer [45] and Osborne and Fearn [467]. The 2nd derivative absorbance spectra
showed peaks at 973, 1200, 1273, 1360, 1440, 1470, and 1585 nm, which are related to the chemical
compositions of the pure white pepper powder and the roasted sticky rice powder (Figure 1b). The
absorption band locations associated with proteins were at 973 nm, corresponding to N-H stretching
second overtone, and at 1470 nm, corresponding to N—H stretching first overtone, as described by
Workman and Weyer [457], and the water absorbance peak at 1200 nm was associated with the second
overtone of the O—H stretching [457. The absorbance peak observed at 1273 nm was related to the
second overtone of C—H stretching, which corresponds to C—H functional groups [477]. The 1360 nm
peak was linked to C—H combination bands, indicative of methyl groups (CHs) [487. The presence of
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sucrose and starch at the absorbance peak of 1440 nm was reported to be associated with the first
overtone of O—H stretching [477, and the presence of starch and glucose molecules at the absorbance
peak of 1585 nm was also attributed to the first overtone of O—H stretching [467].

4 O Pure white pepper powder
A Roasted sticky rice powder
0.18 -
0.12 H
X
v 0.06
O
& 0.00
—0.06
—0.12 4
I 1 1 1 1 1 1 1 1
-05 -04 -03 -0.2 -0.1 0.0 0.1 02 03 04
PC 1 (83%)
Figure 2.

PCA score plot of the pure white pepper powder and the roasted sticky rice powder.

The cumulative variance percentage was 98% from the two principal components (PC1 and PC2),
with the variation for PC1 being 15% and for PC2 83% (Figure 2). This indicates that the two clusters
of the pure white pepper powder and the roasted sticky rice powder were completely separated. This
result clearly demonstrated that spectral data could be used to distinguish between pure tapioca starch
and adulterated tapioca starch using this technique.

3.8. Acquisition from Qualitative Analysis
The characteristics of the samples used in the calibration and prediction sets for analysis were the

same (Table 2).

Table 2.

The characteristics of samples in calibration and prediction sets for PLS-DA and SVMC.

Sets Sample number Minimum Maximum Mean Standard
(%) (%) (%) Deviation (%)

Calibration 152 0 1 0.54 0.05

Prediction 66 0 1 0.54 0.05

The PLS-DA results of accuracy, sensitivity, specificity, and error rate by cross-validation of
samples in the calibration set (FFigure 3a) showed that using original spectral data (non-pretreatment),
using smoothing, and using 1st derivative spectral pretreatments achieved perfect classification
performance, with 100% accuracy, sensitivity, and specificity without error rate. Therefore, the original
spectral data were selected for classification by PLS-DA.
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The SVMC results for accuracy, sensitivity, specificity, and error rate, obtained through cross-
validation of samples in the calibration set (Figure 8b), indicated that the combination of the 1st
derivative with the SNV spectral pretreatment method provided the highest performance. It achieved
96.05% accuracy, 92.11% sensitivity, 100% specificity, and the lowest error rate of 3.95%. Therefore, the
combination of the 1st derivative with the SNV spectral pretreatment method was selected for
classification using SVMC.

Original
MSC
SNV

1™ derivative
2" derivative

1" derivative + MSC
1" derivative + SNV

Pre-treatment methods

(a)

13 o .
1" derivative -

S - - —
2" derivative P TR TS
L
I
L

MSC +

SNV
, J6556 :
=
(]

>
.
[
Original "

1" derivative + MSC
1" derivative + SNV

Pre-treatment methods ] % Accuracy
YSensitivity
L

1 % Specificity
(b) %Error rate

Figure 3.
Comparison of spectral pretreatment methods for classification in the calibration set using (a) PLS-DA and (b) SVMC.
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Table 3.

Performance of classification using PLS-DA and SVMC in the calibration set and the prediction set.

Pure white pepper powder

Adulterated white pepper powder

Methods | Pre-treatment | Factors Data (0) (1) wAccuracy | %Sensitivity | %Specificity wError
" ['TRUE FALSE TRUE FALSE rate
PLS-DA Original PCal 70 o 82 (8] 100 100 100 (0]
red 30 36 (8] 100 100 100 (8]
15t derivative + Nu 0.5 Cal 70 78 4 97.37 94.59 100 2.63
SVMC SNV y | 001 | Pred 30 0 34 2 96.97 93.75 100 3.03

Note: PLS-DA = partial least squares discrimination analysis.
SVMC = support vector machine classification

SNV = standard normal variate
Cal = calibration set
Pred = prediction set

v = kernel function parameter gamma

Nu = Nu parameter.
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The results of classification using PLS-DA and SVMC in the calibration set and the prediction set
showed 100% accuracy, sensitivity, and specificity, without an error rate (%) in both sets, indicating that
PLS-DA provided excellent performance for classification.

The combination of the 1t derivative with the SNV spectral pretreatment method was therefore
selected for classifying pure white pepper powder and adulterated white pepper powder using SVMC
with the Nu parameter of 0.5 and the kernel function parameter gamma (y) of 0.01. The classification
results showed 97.37% accuracy, 94.59% sensitivity, 100% specificity, and a 2.63% error rate in the
calibration set, and 96.97% accuracy, 93.75% sensitivity, 100% specificity, and a 3.03% error rate in the
prediction set. These results indicate that SVMC provided good performance for classification (Table 3).
From these results, it was shown that PLS-DA was more effective for difterentiating between the pure
white pepper powder and the adulterated white pepper powder than SVMC.

1.54 @ Pure white pepper powder 1.5 O Pure white pepper powder
< Adulterated white pepper powder < Adulterated white pepper powder
o 107 1.0 1
2 (82/82) g (36/36)
s s o
- =
§ —————————————————————— <§ 054 —x—-——-—————————————-—-—- ~
: :
(70/70) &~ 0.0 (30/30)
-0.5 -0.5 v
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Actual value Actual value

(@) (b)

Figure 4.
The classification for the pure white pepper powder samples (0) and the adulterated white pepper powder samples (1) using
PLS-DA in both the calibration set (a) and the prediction set (b).

The scatter plots of classification between the pure white pepper powder samples (0) and the
adulterated white pepper powder samples (1) using PLS-DA are shown in Figure 4. The cutoft value of
0.5 was used for classification. If the predicted value of each sample was equal to or less than 0.5, it was
classified as a pure white pepper powder sample, while if the predicted value was higher than 0.5, it was
classified as an adulterated white pepper powder sample. The results demonstrated that PLS-DA, when
using the original spectral data of samples, achieved perfect classification in both the calibration and

prediction sets.

3.4. Acquisition from Quantitative Analysis

Both the calibration set (N=85) and the prediction set (N=37) for quantitative analysis using PLSR
and SVMR contained samples characterized by the level of roasted sticky rice powder in the adulterated
white pepper powder. The characteristics of these samples in both the calibration and prediction sets
exhibited a well-distribution of data, as evidenced by their similar mean and standard deviation values

(Table 4).
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Table 4.

11

The characteristics of the level of the roasted sticky rice powder in the adulterated white pepper powder of samples in the
calibration and prediction sets.

Sets Sample number Minimum Maximum Mean Standard Deviation (%)
(%) () (%)

Calibration 85 0 100 49.83 29.26

Prediction 37 1 98 50.16 30.41

The various spectral pretreatment methods for PLSR results by cross-validation showed that
MSC spectral pretreatment obtained the best performance of the calibration model, with the highest R2.,
of 0.88 and the lowest RMSECV of 10.46%. (Figure 5a). Therefore, MSC spectral pretreatment was
selected for creating the PLSR model. Additionally, the SVMR results by cross-validation indicated that
SNV spectral pretreatment provided the best performance of the calibration model, with the highest R2.,
of 0.95 and the lowest RMSECV of 7.54%. (Figure 5b). Consequently, SNV spectral pretreatment was
chosen for developing the SVMR model in this study.
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Figure 5.

Pre-treatment methods

(b)

Spectral pretreatment methods for establishing the PLSR model (a) and the SVMR model (b).
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Table 5.
Performance of the PLSR model and the SVMR model in the calibration set and the prediction set.
Pre- RMSEC RMSEP
Methods Factors Rz Rz,
treatment (%) (%)
PLSR MSC 1 0.88 0.88 10.15 10.12
SVMR SNV < I 0.96 0.95 6.49 6.82
0.1 0.01

Note: PLSR = partial least squares regression
SVMR = support vector machine regression
MSC = multiplicative scatter correction

SNV = standard normal variate

R? = coefticient of determination of calibration
RMSEC = root mean square error of calibration
R?), = coefficient of determination of prediction
RMSEP = root mean square error of prediction
¢ = penalty factor

y = kernel function parameter gamma.

The PLSR model, developed using MSC spectral pretreatment, yielded an R2, of 0.88 and an
RMSEP of 10.12%. In contrast, the SVMR model, developed using SNV spectral pretreatment, achieved
an R, of 0.95 and an RMSEP of 6.82%. Therefore, the SVMR model was demonstrated to be more
accurate in determining the level of roasted sticky rice powder in adulterated white pepper powder
(Table 5).
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Figure 6.

The scatter plots of the actual value and the predicted value of the level of roasted sticky rice powder in
adulterated white pepper powder using the SVMR model in the calibration set (a) and the prediction set

(b).

The performance of the data from the SVMR model closely aligned along the 45-degree reference
line, indicating a strong agreement between the predicted and actual values (Figures 6a and 6b).
Confirming that the SVMR model provided accurate quantitative predictions of the level of roasted
sticky rice powder in the adulterated white pepper powder.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I: 1-15, 2026

DOI: 10.55214/2576-8484.v10i1.11489

© 2026 by the authors; licensee Learning Gate



13

4. Conclusions

From this study, it was shown that near-infrared hyperspectral imaging has the potential to be
used for identifying when white pepper powder has been contaminated with roasted rice powder. It also
demonstrated its potential for identifying the actual level of adulteration. It was shown that using
partial least squares discriminant analysis resulted in 100% accuracy. Additionally, support vector
machine regression and standard normal variate enhancement improved the predictive performance for
determining the concentration of roasted sticky rice powder in adulterated white pepper powder. These
findings indicate that near-infrared hyperspectral imaging could be used to establish a reliable model for
identifying adulteration of white pepper powder in real-time. This method is fast, reliable, and applicable
in a non-destructive manner in a commercial setting.
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