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Abstract: The substitution of powdered white pepper on the commercial market with similar, but 
cheaper powders extracted from various food products can make it more profitable, but reduce its 
quality. Near-infrared hyperspectral imaging (NIR-HSI) is a technique that has been successfully used 
to detect contamination in other food products. Therefore, NIR-HSI was tested on powdered white 
pepper that had been adulterated with various levels of roasted rice powder, using partial least squares 
discriminant analysis (PLS-DA), support vector machine classification (SVMC), partial least squares 
regression (PLSR), and support vector machine regression (SVMR) methods to test whether 
adulteration could be detected, and if so, at what level. The results showed that the highest predictive 
accuracy of classification was 100% by using PLS-DA. The calibration model was also developed to 
determine the level of adulteration in white pepper powder by roasted rice powder. The SVMR model 
gave the highest predictive accuracy with a coefficient of determination for prediction (R2p) of 0.95, and 
root mean square error of prediction (RMSEP) of 6.82%. The results indicate that NIR-HSI has the 
potential for detecting adulteration of powdered white pepper and can be successfully applied in food 
quality control for ensuring consumer confidence. 

Keywords: Adulteration, Classification, Prediction, Quality Control. 

 
1. Introduction  

Food adulteration is primarily used to dilute the product stated on the label with a similar, cheaper 
product, mainly for economic reasons. However, it remains a serious global concern with significant 
implications for food safety, consumer health, and the economy. It has been reported that spices are 
among the various food products that are adulterated, particularly pepper [1, 2], with white pepper 
being popularly used for flavoring in many culinary dishes, especially in sauces, soups, and meat-based 
meals [3]. Substances that have been reported to be used to adulterate white paper include tapioca flour, 
corn flour, and mung bean flour [4-6]. Such fraudulent practices often compromise the quality of the 
spice and may also pose health risks, as some adulterants could introduce harmful substances [7] but 

adulterants may be difficult to detect.  
Adulteration of white pepper with roasted rice, for example, is particularly challenging to detect due 

to the similarity in appearance and texture of the adulterant compared to genuine white pepper. Roasted 
rice is often used because it is cost-effective, readily available, and can easily mimic the ground form of 
white pepper. However, while both substances may appear similar under visual observation, their 
chemical compositions and spectral properties differ, making them detectable through advanced 
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technologies. This type of adulteration is especially concerning because it not only affects the sensory 
qualities of the product but also undermines consumer trust and market fairness [5]. 

The traditional methods of detecting food adulteration have relied heavily on physical inspection, 
chemical analysis, or microscopic techniques. However, these methods have limitations in terms of being 
time-consuming, costly, and using resources that could otherwise be sold. Observing physical properties 
through visual inspection may be difficult and can miss subtle traces of adulterants, while chemical 
analytical methods require sample preparation, chemical management, and complicated procedures. 
Microscopic techniques, although useful, are not always practical for large-scale or real-time 
applications. Therefore, there is an increasing demand for faster, more accurate, and non-destructive 
techniques to identify adulteration in food products [8, 9]. 

Near Infrared (NIR) spectroscopy is known as a powerful analytical tool that has been successfully 

used for detecting food adulteration by providing non-destructive and rapid results [10, 11]. NIR 
spectroscopy relies on the interaction of light, in the near-infrared spectrum, with the sample, providing 
information about its chemical composition based on the absorption of specific wavelengths of light. 
This method has been successfully applied in various fields, including the identification of food 

adulterants in oils, milk powder, butter, cheese, spices, paprika powder, and Sichuan pepper [12-17]. 
The successful use of NIR spectroscopy to detect adulterants, both qualitative and quantitative, has 
made it one of the most promising techniques for ensuring food authenticity [18]. 

A recent advance in NIR technology is hyperspectral imaging, which combines traditional NIR 
spectroscopy with spatial imaging. This method captures both the spectral and spatial information of a 
sample, allowing for detailed analysis of the sample’s chemical composition and distribution [19, 20]. 
Hyperspectral imaging provides a comprehensive view of the sample, making it more sensitive and 
accurate in detecting adulterants even at low concentrations. The technique can detect variations in the 
chemical composition of both the adulterant and the food product, enabling the identification of even 

subtle differences [21]. This makes hyperspectral imaging particularly useful for detecting adulteration 

in food products, where adulterants are often mixed in small amounts to avoid detection [22]. Several 
studies have reported that NIR hyperspectral imaging (NIR-HSI) can be successfully used to detect 
adulteration in particulate food products, including peanut flour [23], tapioca starch [24], ground 
coffee [25], wheat flour [26, 27], chickpea flour [28], whey protein [29], Ceylon black tea [30], Poria 
cocos [31] and red pepper powder [32].  

Additional advantages of hyperspectral imaging compared with traditional techniques include that 
it is a non-invasive method, which means it does not destroy samples, and also requires no chemical 

additives [33, 34]. Furthermore, hyperspectral imaging allows for real-time monitoring, making it 

possible to inspect large batches of food products quickly and efficiently [35]. These advantages make 
hyperspectral imaging particularly suitable for quality control in the food industry, where speed and 
accuracy are essential. 

A further advantage for its application in commercial practice is that NIR hyperspectral imaging 
can be integrated with machine learning algorithms to enhance its detection capabilities. Machine 
learning models can be trained using spectral data from known samples to classify and predict the 
presence of adulterants in unknown samples. This integration of hyperspectral imaging and machine 
learning can significantly improve the reliability and accuracy of adulteration detection systems. By 
continuously refining these models with new data, the system can adapt to different types of 

adulteration, ensuring robustness in various real-world scenarios [36, 37]. 
The application of NIR hyperspectral imaging in food fraud detection not only benefits food safety 

but also contributes to the broader goal of transparency in the food supply chain. The ability of its 
application to verify the authenticity of food products enhances consumer confidence and helps maintain 
fair trade practices. As food fraud continues to increase, the use of innovative technologies like NIR 
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hyperspectral imaging can play a critical role in safeguarding the integrity of the global food system 

[38]. 
The objective of this research was therefore to explore the use of NIR hyperspectral imaging in 

identifying adulterated white pepper powder mixed with roasted sticky rice powder, thus developing a 
robust classification model for distinguishing between pure white pepper powder and adulterated white 
pepper powder. A further aim of this study was to develop a reliable model for determining 
concentrations of roasted sticky rice powder in adulterated white pepper powder based on the 
correlation between spectral data and known concentrations of roasted sticky rice powder. 

 

2. Materials and Methods 
2.1. Sample Preparation  

Dried white pepper (Piper nigrum L.) seeds and ‘San Patong’ sticky rice were purchased from a local 
market in Bangkok, Thailand. The white pepper seeds were ground by a grinder (Philips HR2223/00 
Series 5000), and the acquired powder was screened through an 80-mesh sieve. Samples of the pure 
white pepper powder (N=100) were placed in zip-lock plastic bags and stored at 25 °C for the next step 
of the experiment. Sticky rice was roasted in a hot pan at 150 °C and stirred continuously until the color 
of the sticky rice changed to a golden yellow. The roasted sticky rice was ground using a grinder 
(Philips HR2223/00 Series 5000), and then the roasted sticky rice powder was screened using an 80-
mesh sieve. Adulterated white pepper powder samples (N=118) were prepared by adding the roasted 
sticky rice powder into the white pepper powder, starting from 1% (weight/weight) and increasing by a 
similar interval until reaching 99% (weight/weight). All adulterated samples were well mixed and 
carefully placed in zip-lock plastic bags, and stored at 25 °C for further steps of the experiment. 

 
2.2. Measurements of Properties 

The appearance of the pure white pepper powder and the roasted sticky rice powder was visually 
similar; however, triplicate measurements for some properties of the pure white pepper powder and the 
roasted sticky rice powder, using randomly selected samples, were performed. 
 
2.2.1. Color Measurement 

The colors of pure white pepper powder and roasted sticky rice powder were measured by a 

colorimeter (Konica Minolta CR-400, Japan). L*, a*, b* color values, where L* indicates lightness (0 = 

black, 100 = white), a* represents the red/green (positive = red, negative = green), and b* represents 

the yellow/blue (positive = yellow, negative = blue), were acquired.  
 

2.2.2. Protein Determination 
The total nitrogen content of both the pure white pepper powder and the roasted sticky rice powder 

was measured using an automatic nitrogen analyzer (LECO FP528, Leco Corp., St. Joseph, MI, USA). 
The total protein content was determined using equation (1). The total protein content of pure white 
pepper powder was calculated by multiplying the nitrogen content by a conversion factor of 6.25, while 
the protein content of roasted sticky rice powder was calculated by multiplying the nitrogen content by 

a conversion factor of 5.95 [39].  
Protein (%) = %Nitrogen × Conversion Factor              (1) 

 
 

2.2.3. Water Activity Measurement 
The water activity (aw) of both the pure white pepper powder and the roasted sticky rice powder was 

measured using a water activity meter (Lab Touch-aw, Novasina AG, Switzerland). 
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2.2.4. Moisture Content Determination 
The moisture content of both the pure white pepper powder and the roasted sticky rice powder was 

determined following the AOAC official method [40] using a hot air oven (BINDER, FD 115, 

Germany). The moisture content was calculated by equation (2).   

Moisture (%) = 
(𝑊1 − 𝑊2)

𝑊1
× 100                                                      (2)  

where:  W1 = weight of sample before drying (g) 
W2 = weight of sample after drying (g) 
 

2.3. NIR-HSI Measurement  
The spectral information of each sample was acquired using a hyperspectral camera (Specim Fx17e, 

Spectral Imaging Ltd, Oulu, Finland) in the wavelength range from 935 nm to 1720 nm. The lamp 
consisted of six halogen lamps (three lamps on each side and 45o to the sample) with a scanning speed of 
20 mm/s. A dark reference image was measured when the shutter was closed, and the camera was 
covered with a black lid. A white reference image was measured at every scan using a rectangular 
Spectralon bar. 
 
2.4. Statistical Analysis 
2.4.1 Principal Component Analysis (PCA) 

PCA was applied as an unsupervised multivariate technique to reduce the dimensionality of the 
spectral data while preserving the maximum variance. This technique was used to transform correlated 
variables into a new set of principal components (PCs), enabling the visualization of patterns, group 

separation, and the detection of outliers. As reported by McKenzie et al. [41], PCA is widely used as a 
preliminary step prior to classification. In this study, the pure white pepper powder (N=100) and the 
roasted sticky rice powder (N=100) were analyzed using PCA. 
 
2.4.2. Partial Least Squares (PLS) 

PLS was employed as a supervised multivariate technique for both classification and quantitative 
prediction. Partial least squares discriminant analysis (PLS-DA) is an extension of PLS used to classify 
samples into categories [42]. While PLS regression (PLSR) was used to test the linear relationship 
between spectral data and dependent variables. 
 

2.4.3. Support Vector Machine (SVM) 
SVM is a powerful supervised machine learning technique widely used for classification and 

regression modeling. SVM operates by finding the optimal hyperplane that maximizes the margin 
between different classes in the feature space, making it especially suitable for handling high-
dimensional, nonlinear, and complex datasets. Kernel functions are commonly employed to transform 
input data into a higher-dimensional space where linear separation is feasible [43]. 

 
2.5. Qualitative and quantitative analysis 
2.5.1 Qualitative analysis 

A total of 100 pure white pepper powder samples and 118 adulterated white pepper powder samples 
were analyzed using PLS-DA and support vector machine classification (SVMC) methods described 
above. For classification evaluation, the pure white pepper powder samples were labeled as 0, while the 
adulterated white pepper powder samples were labeled as 1. Samples were provided for both a 
calibration set and a prediction set. The spectral pretreatment methods, including smoothing, 1st 
derivative, 2nd derivative, MSC, SNV, and combined methods, were investigated using cross-validation 
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of samples in the calibration set. This was done in order to select the best method for classification. The 
performance of the classification was evaluated using several key metrics: accuracy, error rate, 
sensitivity, and specificity [44] in order to provide a comprehensive evaluation of the classification 
capability in both the calibration and prediction sets. 

In this case, accuracy was defined as the proportion of correctly classified samples (both true 
positives and true negatives) to the total number of samples. An accuracy value close to 100% implies a 
low error rate, indicating that the classification model performed well in classifying the samples 

correctly according to Equation (3): 

Accuracy (%) =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
×100                                          (3) 

Error rate is the proportion of incorrectly classified samples presented in Equation (4): 

Error rate (%) =  
(𝐹𝑃 + 𝐹𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
×100                                     (4) 

Sensitivity (true positive rate) refers to the classification model’s ability to correctly identify positive 

samples (adulterated white pepper powder) and was calculated as: 

Sensitivity (%) = 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 
×100                            (5) 

Specificity (true negative rate) measures the accuracy of the classification model in correctly 

identifying negative samples (pure white pepper powder) and was calculated as: 

Specificity (%) = 
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
×100                                 (6) 

where TN is the true negative samples, TP is the true positive samples, FN is the false negative 
samples, and FP is the false positive samples.  

 
2.5.2. Quantitative Analysis 

A total of 122 samples, including adulterated white pepper powder samples (N=118), two pure 
white pepper powder samples, and two pure ground roasted rice samples, were used for the calibration 
and prediction sets. The calibration models were established using partial least squares regression 
(PLSR) and support vector machine regression (SVMR). The spectral pretreatment methods, including 
smoothing, first derivative, second derivative, multiplicative scatter correction (MSC), standard normal 
variate (SNV), and combined methods, were investigated using cross-validation of samples in the 
calibration set. This was done to select the best method for establishing the calibration model. The 
performance of the calibration models was determined using the coefficient of determination (R²) and 
the root mean square error (RMSE), where high R² values and low RMSE (%) values in both the 
calibration and prediction sets indicated that the calibration model was accurate for predicting the level 
of roasted sticky rice powder in the adulterated white pepper powder. 

The data were statistically analyzed using the SPSS software (version 24.0, IBM Corp., Armonk, 
NY, USA), the Unscrambler X software (version 10.4, CAMO Software AS, Oslo, Norway), and the 
Prediktera Evince software (version 2.7.9, Prediktera AB, Umea, Sweden). 

 

3. Results and Discussion 
3.1. Properties Comparison   

The levels of L* and a* of the roasted sticky rice powder were both significantly higher (p ≤ 0.05) 
than those of the pure white pepper powder, while the level of b* of the pure white pepper powder was 
significantly higher (p ≤ 0.05) than that of the roasted sticky rice powder. The protein content of the 
pure white pepper powder was significantly higher than that of the roasted sticky rice powder (p ≤ 
0.05). In addition, the water activity and moisture content of the roasted sticky rice powder were 
significantly higher than those of the pure white pepper powder (p ≤ 0.05) (Table 1). These findings 
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indicate clear differences in the properties of the pure white pepper powder and the roasted sticky rice 
powder, although they are quite similar in visual appearance. 

 
Table 1. 

Properties of the pure white pepper powder and the roasted sticky rice powder. 

Parameter  Pure White Pepper Powder Roasted Sticky Rice Powder 

Color 

L* 66.47±0.28a 73.99±0.46b 
a* 1.16±0.65a 2.63±0.51b 
b* 24.61±1.20a 19.33±0.16b 

Protein (%)  12.90±0.01a 7.54±0.06b 
Water activity  0.04±0.00a 0.10±0.00b 

Moisture content (%)  3.99±0.09a 4.58±0.09b 
Note: Values are presented as mean ± standard deviation.  

Different letters (a, b) in the same row of each parameter indicate significant differences (p ≤ 0.05). 

 

 
Figure 1. 
The original absorbance spectra (a) and the 2nd derivative absorbance spectra (b) of the pure white pepper powder and the 

roasted sticky rice powder. 

 

3.2. Spectral Characteristics 
The absorbance peaks from the original spectra at around 1200 nm and 1450 nm (Figure 1) were 

associated with the characteristic absorption bands of water. These peaks correspond to the O–H bond 
in water molecules. Specifically, the 1200 nm peak corresponds to the second overtone of O–H 

stretching, while the 1450 nm peak is attributed to the first overtone of O–H stretching as described by 
Workman and Weyer [45] and Osborne and Fearn [46]. The 2nd derivative absorbance spectra 
showed peaks at 973, 1200, 1273, 1360, 1440, 1470, and 1585 nm, which are related to the chemical 
compositions of the pure white pepper powder and the roasted sticky rice powder (Figure 1b). The 
absorption band locations associated with proteins were at 973 nm, corresponding to N–H stretching 

second overtone, and at 1470 nm, corresponding to N–H stretching first overtone, as described by 
Workman and Weyer [45], and the water absorbance peak at 1200 nm was associated with the second 

overtone of the O–H stretching [45]. The absorbance peak observed at 1273 nm was related to the 

second overtone of C–H stretching, which corresponds to C–H functional groups [47]. The 1360 nm 

peak was linked to C–H combination bands, indicative of methyl groups (CH3) [48]. The presence of 
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sucrose and starch at the absorbance peak of 1440 nm was reported to be associated with the first 
overtone of O–H stretching [47], and the presence of starch and glucose molecules at the absorbance 
peak of 1585 nm was also attributed to the first overtone of O–H stretching [46]. 
 

 
Figure 2. 

PCA score plot of the pure white pepper powder and the roasted sticky rice powder. 

 
The cumulative variance percentage was 98% from the two principal components (PC1 and PC2), 

with the variation for PC1 being 15% and for PC2 83% (Figure 2). This indicates that the two clusters 
of the pure white pepper powder and the roasted sticky rice powder were completely separated. This 
result clearly demonstrated that spectral data could be used to distinguish between pure tapioca starch 
and adulterated tapioca starch using this technique. 

 

3.3. Acquisition from Qualitative Analysis 
The characteristics of the samples used in the calibration and prediction sets for analysis were the 

same (Table 2). 

 
Table 2. 

The characteristics of samples in calibration and prediction sets for PLS-DA and SVMC.  

Sets Sample number Minimum 

(%) 

Maximum 

(%) 

Mean 

(%) 

Standard 

Deviation (%) 
Calibration 152 0 1 0.54 0.05 
Prediction 66 0 1 0.54 0.05 

 
The PLS-DA results of accuracy, sensitivity, specificity, and error rate by cross-validation of 

samples in the calibration set (Figure 3a) showed that using original spectral data (non-pretreatment), 
using smoothing, and using 1st derivative spectral pretreatments achieved perfect classification 
performance, with 100% accuracy, sensitivity, and specificity without error rate. Therefore, the original 
spectral data were selected for classification by PLS-DA. 
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The SVMC results for accuracy, sensitivity, specificity, and error rate, obtained through cross-
validation of samples in the calibration set (Figure 3b), indicated that the combination of the 1st 
derivative with the SNV spectral pretreatment method provided the highest performance. It achieved 
96.05% accuracy, 92.11% sensitivity, 100% specificity, and the lowest error rate of 3.95%. Therefore, the 
combination of the 1st derivative with the SNV spectral pretreatment method was selected for 
classification using SVMC. 
 

 
Figure 3. 

Comparison of spectral pretreatment methods for classification in the calibration set using (a) PLS-DA and (b) SVMC.  
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Table 3. 

Performance of classification using PLS-DA and SVMC in the calibration set and the prediction set. 

Methods Pre-treatment Factors 
Data  
set 

Pure white pepper powder 
(0) 

Adulterated white pepper powder 
(1) %Accuracy %Sensitivity  %Specificity 

%Error 

 rate 
TRUE FALSE TRUE FALSE 

PLS-DA Original 8 
Cal 70 

0 
82 0 100 100 100 0 

Pred 30 36 0 100 100 100 0 

SVMC 
1st derivative + 

SNV 

Nu 0.5 Cal 70 

0 

78 4 97.37 94.59 100 2.63 

 0.01 Pred 30 34 2 96.97 93.75 100 3.03 

                    
Note: PLS-DA = partial least squares discrimination analysis. 
SVMC = support vector machine classification  
SNV = standard normal variate 
Cal = calibration set 
Pred = prediction set 

 = kernel function parameter gamma 
Nu = Nu parameter. 
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The results of classification using PLS-DA and SVMC in the calibration set and the prediction set 
showed 100% accuracy, sensitivity, and specificity, without an error rate (%) in both sets, indicating that 
PLS-DA provided excellent performance for classification. 

The combination of the 1st derivative with the SNV spectral pretreatment method was therefore 
selected for classifying pure white pepper powder and adulterated white pepper powder using SVMC 

with the Nu parameter of 0.5 and the kernel function parameter gamma (γ) of 0.01. The classification 
results showed 97.37% accuracy, 94.59% sensitivity, 100% specificity, and a 2.63% error rate in the 
calibration set, and 96.97% accuracy, 93.75% sensitivity, 100% specificity, and a 3.03% error rate in the 
prediction set. These results indicate that SVMC provided good performance for classification (Table 3). 
From these results, it was shown that PLS-DA was more effective for differentiating between the pure 
white pepper powder and the adulterated white pepper powder than SVMC. 

 

 
Figure 4. 
The classification for the pure white pepper powder samples (0) and the adulterated white pepper powder samples (1) using 

PLS-DA in both the calibration set (a) and the prediction set (b). 

 
The scatter plots of classification between the pure white pepper powder samples (0) and the 

adulterated white pepper powder samples (1) using PLS-DA are shown in Figure 4. The cutoff value of 
0.5 was used for classification. If the predicted value of each sample was equal to or less than 0.5, it was 
classified as a pure white pepper powder sample, while if the predicted value was higher than 0.5, it was 
classified as an adulterated white pepper powder sample. The results demonstrated that PLS-DA, when 
using the original spectral data of samples, achieved perfect classification in both the calibration and 
prediction sets. 

 

3.4. Acquisition from Quantitative Analysis 
Both the calibration set (N=85) and the prediction set (N=37) for quantitative analysis using PLSR 

and SVMR contained samples characterized by the level of roasted sticky rice powder in the adulterated 
white pepper powder. The characteristics of these samples in both the calibration and prediction sets 
exhibited a well-distribution of data, as evidenced by their similar mean and standard deviation values 
(Table 4). 
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Table 4. 
The characteristics of the level of the roasted sticky rice powder in the adulterated white pepper powder of samples in the 

calibration and prediction sets. 

Sets Sample number Minimum 

(%) 

Maximum 

(%) 

Mean 

(%) 
Standard Deviation (%) 

Calibration 85 0 100 49.83 29.26 

Prediction 37 1 98 50.16 30.41 

 
The various spectral pretreatment methods for PLSR results by cross-validation showed that 

MSC spectral pretreatment obtained the best performance of the calibration model, with the highest R2
cv 

of 0.88 and the lowest RMSECV of 10.46%. (Figure 5a). Therefore, MSC spectral pretreatment was 
selected for creating the PLSR model. Additionally, the SVMR results by cross-validation indicated that 
SNV spectral pretreatment provided the best performance of the calibration model, with the highest R2

cv 
of 0.95 and the lowest RMSECV of 7.54%. (Figure 5b). Consequently, SNV spectral pretreatment was 
chosen for developing the SVMR model in this study. 

 

 
Figure 5. 

Spectral pretreatment methods for establishing the PLSR model (a) and the SVMR model (b). 
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Table 5. 

Performance of the PLSR model and the SVMR model in the calibration set and the prediction set.  

Methods 
Pre-

treatment 
Factors R2

c R2
p 

RMSEC RMSEP 

(%) (%) 
PLSR MSC 1 0.88 0.88 10.15 10.12 

SVMR SNV 
c  0.96 0.95 6.49 6.82 

0.1 0.01 
Note: PLSR = partial least squares regression 
SVMR = support vector machine regression 
MSC = multiplicative scatter correction 
SNV = standard normal variate 
R²c = coefficient of determination of calibration 
RMSEC = root mean square error of calibration 
R²p = coefficient of determination of prediction 
RMSEP = root mean square error of prediction 
c = penalty factor 

 = kernel function parameter gamma. 

 
The PLSR model, developed using MSC spectral pretreatment, yielded an R2

p of 0.88 and an 
RMSEP of 10.12%. In contrast, the SVMR model, developed using SNV spectral pretreatment, achieved 
an R2

p of 0.95 and an RMSEP of 6.82%. Therefore, the SVMR model was demonstrated to be more 
accurate in determining the level of roasted sticky rice powder in adulterated white pepper powder 
(Table 5). 
 

 
Figure 6. 

The scatter plots of the actual value and the predicted value of the level of roasted sticky rice powder in 
adulterated white pepper powder using the SVMR model in the calibration set (a) and the prediction set 
(b). 
 

The performance of the data from the SVMR model closely aligned along the 45-degree reference 
line, indicating a strong agreement between the predicted and actual values (Figures 6a and 6b). 
Confirming that the SVMR model provided accurate quantitative predictions of the level of roasted 
sticky rice powder in the adulterated white pepper powder. 
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4. Conclusions 
From this study, it was shown that near-infrared hyperspectral imaging has the potential to be 

used for identifying when white pepper powder has been contaminated with roasted rice powder. It also 
demonstrated its potential for identifying the actual level of adulteration. It was shown that using 
partial least squares discriminant analysis resulted in 100% accuracy. Additionally, support vector 
machine regression and standard normal variate enhancement improved the predictive performance for 
determining the concentration of roasted sticky rice powder in adulterated white pepper powder. These 
findings indicate that near-infrared hyperspectral imaging could be used to establish a reliable model for 
identifying adulteration of white pepper powder in real-time. This method is fast, reliable, and applicable 
in a non-destructive manner in a commercial setting. 
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