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Abstract: Traditional interviewing literature has regularly highlighted its vulnerability to human
subjectivity and unconscious bias, as such pitfalls may cause interviewers to overlook critical behavioral
cues. To address these shortcomings, the present study proposes an artificial intelligence-based
assessment tool, the Interview Video Analysis System (IVAS), which integrates Facial Emotion
Recognition (FER), Gaze Tracking, and Audio Analysis technologies into a single, cohesive system to
evaluate candidates objectively. IVAS comprises a Convolutional Neural Network (CNN) based on 22
layers trained on the FER-2013 dataset, achieving an accuracy of 86% in recognizing seven different
emotions: Anger, Fear, Sadness, Happiness, Disgust, Surprise, and Neutral, through sophisticated data
augmentation and hyperparameter optimization. The system utilizes 68-point facial features from dlib,
with its gaze module measuring eye contact, directional changes, and blinks, relating these metrics to
engagement and confidence. Additionally, the audio component employs Llama 3.2 with 11 billion
parameters and Mel-Frequency Cepstral Coefficients (MFCC) to extract voice features such as pitch,
hesitancy, and fluency, and transcribes speech for linguistic analysis. The late-fusion logic aggregates
outputs from each module into a well-organized system that provides percentage measures and
performance levels. As a Streamlit web application, IVAS can process live and recorded interviews in
real-time, offering recruiters a scalable, data-driven assessment tool. This system outperforms other
state-of-the-art models by approximately 12 to 30% in FER efficiency and is the first to incorporate
multimodal behavioral analysis to reduce ambiguities inherent in unimodal methods. Collectively, this
comprehensive system enhances traditional interviewing techniques by providing standardized, bias-
proof insights into candidate compatibility.
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1. Introduction

Traditional interviews rely on human judgment, which can be subjective and prone to biases, often
overlooking subtle behavioral cues. To address these weaknesses, the present study proposes an
Interview Video Analysis System (IVAS) developed using advanced artificial intelligence techniques to
help organizations analyze candidates through video and audio analysis. The proposed system in this
study analyzes gaze patterns, facial emotion behavior, and voice recognition through automation,
providing a single, scalable, and objective evaluation method.

During interviews, confidence and composure are essential indicators of a candidate's suitability, as
well as their emotions, such as happiness and sadness, which can be analyzed to assess the emotional
state of an individual and their suitability as a candidate [17]. For this, IFacial Emotion Recognition
(FER), an integral part of the proposed system in the present study, has been widely used in the fields of
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behavioral analysis and computer interaction and is being increasingly incorporated into clinical
practices nowadays [2, 87]. Conventionally, a FER utilizes Convolutional Neural Networks (CNNs)
owing to their extensive ability for classification and extraction, for detecting emotions accurately [4-
157. Additionally, the basis of the proposed system in the present study is the FER-2013 dataset, which
comprises 48x48 grayscale images categorized into seven different basic emotions, providing a solid
toundation for designing a robust deep learning model [167. Similarly, with the help of advanced
architectures such as lightweight CNNs and VGGNet, high accuracy can be achieved even in rough
conditions, such as varying lighting or facial orientation [17].

Gaze tracking is another key feature of the proposed system, which evaluates candidates' focus and
engagement. Eye movement is a powerful indicator of attention and intent; it informs how candidates
interact during an interview. Through investigation, it has been found that gaze behavior, directional
shifts, time of eye contact, attentiveness, and confidence are all interconnected [18, 197]. The proposed
system uses gaze detection and computer vision techniques. With a standard video that we input, the
system analyzes and calculates the candidate's response, such as how much the candidate looked at the
center to maintain eye contact or how much time the candidate spent looking at the left and right sides.
This method is based on research findings that demonstrate the importance of user intent, visual
attention, and content in exploring relationships. With the help of integrated fixation analysis and gaze
mapping techniques, the system provides a detailed analysis of candidates, which can help in
understanding visual engagement [187.

Audio analysis is another integral part of the proposed system within the multi-model framework,
as vocal features such as tone, hesitancy, pitch, confidence, communication skills, and nervousness are
also key indicators. For this, the proposed system utilizes Llama 3.2, an advanced Large Language
Model (LLM) for text analysis and computer vision [20, 217. The proposed system utilizes eleven (11)
billion parameters of the Llama model to handle multitasking and multilingual scenarios
comprehensively, allowing it to be an ideal choice for analyzing diverse candidate profiles. By
incorporating techniques for unique feature extraction and pitch contour analysis, it can detect vocal
patterns in communication and emotions [20, 227 thereby providing detailed insights into analyzing
verbal behavior derived from visual data in FER and Gaze tracking [187].

Finally, the Interview Video Analysis System (IVAS) is a Streamlit-based web application that
processes interview videos through three core modules: FER, gaze tracking, and audio analysis. The
results of the analysis will be presented in a structured report, complete with percentage breakdowns
and comparative benchmarks, enabling recruiters to make informed, data-driven hiring decisions.

While previous research has explored individual Al-based emotion detection, gaze tracking, and
speech analysis, our system uniquely integrates all three modalities for the comprehensive evaluation of
candidates. This combination provides a holistic approach to understanding behavioral and emotional
cues. According to FER studies, it helps us detect subtle emotional cues that may sometimes remain
unnoticed [177]. Similarly, gaze-tracking research emphasizes the most relevant aspects of access,
engagement, and attentiveness. Advanced Al models, such as Llama 3.2, work on text patterns to
enhance a system's analysis capabilities [207].

2. Related Work

Facial emotion recognition (FER) is utilized in Human-Computer Interaction (HCI) for behavioral
analysis, healthcare, and online advertising. Initially, systems consisting of FEER mainly depended on
hand-crafted features and classical machine learning. These methods were Local Binary Patterns (LBP)
and Histogram of Oriented Gradients (HOG) techniques, which were used to extract features and facial
images. In contrast, Decision Tree (DT) classifiers and Support Vector Machines (SVM) were used for
classification [287] which performed exceptionally well in controlled environments; however, they
lacked robustness due to variations in lighting, poses, and expressions in real-world scenarios. The
introduction of CNNs in the 1990s revolutionized the approach towards image processing [24].
Comprising convolutional layers, pooling layers, and fully connected layers, it proved highly effective in
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automated feature extraction and performed the classification of images quite effectively [257]. However,
its utilization was initially restricted due to the limited processing power required to handle large
datasets. By the 2010s, advancements in hardware (GPUs) and datasets, such as FER-20183, accelerated
the growth of deep learning-based face recognition systems. FER-2018 is the first dataset that
recognizes real-world emotions, introduced by LCML in 2013 [26]. Afterward, researchers
experimented with different variants of CNNs, which subsequently led to the development of well-
recognized models such as VGGNet, InceptionNet, and ResNet, all of which have significantly
improved the accuracy of classification.

Many researchers have now leveraged the power of CNNs for classifying FER-2013 datasets. For
instance, Liu et al. [277] used CNN for classification on the FER-2013 dataset, resulting in an accuracy
of 71.2% [27]. However, on further investigation, the researchers improved the accuracy by 2.6%
through the incorporation of an ensemble method that combined three variants of CNN, but the
utilization of advanced techniques, training, and resources increases the cost of the overall process [277].
Another researcher compared ResNet and InceptionNet models, achieving the highest accuracy of 70%
[287. Similarly, Khaireddin and Chen optimized VGGNet by tuning the hyperparameters, testing
different optimizers and learning rate schedulers [297. They successfully achieved an accuracy of
73.28% in FER-2013, indicating the need for hyperparameter tuning in FER for optimal performance.
Gaze tracking is also a crucial feature utilized in multimodal AI systems that assess attentiveness during
interviews, including eye movements such as fixation and directional shifts, to help understand
attentiveness and intent. In real-world applications, such as accident prevention, the importance of gaze
tracking is of great interest, as it helps improve human focus. It can also aid in understanding human
interaction and content [307]. Recent studies have proven the successful implementation of gaze
tracking using a webcam, which enhances the ability to track [37. In the proposed system, gaze metrics,
such as contact frequency and gaze shift patterns, combined with candidate evaluation, have provided
valuable insights. Audio analysis is another feature that is widely used in AI systems to understand
human behavior [817. Vocal features, such as pitch modulation, tone variability, and hesitancy, help in
understanding the candidate's confidence and emotional state. The researchers in Onyema et al. [28]
have extensively discussed dynamic scenarios, including interviews with emotional cues detected
through gaze-enabled detection and vocal analysis using the Llama 3.2 model. Another study has
presented a practical approach that utilizes pitch contour and spectral feature extraction techniques in
combination with visual features to provide an understanding of holistic behavior [827.

In the context of multimodal video analytics, recent advances have already led to significant
progress in integrating heterogeneous data modalities to provide comprehensive behavioral analysis.
Murthy and Siddesh [337] proposed a sophisticated video analytics system based on sarcasm, utilizing
their SarcasNet-99 system, and demonstrated 99.005% precision after combining text, image, and audio
attributes using an adaptive fusion network on the TEDx and GII' Reply datasets. In another study,
they developed a Deep Hybrid Fusion algorithm [347 that achieved 95.84% accuracy on the data from
IEMOCAP, CMU-MOSI, and CMU-MOSEI, utilizing Modality Unchanged-Precise Representation
learning and a BiLSTM encoder-decoder structure. Furthermore, in another study, the same
researchers utilized the power of quantum theoretical formalisms to address intra- and inter-expression
dynamics, modeling this through a quantum-conscious multimodal option mining architecture by
incorporating networks of CNN and LSTM and demonstrating better performance in the task of
conversational sentiment analysis [35]. Altogether, these experiments confirm the effectiveness of deep
learning-based multimodalities in video processing and propose a solid foundation for Al-powered
systems of interviewing evaluation, which incorporate facial emotion recognition, gaze tracking, and
audio analysis to aid in the thorough review of candidates.

2.1. Challenges in FER Methods
Despite exceptional progress, there are still some gaps in FER methods, as the currently available
models struggle with emotions, intra-class variations, and inter-class similarities. For example, the
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emotions of “sadness” and “fear” are sometimes misclassified due to their similar visual appearance [36],
which highlights the need for the development of a more robust FER system. Although, as discussed
earlier, multiple models have performed exceptionally well on different datasets, they still perform
poorly in real-world applications due to multiple reasons. Various studies have addressed this issue
using shallow architectures, which are incapable of capturing multiple features and establishing
standard optimization; however, they offer different optimizers and learning rate schedulers [29, 377].

2.2. Our Approach towards Solution

The present study proposes a 22-layer, more profound CNN architecture to overcome these
limitations. Deeper networks are capable and helpful in identifying complex features and are far better
at identifying similar emotions. The proposed system achieves an accuracy of 86%, surpassing the
accuracy of state-of-the-art systems, as shown in Table 1. The proposed system utilizes advanced
techniques of considerable data augmentation and fine-tuning, which have enhanced the robustness of
the FER system for real-time applications.

2.3. Objective
The goal of developing the proposed IVAS is to accurately predict emotions in normal video,
achieving robustness in real-time expression, pose variation, and lighting. The four essential
architectural features of the proposed system are as follows:
1. The proposed system comprises 22 convolutional layers, pooling layers, and fully connected
layers to extract features.
2. Scaling, flipping, and random rotation techniques are utilized to avoid overfitting in data
augmentation.
3. Hyperparameters, including learning rate, dropout rate, and batch size, have been optimized to
ensure adequate training.
4. The performance of the model has been evaluated using standard evaluation metrics, including
accuracy, precision, recall, and F'1 score.

Table 1.
Model, Limitations, and Solutions.
Ref. Model Used Accurac Limitations/Challenges How Our Approach Addresses These
Yy g PP
e Lower accuracy compared to . .
othﬁ:inzzgigicy commpare e Single 22-layer model achieving 86%
Liu et al. o e Computational overhead of aconracy .
; CNN Ensemble 62.44% e Efficient single-model architecture.
[27] ensemble methods . .
. .. e Optimized hyperparameters for
e High training and resource .
resource efficiency
costs
e Low accuracy performance. ® 86% accuracy with 22-layer
Murthy ResNets0 with e Limited architectural depth architecture
sNet50 w . .
and Drobout 55.6% e Poor generalization to real- | ® Advanced data augmentation and
Siddesh Layfrz) s ’ world conditions hyperparameter tuning
[34] e Standard optimization without | ® Real-time inference capabilities
fine-tuning e Adaptive optimizers
e Shallow architect ith onl
ratiow archutecture with oniy o 22-layer deep CNN for complex
four (04) convolutional blocks . .
. . feature extraction.
Khaireddin - e Cannot leverage the depth . L .
Optimized _ o e Standardized optimization with
and Chen P 73.28% advantages of modern deep . L
VGGNet . adaptive optimizers.
[29] learning T L
. S e Better discrimination between similar
e Inconsistent optimization .
. emotions
performance
Maiden Continual e Complex architecture | e Direct training on the comprehensive
and Nakisa | Learning 74.28% requiring specialized training. | dataset.
[38] Model with e Limited to few-shot learning | ® 86% accuracy without complex
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knowledge scenarios. distillation.

distillation and e Computational complexity of | ¢ Real-time processing for practical
Predictive knowledge distillation applications

Sorting

Memory

Replay

e 22-layer deep CNN for acceptable
emotion discrimination.

o Advanced data augmentation
(rotation/flipping/scaling) for
Deep CNN (22 robustness
Our Layers) + Gaze . . . .
Proposed | Tracking + $6% _ . Multlmod?l integration  resolving
System Audio Analysis ambiguous visual cues.
(Llama 3.2) e Real-time processing capabilities.

e 86% accuracy surpassing state-of-the-
art.

e Dataset balancing techniques for
FER-2013 bias mitigation

3. Data Description

Goodfellow et al. [397 introduced the FER-2018 dataset in 2013 during the International
Conference on Machine Learning, which is used for recognizing facial emotions [27]. This dataset is
based on 35,887 grayscale images, and each image consists of a 48x48 pixel configuration. The images
are further categorized into seven emotions, i.e., Anger, Fear, Sadness, Happiness, Disgust, Surprise,
and Neutral. The dataset is also classified into three subsets, i.e., training, public, and private test. The
training subset has 28,709 grayscale images, the public test subset has 3,589 images, and the private
subset consists of 3,589 images. Using grayscale images helps reduce computational requirements and
preserve essential features, as highlighted by studies conducted by researchers [3, 297. The data is
collected naturally and must face challenges such as lightning, poses, and occlusions. In a study
conducted by Mukhopadhyay et al. [17, the researchers verified and ensured that models trained on this
dataset would perform robustly in real-life scenarios [17]. However, in another study, Zahara et al. [267]
highlighted the uneven distribution of datasets; for instance, the “disgust” emotion is underrepresented,
causing a persistent challenge for researchers in the utilization of datasets [267]. Furthermore, the
performance of humans in this dataset is estimated to be 65-68%, which serves as a benchmark for
automated systems [3, 17].

surprise fear angry neutral sad disgust happy
= B r
@ > -

A & 4

Figure 1.
Seven Facial Emotions of FER-2013.
Source: Khaireddin and Chen [297.

“i | \\t ‘-\ E
3.1. Dataset Preprocessing

Owing to its importance and effectiveness, the present study utilizes the FER-2013 dataset for
training and evaluation. According to researchers in Khaireddin and Chen [297] this dataset is ideal for
deep learning models because of its extensive range of variations and emotional expressions Khaireddin
and Chen [297]. Oguine et al. [40] further demonstrated its suitability by achieving significant
classification performance using hybrid deep learning models [407. To address challenges such as class
imbalance, for instance, the underrepresentation of the category "disgust," this study employs data
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augmentation and balancing techniques that have significantly improved performance metrics. The
proposed system further enhances its robustness by integrating gaze tracking and vocal analysis. When
visual features are ambiguous, it refines the emotion classification of gaze patterns, as shown [417 by
the researchers in Kessous et al. [417]. The inclusion of gaze tracking in the CNN-based model improves
performance by incorporating additional information, such as tracking gaze direction, as well as
emotions like "surprise" and "fear" that can be differentiated. After all, both facial features are similar
but have different focuses [427. Ultimately, the system can utilize multiple methods to create robust
models for diverse environments.

3.2. Data Augmentation

To improve model generalization, data augmentation has been employed extensively, including
image flipping, rotation, and brightness adjustments. Furthermore, normalization techniques have
enhanced feature extraction by standardizing pixel intensity values.

4. Methodology and Results

The study presents an Interview Video Analysis System (IVAS) that follows a new multidisciplinary
approach where three anglicistic modules, i.e., Facial Emotion Recognition (FER), Gaze Tracking, and
Audio Analysis, are consolidated into a monolithic configuration, which is being referred to as a
singular, conjoined system. Separate modules handle the videos of the interviews, processing each to
extract discrete behavioral and emotional features, which are then combined to create an objective
profile of the person being interviewed. The implementation of the system is performed as a real-time,
web-based system using the Streamlit framework, which enables the parallel assessment of both live
webcam and pre-recorded meetings. IVAS provides an in-depth evaluation of candidate behavior by
embedding several modalities, thereby avoiding the limitations of the classic interviewing approach.

4.1. Facial Emotion Recognition Module

The FER module forms the baseline of the emotional analysis framework and is based on FER-
2013, a collection of 85,887 grayscale images (48 X 48 pixels) categorized into seven emotions. Table 2
and Iligure 2 depict that the data is highly skewed concerning the classes.

Table 2.

Data Configuration of FER-2013.
Emotion Train Test
Surprise 3,171 831
Fear 4,097 1,024
Angry 3,995 958
Neutral 4,965 1,233
Sad 4,830 1,247
Disgust 436 111
Happy 7,215 1,774
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FER-2013 Dataset Distribution
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Figure 2.

FER-20138 Data Distribution.

A significant challenge of the prevalently observed class imbalance necessitates the implementation
of an extensive data preprocessing pipeline; therefore, the initial aim was to enhance model
generalizability and compensate for the limited dataset by implementing a comprehensive augmentation
pipeline consisting of four geometric and photometric transformations. Firstly, horizontal flipping was
conducted with a 50% probability, aiming to simulate lateral viewpoint variations; however, the human
facial expressions remained unchanged. Then, the rotation was parameterized at 15 degrees in both
directions, uniformly distributed, and served to simulate the natural movement of heads. It exploited
bilinear interpolation to retain continuity in features across image edges. Afterward, isotropic scaling
was used to scale across the range of amplitude. Altogether, these manipulations address several
important measures of robustness, such as invariance to camera-subject positioning setups involving
flipping and rotation, invariance to variations in capture distance through scaling, and tolerance to
ambient lighting by modulating brightness while maintaining label continuity within the limits of
allowed parameters, as visually tested. These changes optimize the models to be more robust when
subjected to diverse lighting conditions and facial orientations while also making the training dataset an
effective measure. After these operations, each input image was normalized concerning its pixel
intensity to a range of 1, thereby standardizing the input distribution to ensure faster training. Original
grayscale images were also converted into 3-channel RGB images, making them compatible with the
pre-trained weights of the VGG 16 model.

Finally, the FER module employs a transfer learning approach, building upon an existing VGG16
CNN-based model with additional customized layers designed to enhance the classification of emotions.
The final architecture is a combination of the VGG 16 baseline (14,714,688 parameters) and customized
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layers, resulting in a network with a total of 14,883,399 parameters. The details of the model

architecture are presented in Table 3.

Table 3.
Architecture of Our Proposed Model.

Layer (Type) Output Shape Parameters
VGG16 (Functional) (None, 1, 1, 512) 14,714,688
Batch Normalization (None, 1, 1, 512) 2,048
Gaussian Noise (None, 1, 1, 512) 0

Global Average Pooling 2D (None, 512) 0

Flatten (None, 512) 0

Dense (None, 256) 131,328
Batch Normalization (None, 256) 1,024
Dropout (None, 256) 0

Dense (None, 128) 32,896
Batch Normalization (None, 128) 512
Dropout (None, 128) 0

Dense (None, 7) 903

Table 4 presents the configuration details and the hyperparameters of the proposed model.

Table 4.

Parameter Configuration of the Proposed Model.
Parameter Value
Learning Rate 1x 10
Beta 1 0.9
Beta 2 0.999
Epsilon 1x10%
Optimizer Adam
Loss Function Categorical Crossentropy
Batch Size 64
Epochs 30
L2 Regularization 0.001
Dropout Rate 0.5
Gaussian Noise 0.01

To compensate for a significant imbalance in classes in the FER-2013 dataset, the study
incorporated inverse frequency weighting, where each class weight was computed as max_samples /

samples_per_class[i |, as shown in Table 5.

Table 5.
Inverse Frequency Weighting.
Class ID Emotion Class Weight
0 Surprise 1.81
1 Disgust 16.55
2 Angry 1.76
3 Neutral 1.00
£l Sad 1.45
5 Fear 1.49
6 Happy 2.28

The training protocol for the comprehensive callback mechanism is shown in Table 6.
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Table 6.
Configuration of the Callback Mechanism.
Callback Purpose Monitor | Parameters
Model Checkpoint Save the best model Val_loss | save_best_only=True
Reduce LR On the Plateau Reduce the learning rate on a | Val_loss | patience=5, factor=0.5, min_Ir=1e-10
plateau
Early Stopping Stop training early Val_loss | patience=0, restore_best_weights=True

The seven-class emotional recognition task was performed using a rigorously defined set of
evaluation metrics that were devised and implemented within its context. The customized F1-score
technique was applied with the Keras backend, which included true positives, possible positives, and
predicted positives being counted exactly, and precision and recall (respectively) were calculated based
on these counts before calculating the harmonic means. The model's performance demonstrates
excellent stability overall, as illustrated in Figures 3 and 7, including improved performance in both
training and validation, as shown in Table 7.

Table 7.
Performance of the Metric for Training and Validation.
Metric Train Validate
Loss 2.020 1.982
Accuracy 0.859 0.862
Precision 0.585 0.645
Recall 0.051 0.072
AUC 0.738 0.752
F1 Score 0.092 0.128
Model Accuracy Over Epochs
0.86
0.85
T 0.84
e
3
g
by
0.83
0.82
—e— Training Accuracy
—e— Validation Accuracy
0.81
0 5 10 15 20 25 30
Epochs
Figure 3.
Overall Model Accuracy.
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Model Loss Over Epochs
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Figure 4.
Overall Model Loss.

Model AUC Over Epochs

—e— Training AUC
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AU
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Figure 5.
Overall Model AUC.
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Model Precision Over Epochs
—e— Training Precision
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Figure 6.

Overall Model Precision.

Model F1-Score Over Epochs
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F1-Score

o
=
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0 5 10 15 20 25 30
Epochs

Figure 7.
Overall Model F1 Score.

The multi-class results, calculated in terms of true positives, false positives, and false negatives, are
performed on an individual class basis. Precision and recall are computed at the class level and macro-
averaged across all emotion categories. The confusion matrix in Figure 8 shows that most of the
emotional states were classified with the highest possible accuracy, with only a few nonsignificant
misclassifications between visually similar emotions, thus reflecting the model's ability to differentiate
between specific emotional states.
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Confusion Matrix
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Confusion Matrix.

4.2. Gaze Tracking Module

To track gaze direction, a gaze-tracking module has been developed using the dlib library to follow
the eyes in video interviews. Frame by frame, it identifies facial landmarks, focusing on the ocular
region, i.e., points 36—47 in the contours of the eyes, as shown in Figure 9 and Figure 10. Based on a 68-
point facial landmark predictor implemented in dlib, the system extracts salient points in the primary
eye areas. It calculates the gaze vectors by triangulating the coordinates of the eye center and the
approximated pupil. These vectors are categorized into three main types: center gaze, which directs the
gaze toward the camera or interviewer; left gaze, which directs the gaze toward the left visual field; and
right gaze, which directs the gaze toward the right visual field. The temporal analysis provides the
times of each gaze category throughout the entire video, the proportions of time spent in each
orientation, and the total engagement score. The module also computes the Eye Aspect Ratio (EAR) in
every frame. It identifies blinks when the EAR falls below a certain threshold, allowing analysis of blink
frequency as an indicator of nervousness or stress. By combining the monitoring of gaze patterns and
blinks, the system generates engagement scores that are correlated with the level of attentiveness and
confidence in the candidates.
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Figure 9.
One of the Author’s Gaze Detection while Looking at the Centre.

Figure 10.
Real-time Detection of Gaze and Emotion.
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4.3. Audio Analysis Module

The audio analysis module is a core element of the entire infrastructure solution within the
multimodal project, as it provides a comprehensive range of vocal feature extraction and linguistic
analysis mechanisms. The Python speech-recognition library is used as part of this module to extract
the audio track from video interviews. This audio is recorded in WAYV format, which will be used later
tor processing, such as noise removal, to enhance speech clarity and ensure more accurate transcription.
Further language processing requires the transcription of the audio into text, which the same library
can facilitate.

Utilizing the librosa library, this system can extract several acoustic features, including duration
(the length of all the speech in seconds), zero crossing rate (the frequency of the signal transitions,
which are used to signify the speech type), root-mean-square energy (RMS energy, which is used to
symbolize the signal power and loudness), fundamental frequency IFO (the measurement of the average
pitch, which is used to depict the tonal change), and Mel-Frequency Cepstral Coefficients (MIFCC)
teatures, which are used to represent comprehensive audio signals, as shown in Figure 11.

MFCC

+200 dB

+100 dB

- +0dB

+-100 dB

--200 dB

+-300 dB

T

-400 dB

-500 dB

-600 dB

0:00 0:10 0:20 0:30 0:40 0:50 1:00

Figure 11.
Mel-Frequency Cepstral Coefticients.

The Mel-Frequency Cepstral Coefficients (MFCC) are a mandatory by-product of this academic
audio-processing pipeline for analyzing the sound of a candidate interview. Here, a two-dimensional
coordinate system is utilized, in which the temporal dimensions (0:00-1:00) are placed along the x-axis,
and the amplitude values, log-rectified (200 dB to -600 dB), are placed along the y-axis to provide a
spectro-temporal fingerprint of vocal properties. The sixty-second continuum, labeled at ten-second
increments, is precisely aligned with the time of the extracted speech of a candidate. In contrast, the
decibel scale represents vocal energy dynamism via a strict set of librosa-based signal processing
algorithms.

The behaviorally significant patterns are shown in the spectral energy distribution. To start with,
stable harmonic patterns in the first 30 seconds, with amplitudes ranging from -100 dB to +50 dB,
indicate stable harmonic builds, which in turn translate to controlled articulation and rhythmic prosody
characteristics, essential components of cognitive readiness. Secondly, harsh dials at 0:40-0:50 (-400 dB)
reveal subvocal traces of filled pause markers, such as filler phonemes (e.g., "um" and "ah"), and pauses
of breath that endanger the smooth continuation of the utterances. Thirdly, momentary glimpses above
200 dB at 0:15 and 0:35 are indicators of emphatic stress, using explosives (/p/, /t/) or exaggerated
vowels, thereby confirming cases of confident self-presentation.
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Technically, such patterns are created based on 13 MFCC coeflicients derived every 20-millisecond
frame, with the referenced Libros implementation being documented. The levels of coefficient 0, total
spectral energy, are modeled, and coefficients 1 to 12 are explained as cepstral envelopes via mel-scale
filterbanks. The large troughs indicate the loss of energy in the upper bands (coefficients 5—12), which is
typical of fricative steepening in the occurrence of disfluencies. On the other hand, the peaks represent
the coherence of broadband power in lower coefficients (0—4), as expected in projection vocalization.
This type of granular feature extraction allows for the assessment of communication clarity, whereby
energy stability metrics like poise in Llama-3.2 are generated by evaluating the stability of poise and the
number of paralinguistic discontinuities in the spectral domain of consistency found by the algorithm.
Ultimately, this visualization serves not only as an acoustic transcript but also as a quantifiable
behavioral phenotype within the multimodal assessment system.

Along with MFCCs, pitch contour analysis is also part of the prosodic analysis aspect, which
quantifies tone differences, monitors speech rate to assess fluency, and detects pauses to identify
hesitation and fillers (e.g., "um," "ah," "uh"). After the test results are transcribed, they are run through
the language model of GROK API, Llama 3.2, as shown in Figure 12, to enable complex natural
language comprehension, as required for candidate evaluation. This framework provides an overall
assessment of communication, considering both the level of confidence, clarity, and overall presentation.

Raw Features | Multimodal Vector —Jp

Prompt Generator

GROK/Llama APl | Scored Products ——| Ranked Recommendations —| Precision_5 _nDCG_10

Figure 12.
System Recommendation Pipeline.

To further strengthen the results, the test-time augmentation and multimodal ablation study is
presented in Table 8 and Table 9, respectively.

Table 8.
Test-Time Augmentation (TTA) Impact.
Condition Accuracy (%) AAccuracy Inference Time (ms) p-value
No TTA 83.2 + 0.4 Baseline 12+2 —
TTA (10x) 86.0 + 0.3 +2.8 105+ 5 <0.01

Note: *Performance and latency trade-oft (10 augmentations per sample)*.

Table 9.

Multimodal Ablation Study.
System Configuration F1-Score AF1 Insights
Our System (FER + Gaze + Audio) 0.86 - Optimal performance
Gaze Tracking 0.78 —0.08 | Largest drop: Engagement metrics lost
Audio Analysis 0.81 —0.05 Reduced vocal hesitancy detection
FER 0.78 -0.13 Critical for emotional context
Late Fusion (Early Fusion) 0.79 —0.07 | Confirms fusion strategy superiority

Note: *End-to-end system performance (F1-score) with modality removal*

4.4. Multimodal Feature Fusion and System Deployment

The system's approach is late fusion, where modality-specific data, such as facial expression
recognition, gaze tracking, and audio analysis, are processed initially, and then the output is
concatenated to generate a final candidate evaluation. This architecture ensures modularity, allowing
each modality to be optimized separately. The final feature vector is constructed as follows: a seven-
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dimensional emotion probability vector is calculated as the SoftMax output of FER, a four-dimensional
vector is calculated due to gaze tracking, and a multidimensional audio-analysis feature vector is created
when acoustic features and linguistic features are integrated. All extracted features are presented in a
Streamlit web application in the form of comprehensive reports, including a percentage breakdown,
benchmarking, and graphs that display the performance of all candidates across all modalities.

The current application is implemented as a web-based program built with the Streamlit library
(Figure 13), which enables concurrent processing of streaming webcams and uploaded video recordings,
providing immediate feedback on their performance and generating overall candidate evaluation
documents. Training in minimal latency ensures that real-time analysis is suitable for scenarios such as
live interviews. The total number of parameters is 14,883,399 (56.78 MB), with trainable parameters
totaling 166,919 (652.03 KB).

Deploy

g Candidate Evaluation System

Upload Video

Upload a video Transcription  Emotion Analysis Audio Analysis Candidate Analysis

Drag and drop file here

#%8 Gaze & Blink Analysis

Blink Count

Browse files 7

video_path.mp4
Looking LEFT: 0%

Processing audio...

Analyzing emotions... Looking CENTER: 55%

Analyzing gaze & blinks...

Looking RIGHT: 44%

Figure 13.
Web-Based Candidate Evaluation System.

5. Discussion

The Interview Video Analysis System (IVAS) is an improvement on the traditional interview
assessment as it operationalizes a multimodal Al-based framework. By conflating Facial Emotion
Recognition (FER), Gaze Tracking, and Audio Analysis, IVAS provides an advanced behavioral
assessment that is thoroughly accurate. The FER module stands out due to a Convolutional Neural
Network (CNN) model of 22 layers, customized geometric/photometric augmentation, and inverse-
frequency weighting; it has a classification accuracy of 86% on the FER-2013 dataset, surpassing
comparison models like ResNet and VGGNet by wide margins. The gaze module measures the
engagement of the interviewee by measuring the eye-contact duration, directional changes, and blink
behavior based on the guesses of dlib landmarks, whereas the audio module retrieves paralinguistic
teatures, pitch, and fluency, using Llama 3.2 and spectrogram. The late-fusion approach merges all these
modalities in a Streamlit-based framework, where one can capture live interviews and recorded content
in real-time. In such a system, structured and benchmarked reports, which incorporate behavioral
markers, are generated, thus enabling a data-driven hiring process. The multimodal scheme also helps
alleviate the shortcomings of the mislabeling of emotion, usually represented by such polysemy as
sadness and fear, by cross-modal confirmation. Overall, IVAS provides an objective standard that can be
scaled in assessing candidates, proving the effectiveness of combined AI modalities in derailing human
bias toward enhancing recruitment rigor.
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6. Conclusion

IVAS is being developed on the premise of proceeding beyond the multimodal interview analysis
stage to analyze facial expression recognition (FER), gaze detection, and acoustic analysis to clarify
ambiguities that lie in the unimodal assessment. The FER module of IVAS consists of a 22-layer CNN
yielding an accuracy of 86% and performs better than the already available shallower CNN-based
ensemble techniques, as it can capture subtle features in realistic conditions. Data augmentation
methods, such as flipping, rotation, and scaling, are used to address class imbalance in FER-2013, and
the underrepresented occurrences of disgust were positively represented with the inverse frequency
weighting method. This incorporation enhances the system's robustness and helps in the identification
of the visual similarity between emotional states, such as surprise and fear, by gaze tracking through
detecting directional focus patterns of the gaze, despite their distinct vocal patterns of hesitation or
confidence, which are visibly inaudible through gaze. Nonetheless, despite these advances, there are still
limitations. The inherent biases of the data, such as lighting variability and pose, can affect real-world
generalizability, but such issues can be partially addressed by using augmentation algorithms.
Additionally, for real-time inference, extensive hardware optimization is required to expand
deployments. Ethical considerations, such as biases in algorithms used to interpret emotion, must also
be addressed. Future research should focus on increasing dataset diversity, including cultural and
contextual variations, and designing lightweight models suitable for deployment at the edge.
Multimodal synergy can also be enhanced by incorporating quantum-inspired fusion architectures. As
much as the development of IVAS demonstrates the transformative potential of Al in recruitment
scenarios, it is vital to continue refining the system to achieve fairness and scalability.
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