

Enhancing learning activities and problem-solving skills of students with disabilities through collaborative problem-solving models

 <img alt="ORCID icon" data-bbox="35018 284

Despite its documented benefits, many classrooms in Indonesia, including high-performing schools such as special schools, still predominantly rely on conventional teacher-centered approaches. Traditional instructional models often limit student engagement to passive reception of information, thereby restricting opportunities for active learning and collaborative exploration. In such settings, the development of students' problem-solving skills tends to be suboptimal, as learners are not provided with sufficient autonomy, interaction, or cognitive challenge [6]. This pedagogical limitation is concerning, given that problem-solving ability is a foundational element of academic success across subjects, particularly in science, mathematics, and project-based learning environments [7]. Moreover, classroom observations and preliminary discussions with teachers indicate that students frequently struggle to translate theoretical knowledge into practical problem-solving strategies, suggesting the need for alternative pedagogical interventions [8].

While existing literature provides extensive evidence supporting the effectiveness of collaborative learning models, several research gaps remain [9]. First, many studies focus primarily on the cognitive outcomes of CPS and overlook its influence on learning activities, such as engagement, participation, and collaborative interaction [10]. Yet, these activities are essential mediators that determine how effectively students internalize problem-solving processes [11]. Second, research conducted in Indonesian secondary schools rarely employs rigorous experimental or quasi-experimental designs to examine the causal effects of CPS on learning outcomes [12, 13]. Much of the existing work relies on descriptive or correlational methods that cannot conclusively establish the impact of instructional models on student performance. Third, studies that evaluate CPS within the context of high-achieving urban schools, such as special schools, are still limited, despite the unique academic characteristics and expectations associated with such institutions. Addressing these gaps is necessary to develop a more comprehensive understanding of how CPS functions across diverse educational settings and learner profiles.

The present study responds to these research gaps by investigating the effectiveness of the Collaborative Problem-Solving model in enhancing students' learning activities and problem-solving skills through a quasi-experimental design [14–16]. Unlike descriptive studies, quasi-experimental methods allow for a more rigorous comparison between students exposed to CPS and those receiving conventional instruction [17]. By incorporating both pretest and posttest assessments, this study evaluates not only learning outcomes but also initial equivalence between groups, thereby providing stronger evidence of the causal relationship between the instructional model and student improvement [18, 19]. In addition, observational data are included to capture changes in student engagement, participation, and collaborative dynamics elements that are rarely analyzed in previous CPS research but are central to understanding how the model transforms the learning environment.

The relevance of this study is further strengthened by its contextual importance. Implementing CPS in such an environment provides meaningful insights into how innovative pedagogical approaches can enhance student performance in high-achieving contexts. Given the school's emphasis on academic rigor, students are expected to develop strong analytical and problem-solving competencies. However, without appropriate instructional strategies, these expectations may remain unmet. Therefore, evaluating CPS in this setting offers practical implications for teachers, curriculum designers, and policymakers seeking to modernize instructional practices and align them with contemporary educational demands.

The purpose of this study is to analyze the impact of the Collaborative Problem-Solving model on (1) students' learning activities and (2) their problem-solving skills. To achieve this purpose, the study employs a nonequivalent pretest–posttest control group design involving 130 students, allowing for direct comparison between experimental and control groups. By combining quantitative assessment with observational data, the study offers a holistic perspective on how CPS shapes both cognitive and behavioural learning outcomes. This methodological rigor positions the study to contribute meaningful, evidence-based insights to the broader field of instructional innovation.

This research provides several key contributions. First, this study empirically demonstrates the effect of CPS on the problem-solving abilities of students with disabilities in special education settings using robust statistical analysis. Second, this study expands the existing literature by examining CPS not only as a cognitive enhancement strategy but also as a catalyst for increasing learning activities. Third, this study presents context-specific findings that are relevant to education practitioners in Indonesia, especially those working in academically competitive schools. Finally, by identifying the significance of collaborative engagement and structured problem-solving processes, the study contributes to ongoing discussions surrounding pedagogical transformation and the development of 21st-century competencies. Through these contributions, the research underscores the need for instructional models that actively engage learners and foster deeper cognitive processing, thereby supporting educational excellence in an increasingly complex world.

2. Methods

2.1. Research Design

This study employed a quantitative approach using a quasi-experimental design, specifically the nonequivalent pretest–posttest control group design. This design is commonly implemented in educational research where random assignment at the individual level is not feasible. Two intact classes at a special school were assigned as the experimental and control groups. Both groups were given a pretest before the intervention to assess initial equivalence, followed by a posttest after the intervention period. The experimental group received instruction using the Collaborative Problem-Solving (CPS) model, while the control group was taught using conventional teacher-centered instructional methods. This design allows for the investigation of causal relationships between the instructional treatment and changes in students' learning activities and problem-solving skills.

2.2. Participants

A total of 130 students with disabilities who study in special schools participated in this study. Cluster random sampling was used to select two intact classes based on administrative considerations and the school's scheduling system. The sample consisted of 65 students in the experimental group and 65 students in the control group. Both groups were comparable in demographic and academic characteristics. Participation was voluntary, and ethical considerations were observed throughout the research process.

2.3. Instruments

Two main instruments were used in this study.

1. **Problem-Solving Skills Test:** A standardized test was developed to measure students' problem-solving abilities. The instrument consisted of items aligned with established indicators of problem-solving competence, including problem identification, strategy formulation, solution evaluation, and application of reasoning.
2. **Learning Activity Observation Sheet:** Structured classroom observations were conducted to assess students' learning activities. The observation sheet focused on indicators such as engagement, collaboration, participation in group discussions, and responsiveness during instruction. These indicators reflect behavioral aspects of active learning associated with the implementation of the CPS model.

2.4. Procedure

The research procedure consisted of several stages. First, both the experimental and control groups completed a pretest to assess baseline problem-solving ability. Next, the experimental group received instruction using the Collaborative Problem-Solving model. This instructional approach encouraged students to work collaboratively in groups, engage in shared inquiry, communicate reasoning, and

develop collective solutions to assigned problems. The teacher acted as a facilitator, guiding discussion and prompting reflective thinking.

Meanwhile, the control group was taught using conventional instructional methods, characterized by lecture-based delivery, individual practice, and limited peer interaction. Throughout the intervention, structured classroom observations were conducted to document differences in learning activities between the two groups. At the end of the intervention period, both groups completed the posttest using the same instrument administered during the pretest.

2.5. Data Analysis

Data collected from pretests, posttests, and observations were analyzed using descriptive and inferential statistical techniques. Before conducting group comparisons, assumption tests including normality and homogeneity of variances were performed to ensure compliance with parametric test requirements. An Independent Samples T-Test was used to determine whether there were significant differences between the two groups in terms of problem-solving skills following the instructional intervention. All analyses were conducted using statistical software with a significance level set at 0.05.

3. Results

3.1. Normality Test

A Kolmogorov–Smirnov test was performed to assess whether the distribution of pretest and posttest scores in both groups met the assumption of normality. The results are presented in Table 1.

Table 1.
One-Sample Kolmogorov–Smirnov Test

		Pretest_Experiment	Posttest_Experiment	Pretest_Control	Posttest_Control
N		65	65	65	65
Normal Parameters ^{a,b}	Mean	33.54	81.54	33.00	75.92
	Std. Deviation	6.106	6.055	7.278	7.649
Most Extreme Differences	Absolute	0.164	0.162	0.162	0.144
	Positive	0.150	0.154	0.126	0.128
	Negative	-0.164	-0.162	-0.162	-0.144
Kolmogorov-Smirnov Z		1.321	1.309	1.307	1.163
Asymp. Sig. (2-tailed)		0.061	0.065	0.066	0.134

Note: a. Test distribution is Normal.

b. Calculated from data.

The Kolmogorov–Smirnov test was employed to evaluate whether the pretest and posttest scores from both the experimental and control groups conformed to a normal distribution. As shown in Table 1, all Asymp. Sig. values ranged from .061 to .134, exceeding the threshold of 0.05. These results indicate that none of the distributions deviated significantly from normality. The absolute and directional extreme difference values also suggest that the data did not exhibit substantial skewness or kurtosis. Accordingly, the assumption of normality was satisfied for all variables, supporting the use of parametric statistical procedures in subsequent analyses, including the Independent Samples T-Test.

3.2. Homogeneity of Variances

Levene's test was used to determine whether the variance between groups was homogeneous. Table 2 provides the output.

Table 2.
Test of Homogeneity of Variances.

	Levene Statistic	df1	df2	Sig.
Pretest	3.521	1	128	0.063
Posttest	2.053	1	128	0.154

Levene's Test was conducted to assess the equality of variances between the experimental and control groups for both pretest and posttest scores. As shown in Table 2, the significance values for the pretest (.063) and posttest (.154) exceeded the .05 threshold, indicating no statistically significant difference in variance between groups. These results confirm that the homogeneity of variances assumption was met for both measurement points. Satisfying this assumption is essential for ensuring the validity of subsequent parametric analyses, particularly the Independent Samples T-Test, which requires comparable variance structures across groups to produce unbiased statistical estimates.

3.3. Group Statistics

Descriptive statistics summarizing the pretest and posttest scores of both groups are shown in Table 3.

Table 3.
Group Statistics.

	Group	N	Mean	Std. Deviation	Std. Error Mean
Pretest	Experiment	65	33.54	6.106	0.757
	Control	65	33.00	7.278	0.903
Posttest	Experiment	65	81.54	6.055	0.751
	Control	65	75.92	7.649	0.949

The descriptive statistics presented in Table 3 provide an overview of the pretest and posttest performance of the experimental and control groups. Before the intervention, both groups demonstrated comparable levels of problem-solving ability, as reflected by closely aligned mean scores (33.54 for the experimental group and 33.00 for the control group). This similarity suggests that the two groups began the study with equivalent baseline competencies. Following the implementation of the Collaborative Problem-Solving model, the experimental group exhibited a substantial increase in mean posttest scores, rising to 81.54, whereas the control group achieved a lower mean of 75.92. The reduced standard error values further indicate consistent performance within each group. Collectively, these descriptive patterns suggest that the experimental group benefited more markedly from the instructional intervention.

3.4. Independent Samples T-Test

Hypothesis testing was conducted using an independent samples t-test to determine whether the differences between groups were statistically significant. The results are provided in Table 4.

Table 4.
Independent Samples Test.

				Pretest		Posttest	
				Equal variances assumed	Equal variances not assumed	Equal variances assumed	Equal variances not assumed
Levene's Test for Equality of Variances		F	3.521			2.053	
		Sig.	.063			.154	
t-test for Equality of Means		t	.457	.457	4.641	4.641	
		df	128	124.247	128	121.590	
		Sig. (2-tailed)	.648	.648	.000	.000	
		Mean Difference	.538	.538	5.615	5.615	
		Std. Error Difference	1.178	1.178	1.210	1.210	
	95% Confidence Interval of the Difference	Lower	-1.793	-1.794	3.221	3.220	
		Upper	2.870	2.871	8.010	8.011	

The Independent Samples T-Test was employed to evaluate whether the differences in mean scores between the experimental and control groups were statistically significant. As shown in Table 4, the pretest comparison yielded a non-significant result ($t = 0.457$, $p = 0.648$), indicating that both groups possessed comparable baseline problem-solving abilities before the intervention. This finding aligns with the assumption of initial group equivalence in quasi-experimental designs.

Following the intervention, the posttest results demonstrated a highly significant difference between groups ($t = 4.641$, $p = 0.000$). The experimental group outperformed the control group by a mean difference of 5.615 points, with the 95% confidence interval (3.221 to 8.010) confirming the robustness of this effect. These findings provide strong empirical support for the effectiveness of the Collaborative Problem-Solving model in enhancing students' problem-solving skills compared to conventional instruction.

4. Discussion

The findings of this study demonstrate that the Collaborative Problem-Solving (CPS) model significantly enhances both students' learning activities and their problem-solving skills in a special school context. The substantial improvement observed in the experimental group's posttest scores compared with the control group suggests that CPS provides a more engaging and cognitively effective learning environment. This aligns with the argument that learning becomes more meaningful when students actively participate in constructing solutions through structured collaboration rather than passively receiving information [20]. The CPS model emphasizes shared reasoning, group accountability, and reflective inquiry, all of which are known to facilitate deeper conceptual understanding and higher-order thinking [21].

The increase in learning activities observed in the experimental group can be attributed to the interactive nature of CPS. As students engage in discussion, negotiate ideas, and collaboratively solve problems, they demonstrate higher levels of engagement and motivation, consistent with findings reported by Wu et al. [22] and Gillies [23]. These behavioral indicators support the notion that CPS not only improves cognitive performance but also enhances affective and social dimensions of learning. Furthermore, the structured collaborative processes inherent in CPS provide scaffolding that assists students in transitioning from lower-order to higher-order problem-solving skills [24].

The results also indicate that CPS is particularly effective in contexts such as special schools, where academic expectations are high, and students are required to demonstrate advanced analytical competencies. The ability of CPS to support inquiry, critical reasoning, and cooperative engagement

makes it well-suited for academically competitive environments. Previous studies have reported that collaborative learning models are most effective when students are challenged with complex tasks requiring multiple perspectives [25]. The significant mean gain in the experimental group suggests that CPS helps students navigate such challenges more effectively than conventional instructional strategies.

The non-significant pretest difference confirms initial group equivalence, strengthening the causal inference that the observed improvements were attributable to the CPS intervention rather than preexisting differences. This is consistent with methodological recommendations for quasi-experimental designs in educational research [26]. By ensuring that normality and homogeneity assumptions were met, the study adhered to established best practices for statistical analysis, further supporting the validity of the findings.

The significant posttest differences align with previous research demonstrating that collaborative problem solving improves academic achievement across various domains, including mathematics, science, and engineering [27, 28]. CPS promotes shared cognitive load, allowing students to distribute mental effort more efficiently and engage in joint reasoning, which enhances problem-solving outcomes [29]. The structured stages of CPS, problem identification, exploration, solution generation, and reflection mirror contemporary models of inquiry-based and constructivist learning [30], providing a coherent framework for deep learning.

The collaborative dimension of CPS has implications for 21st-century skills development. As students work in groups, they practice communication, leadership, conflict resolution, and social negotiation, skills essential for academic and professional success [31]. The interplay between cognitive and social processes within CPS creates a holistic learning experience aligned with global educational frameworks such as UNESCO's Education 2030.

The study also highlights the role of teacher facilitation in maximizing CPS effectiveness. As noted in prior research, the success of collaborative learning depends heavily on teachers' ability to structure tasks, guide discussions, and create supportive learning climates [32]. The present findings suggest that CPS could be further optimized through teacher training in collaborative pedagogy and classroom orchestration.

This study contributes empirical evidence supporting CPS as an effective instructional model for enhancing learning activities and problem-solving skills in secondary education. The results reinforce theoretical and empirical claims regarding the value of collaborative learning and underscore the importance of integrating CPS within contemporary curricula. Future research may explore the long-term impacts of CPS, variations across subjects, and the influence of digital tools in supporting collaborative problem solving.

5. Conclusion

The findings of this study provide strong empirical evidence that the Collaborative Problem Solving (CPS) model significantly improves both learning activities and problem-solving skills of students with disabilities in special schools. The quasi-experimental analysis revealed that students who participated in CPS-based learning demonstrated notably higher posttest scores compared with those taught through traditional instruction. This improvement was accompanied by observable increases in student engagement, collaboration, and active participation during classroom activities, suggesting that CPS fosters a more dynamic and interactive learning environment. The model's emphasis on shared inquiry, structured dialogue, and collective reasoning appears to encourage deeper cognitive processing, enabling students to approach complex problems with greater confidence and analytical capability. These outcomes affirm existing theories of collaborative learning and reinforce the pedagogical value of integrating CPS into contemporary instructional practices.

Beyond its immediate cognitive benefits, CPS also supports the development of essential 21st-century skills, including communication, teamwork, and critical thinking, which are increasingly necessary for academic and professional success. The study's results thus hold important implications

for educators, curriculum designers, and policymakers seeking to modernize teaching strategies and align them with global educational standards. Implementing CPS in schools such as special schools can contribute to a more student-centered learning culture and promote higher levels of academic achievement. However, the successful adoption of CPS requires adequate teacher preparation, ongoing professional development, and thoughtful classroom management to ensure effective facilitation. Future research may explore the long-term impact of CPS, its applicability across diverse subject areas, and the potential integration of digital tools to further enhance collaborative learning processes.

Transparency:

The authors confirm that the manuscript is an honest, accurate, and transparent account of the study; that no vital features of the study have been omitted; and that any discrepancies from the study as planned have been explained. This study followed all ethical practices during writing.

Copyright:

© 2025 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

References

- [1] M. Chaojing, "A study on strategies for cultivating higher-order thinking skills in primary and secondary school students," *Frontiers in Educational Research*, vol. 6, no. 20, pp. 67-71, 2023. <https://doi.org/10.25236/FER.2023.062011>
- [2] F. Majed, A. Dzulnazmi, N. Umamy, and D. Husna, "Building an inclusive society (Speech Impaired) by applying educational values at TPQ Ibn Ummi Maktum," *JMPI: Jurnal Manajemen, Pendidikan dan Pemikiran Islam*, vol. 3, no. 1, pp. 1-18, 2025. <https://doi.org/10.71305/jmpi.v3i1.139>
- [3] J. C. González-Salamanca, O. L. Agudelo, and J. Salinas, "Key competences, education for sustainable development and strategies for the development of 21st century skills. A systematic literature review," *Sustainability*, vol. 12, no. 24, p. 10366, 2020. <https://doi.org/10.3390/su122410366>
- [4] B. B. Manti and B. Yunus, "Educational institutions: Policies and priorities in preparing human resources," *JMPI: Jurnal Manajemen, Pendidikan dan Pemikiran Islam*, vol. 3, no. 1, pp. 40-57, 2025. <https://doi.org/10.71305/jmpi.v3i1.208>
- [5] C. Sun, V. J. Shute, A. Stewart, J. Yonehiro, N. Duran, and S. D'Mello, "Towards a generalized competency model of collaborative problem solving," *Computers & Education*, vol. 143, p. 103672, 2020. <https://doi.org/10.1016/j.compedu.2019.103672>
- [6] D. Saengchuk, S. Phammesone, P. Traorésa, A. Z. Solomon, and M. B. Mose, "Total quality management strategy to improve organizational culture in multicultural and religious-based educational institutions," *International Journal of Education Management and Religion*, vol. 1, no. 1, pp. 13-26, 2024. <https://doi.org/10.71305/ijemr.v1i1.152>
- [7] E. K. Arifah and T. R. Noor, "Analysis of supporting and inhibiting factors in learning at community learning activity centers," *International Journal of Education Management and Religion*, vol. 2, no. 1, pp. 36-45, 2025.
- [8] A. Briganti, "Implementation of inclusive education for students with special needs in public schools: A qualitative study," *International Journal of Interdisciplinary Research*, vol. 1, no. 1, pp. 561-575, 2025.
- [9] M. I. A.-t. At-tamimy and M. J. A. Eloy, "Educational perception in urban and rural communities: A qualitative study," *International Journal of Interdisciplinary Research*, vol. 1, no. 1, pp. 40-53, 2025. <https://doi.org/10.71305/ijir.v1i1.226>
- [10] Z. Jameel, "Integrating management, education, and Islamic thought: A conceptual framework for holistic institutional development," *JMPI: Jurnal Manajemen, Pendidikan dan Pemikiran Islam*, vol. 3, no. 2, pp. 234-257, 2025.
- [11] S. Aini, "The concept of education and learning in the Qur'an based on Surah Al-'Alaq: an Islamic perspective on knowledge development," *JMPI: Jurnal Manajemen, Pendidikan dan Pemikiran Islam*, vol. 3, no. 1, pp. 108-129, 2025. <https://doi.org/10.71305/jmpi.v3i1.236>
- [12] B. Ismanto and S. Trisyawati, "Optimizing financial management to enhance curriculum delivery and student development in vocational high schools," *Journal of Teaching and Learning*, vol. 1, no. 2, pp. 109-124, 2025.
- [13] A. Syafi'i, N. Azah, and Z. Arifin, "Developing global competencies in teacher education for 21st century learning environments," *JTL: Journal of Teaching and Learning*, vol. 1, no. 1, pp. 37-56, 2024.
- [14] S. Abror and S. Fatinnah, "Project-based learning (PjBL) as a strategy to enhance critical thinking skills in elementary students," *International Journal of Multidisciplinary Research and Innovation*, vol. 1, no. 1, pp. 37-49, 2025. <https://doi.org/10.64084/ijmri.v1i1.47>

[15] M. Habibulloh, "Teachers' professional development and its influence on teaching innovation in rural schools," *International Journal of Multidisciplinary Research and Innovation*, vol. 1, no. 1, pp. 23-36, 2025. <https://doi.org/10.64084/ijmri.v1i1.46>

[16] S. T. Satyawati and Y. Dwikurnaningsih, "Strategies for organization in educational resource management," *Journal of Studies in Academic, Humanities, Research, and Innovation*, vol. 1, no. 1, pp. 38-55, 2024.

[17] M. Habibulloh, M. I. Sholeh, and K. Idawati, "Exploring technological innovations and approaches in modern education," *Journal of Studies in Academic, Humanities, Research, and Innovation*, vol. 1, no. 1, pp. 56-76, 2024.

[18] S. Muh Ibnu, Sokip, S. i. Asrop, and Sulistyorini, "Artificial intelligence in education: Transforming assessment and personalized learning," *Journal of Education and Learning Sciences*, vol. 4, no. 1, pp. 50-62, 2024. <https://doi.org/10.56404/jels.v4i1.118>

[19] M. Munif, J. M. Galvis, and M. Habibulloh, "Utilization of digital technology in enhancing teachers' pedagogical competence," *Journal of Education and Learning Sciences*, vol. 4, no. 2, pp. 74-87, 2024. <https://doi.org/10.56404/jels.v4i2.108>

[20] T. Hailikari, V. Virtanen, M. Vesalainen, and L. Postareff, "Student perspectives on how different elements of constructive alignment support active learning," *Active Learning in Higher Education*, vol. 23, no. 3, pp. 217-231, 2022. <https://doi.org/10.1177/1469787421989160>

[21] Y. Lee and S.-S. Lee, "Exploring the conceptual model and instructional design principles of intelligent problem-solving learning," *Sustainability*, vol. 17, no. 17, p. 7682, 2025. <https://doi.org/10.3390/su17177682>

[22] X. Wu, R. C. Anderson, K. Nguyen-Jahiel, and B. Miller, "Enhancing motivation and engagement through collaborative discussion," *Journal of Educational Psychology*, vol. 105, no. 3, pp. 622-632, 2013. <https://doi.org/10.1037/a0032792>

[23] R. M. Gillies, "Promoting academically productive student dialogue during collaborative learning," *International Journal of Educational Research*, vol. 97, pp. 200-209, 2019. <https://doi.org/10.1016/j.ijer.2017.07.014>

[24] A. C. Graesser, S. M. Fiore, S. Greiff, J. Andrews-Todd, P. W. Foltz, and F. W. Hesse, "Advancing the science of collaborative problem solving," *Psychological Science in the Public Interest*, vol. 19, no. 2, pp. 59-92, 2018. <https://doi.org/10.1177/1529100618808244>

[25] K. Hakkarainen, S. Paavola, K. Kangas, and P. Seitamaa-Hakkarainen, *Sociocultural perspectives on collaborative learning: Towards collaborative knowledge creation*. In C. E. Hmelo-Silver, C. A. Chinn, C. K. K. Chan, & A. M. O'Donnell (Eds.), *The International Handbook of Collaborative Learning*. New York: Routledge, 2013.

[26] M. Gopalan, K. Rosinger, and J. B. Ahn, "Use of quasi-experimental research designs in education research: Growth, promise, and challenges," *Review of Research in Education*, vol. 44, no. 1, pp. 218-243, 2020. <https://doi.org/10.3102/0091732X20903302>

[27] L. Chen, Y. Taniguchi, A. Shimada, and M. Yamada, "Exploring behavioral and strategic factors affecting secondary students' learning performance in collaborative problem solving-based STEM lessons," *Sage Open*, vol. 14, no. 2, p. 21582440241251641, 2024. <https://doi.org/10.1177/21582440241251641>

[28] L. Shengqiang, A. Nankhantee, and S. Srikhao, "Combining inquiry-based learning and collaborative learning: A new model for improving students' teamwork and problem-solving skills," *Journal of Education and Educational Development*, vol. 12, no. 1, pp. 13-38, 2025.

[29] S. Kalyuga, A. Renkl, and F. Paas, "Facilitating flexible problem solving: A cognitive load perspective," *Educational Psychology Review*, vol. 22, pp. 175-186, 2010. <https://doi.org/10.1007/s10648-010-9132-9>

[30] D. L. Morris, "Rethinking science education practices: Shifting from investigation-centric to comprehensive inquiry-based instruction," *Education Sciences*, vol. 15, no. 1, p. 73, 2025. <https://doi.org/10.3390/educsci15010073>

[31] D. Lee, Y. Huh, and C. M. Reigeluth, "Collaboration, intragroup conflict, and social skills in project-based learning," *Instructional Science*, vol. 43, pp. 561-590, 2015. <https://doi.org/10.1007/s11251-015-9348-7>

[32] A. Ari, "Working together: How teachers teach and students learn in collaborative learning environments," *International Journal of Instruction*, vol. 7, no. 1, pp. 17-32, 2014.