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Abstract: Traditional interviewing literature has regularly highlighted its vulnerability to human 
subjectivity and unconscious bias, as such pitfalls may cause interviewers to overlook critical behavioral 
cues. To address these shortcomings, the present study proposes an artificial intelligence-based 
assessment tool, the Interview Video Analysis System (IVAS), which integrates Facial Emotion 
Recognition (FER), Gaze Tracking, and Audio Analysis technologies into a single, cohesive system to 
evaluate candidates objectively. IVAS comprises a Convolutional Neural Network (CNN) based on 22 
layers trained on the FER-2013 dataset, achieving an accuracy of 86% in recognizing seven different 
emotions: Anger, Fear, Sadness, Happiness, Disgust, Surprise, and Neutral, through sophisticated data 
augmentation and hyperparameter optimization. The system utilizes 68-point facial features from dlib, 
with its gaze module measuring eye contact, directional changes, and blinks, relating these metrics to 
engagement and confidence. Additionally, the audio component employs Llama 3.2 with 11 billion 
parameters and Mel-Frequency Cepstral Coefficients (MFCC) to extract voice features such as pitch, 
hesitancy, and fluency, and transcribes speech for linguistic analysis. The late-fusion logic aggregates 
outputs from each module into a well-organized system that provides percentage measures and 
performance levels. As a Streamlit web application, IVAS can process live and recorded interviews in 
real-time, offering recruiters a scalable, data-driven assessment tool. This system outperforms other 
state-of-the-art models by approximately 12 to 30% in FER efficiency and is the first to incorporate 
multimodal behavioral analysis to reduce ambiguities inherent in unimodal methods. Collectively, this 
comprehensive system enhances traditional interviewing techniques by providing standardized, bias-
proof insights into candidate compatibility. 

Keywords: Audio analysis, Computer vision, Convolutional neural network, Gaze tracking, Video interview analysis system. 

 
1. Introduction  

Traditional interviews rely on human judgment, which can be subjective and prone to biases, often 
overlooking subtle behavioral cues. To address these weaknesses, the present study proposes an 
Interview Video Analysis System (IVAS) developed using advanced artificial intelligence techniques to 
help organizations analyze candidates through video and audio analysis. The proposed system in this 
study analyzes gaze patterns, facial emotion behavior, and voice recognition through automation, 
providing a single, scalable, and objective evaluation method. 

During interviews, confidence and composure are essential indicators of a candidate's suitability, as 
well as their emotions, such as happiness and sadness, which can be analyzed to assess the emotional 
state of an individual and their suitability as a candidate [1]. For this, Facial Emotion Recognition 
(FER), an integral part of the proposed system in the present study, has been widely used in the fields of 
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behavioral analysis and computer interaction and is being increasingly incorporated into clinical 
practices nowadays [2, 3]. Conventionally, a FER utilizes Convolutional Neural Networks (CNNs) 
owing to their extensive ability for classification and extraction, for detecting emotions accurately [4-
15]. Additionally, the basis of the proposed system in the present study is the FER-2013 dataset, which 
comprises 48x48 grayscale images categorized into seven different basic emotions, providing a solid 
foundation for designing a robust deep learning model [16]. Similarly, with the help of advanced 
architectures such as lightweight CNNs and VGGNet, high accuracy can be achieved even in rough 
conditions, such as varying lighting or facial orientation [17].   

Gaze tracking is another key feature of the proposed system, which evaluates candidates' focus and 
engagement. Eye movement is a powerful indicator of attention and intent; it informs how candidates 
interact during an interview. Through investigation, it has been found that gaze behavior, directional 
shifts, time of eye contact, attentiveness, and confidence are all interconnected [18, 19]. The proposed 
system uses gaze detection and computer vision techniques. With a standard video that we input, the 
system analyzes and calculates the candidate's response, such as how much the candidate looked at the 
center to maintain eye contact or how much time the candidate spent looking at the left and right sides. 
This method is based on research findings that demonstrate the importance of user intent, visual 
attention, and content in exploring relationships. With the help of integrated fixation analysis and gaze 
mapping techniques, the system provides a detailed analysis of candidates, which can help in 
understanding visual engagement [18].  

Audio analysis is another integral part of the proposed system within the multi-model framework, 
as vocal features such as tone, hesitancy, pitch, confidence, communication skills, and nervousness are 
also key indicators. For this, the proposed system utilizes Llama 3.2, an advanced Large Language 
Model (LLM) for text analysis and computer vision [20, 21]. The proposed system utilizes eleven (11) 
billion parameters of the Llama model to handle multitasking and multilingual scenarios 
comprehensively, allowing it to be an ideal choice for analyzing diverse candidate profiles. By 
incorporating techniques for unique feature extraction and pitch contour analysis, it can detect vocal 
patterns in communication and emotions [20, 22] thereby providing detailed insights into analyzing 
verbal behavior derived from visual data in FER and Gaze tracking [18].  

Finally, the Interview Video Analysis System (IVAS) is a Streamlit-based web application that 
processes interview videos through three core modules: FER, gaze tracking, and audio analysis. The 
results of the analysis will be presented in a structured report, complete with percentage breakdowns 
and comparative benchmarks, enabling recruiters to make informed, data-driven hiring decisions. 

While previous research has explored individual AI-based emotion detection, gaze tracking, and 
speech analysis, our system uniquely integrates all three modalities for the comprehensive evaluation of 
candidates. This combination provides a holistic approach to understanding behavioral and emotional 
cues. According to FER studies, it helps us detect subtle emotional cues that may sometimes remain 
unnoticed [17]. Similarly, gaze-tracking research emphasizes the most relevant aspects of access, 
engagement, and attentiveness. Advanced AI models, such as Llama 3.2, work on text patterns to 
enhance a system's analysis capabilities [20].  
 

2. Related Work 
Facial emotion recognition (FER) is utilized in Human-Computer Interaction (HCI) for behavioral 

analysis, healthcare, and online advertising. Initially, systems consisting of FER mainly depended on 
hand-crafted features and classical machine learning. These methods were Local Binary Patterns (LBP) 
and Histogram of Oriented Gradients (HOG) techniques, which were used to extract features and facial 
images. In contrast, Decision Tree (DT) classifiers and Support Vector Machines (SVM) were used for 
classification [23] which performed exceptionally well in controlled environments; however, they 
lacked robustness due to variations in lighting, poses, and expressions in real-world scenarios. The 
introduction of CNNs in the 1990s revolutionized the approach towards image processing [24]. 
Comprising convolutional layers, pooling layers, and fully connected layers, it proved highly effective in 
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automated feature extraction and performed the classification of images quite effectively [25]. However, 
its utilization was initially restricted due to the limited processing power required to handle large 
datasets. By the 2010s, advancements in hardware (GPUs) and datasets, such as FER-2013, accelerated 
the growth of deep learning-based face recognition systems. FER-2013 is the first dataset that 
recognizes real-world emotions, introduced by LCML in 2013 [26]. Afterward, researchers 
experimented with different variants of CNNs, which subsequently led to the development of well-
recognized models such as VGGNet, InceptionNet, and ResNet, all of which have significantly 
improved the accuracy of classification. 

Many researchers have now leveraged the power of CNNs for classifying FER-2013 datasets. For 
instance, Liu et al. [27] used CNN for classification on the FER-2013 dataset, resulting in an accuracy 
of 71.2% [27]. However, on further investigation, the researchers improved the accuracy by 2.6% 
through the incorporation of an ensemble method that combined three variants of CNN, but the 
utilization of advanced techniques, training, and resources increases the cost of the overall process [27]. 
Another researcher compared ResNet and InceptionNet models, achieving the highest accuracy of 70% 
[28]. Similarly, Khaireddin and Chen optimized VGGNet by tuning the hyperparameters, testing 
different optimizers and learning rate schedulers [29]. They successfully achieved an accuracy of 
73.28% in FER-2013, indicating the need for hyperparameter tuning in FER for optimal performance. 
Gaze tracking is also a crucial feature utilized in multimodal AI systems that assess attentiveness during 
interviews, including eye movements such as fixation and directional shifts, to help understand 
attentiveness and intent. In real-world applications, such as accident prevention, the importance of gaze 
tracking is of great interest, as it helps improve human focus. It can also aid in understanding human 
interaction and content [30]. Recent studies have proven the successful implementation of gaze 
tracking using a webcam, which enhances the ability to track [3]. In the proposed system, gaze metrics, 
such as contact frequency and gaze shift patterns, combined with candidate evaluation, have provided 
valuable insights. Audio analysis is another feature that is widely used in AI systems to understand 
human behavior [31]. Vocal features, such as pitch modulation, tone variability, and hesitancy, help in 
understanding the candidate's confidence and emotional state. The researchers in Onyema et al. [28] 
have extensively discussed dynamic scenarios, including interviews with emotional cues detected 
through gaze-enabled detection and vocal analysis using the Llama 3.2 model. Another study has 
presented a practical approach that utilizes pitch contour and spectral feature extraction techniques in 
combination with visual features to provide an understanding of holistic behavior [32].  

In the context of multimodal video analytics, recent advances have already led to significant 
progress in integrating heterogeneous data modalities to provide comprehensive behavioral analysis. 
Murthy and Siddesh [33] proposed a sophisticated video analytics system based on sarcasm, utilizing 
their SarcasNet-99 system, and demonstrated 99.005% precision after combining text, image, and audio 
attributes using an adaptive fusion network on the TEDx and GIF Reply datasets. In another study, 
they developed a Deep Hybrid Fusion algorithm [34] that achieved 95.84% accuracy on the data from 
IEMOCAP, CMU-MOSI, and CMU-MOSEI, utilizing Modality Unchanged-Precise Representation 
learning and a BiLSTM encoder-decoder structure. Furthermore, in another study, the same 
researchers utilized the power of quantum theoretical formalisms to address intra- and inter-expression 
dynamics, modeling this through a quantum-conscious multimodal option mining architecture by 
incorporating networks of CNN and LSTM and demonstrating better performance in the task of 
conversational sentiment analysis [35]. Altogether, these experiments confirm the effectiveness of deep 
learning-based multimodalities in video processing and propose a solid foundation for AI-powered 
systems of interviewing evaluation, which incorporate facial emotion recognition, gaze tracking, and 
audio analysis to aid in the thorough review of candidates. 
 
2.1. Challenges in FER Methods 

Despite exceptional progress, there are still some gaps in FER methods, as the currently available 
models struggle with emotions, intra-class variations, and inter-class similarities. For example, the 
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emotions of “sadness” and “fear” are sometimes misclassified due to their similar visual appearance [36], 
which highlights the need for the development of a more robust FER system. Although, as discussed 
earlier, multiple models have performed exceptionally well on different datasets, they still perform 
poorly in real-world applications due to multiple reasons. Various studies have addressed this issue 
using shallow architectures, which are incapable of capturing multiple features and establishing 
standard optimization; however, they offer different optimizers and learning rate schedulers [29, 37].   
 
2.2. Our Approach towards Solution 

The present study proposes a 22-layer, more profound CNN architecture to overcome these 
limitations. Deeper networks are capable and helpful in identifying complex features and are far better 
at identifying similar emotions. The proposed system achieves an accuracy of 86%, surpassing the 
accuracy of state-of-the-art systems, as shown in Table 1. The proposed system utilizes advanced 
techniques of considerable data augmentation and fine-tuning, which have enhanced the robustness of 
the FER system for real-time applications. 
 
2.3. Objective 

The goal of developing the proposed IVAS is to accurately predict emotions in normal video, 
achieving robustness in real-time expression, pose variation, and lighting. The four essential 
architectural features of the proposed system are as follows: 

1. The proposed system comprises 22 convolutional layers, pooling layers, and fully connected 
layers to extract features. 

2. Scaling, flipping, and random rotation techniques are utilized to avoid overfitting in data 
augmentation. 

3. Hyperparameters, including learning rate, dropout rate, and batch size, have been optimized to 
ensure adequate training. 

4. The performance of the model has been evaluated using standard evaluation metrics, including 
accuracy, precision, recall, and F1 score. 

 
Table 1. 
Model, Limitations, and Solutions. 

Ref. Model Used Accuracy Limitations/Challenges How Our Approach Addresses These 

Liu et al. 
[27] 

CNN Ensemble  62.44% 

• Lower accuracy compared to 
other methods 

• Computational overhead of 
ensemble methods 

• High training and resource 
costs 

• Single 22-layer model achieving 86% 
accuracy 

• Efficient single-model architecture. 

• Optimized hyperparameters for 
resource efficiency 

Murthy 
and 
Siddesh 
[34] 

ResNet50 with 
Dropout 
Layers 

55.6% 

• Low accuracy performance. 

• Limited architectural depth 

• Poor generalization to real-
world conditions 

• Standard optimization without 
fine-tuning 

• 86% accuracy with 22-layer 
architecture 

• Advanced data augmentation and 
hyperparameter tuning 

• Real-time inference capabilities 

• Adaptive optimizers 

Khaireddin 
and Chen 
[29] 

Optimized 
VGGNet 

73.28% 

• Shallow architecture with only 
four (04) convolutional blocks 

• Cannot leverage the depth 
advantages of modern deep 
learning 

• Inconsistent optimization 
performance 

• 22-layer deep CNN for complex 
feature extraction.  

• Standardized optimization with 
adaptive optimizers. 

• Better discrimination between similar 
emotions 

Maiden 
and Nakisa 
[38] 

Continual 
Learning 
Model with 

74.28% 
• Complex architecture 

requiring specialized training.  

• Limited to few-shot learning 

• Direct training on the comprehensive 
dataset. 

• 86% accuracy without complex 
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knowledge 
distillation and 
Predictive 
Sorting 
Memory 
Replay 

scenarios. 

• Computational complexity of 
knowledge distillation 

distillation.  

• Real-time processing for practical 
applications 

Our 
Proposed 
System 

Deep CNN (22 
Layers) + Gaze 
Tracking + 
Audio Analysis 
(Llama 3.2) 

86% - 

• 22-layer deep CNN for acceptable 
emotion discrimination.  

• Advanced data augmentation 
(rotation/flipping/scaling) for 
robustness.  

• Multimodal integration resolving 
ambiguous visual cues.  

• Real-time processing capabilities.  

• 86% accuracy surpassing state-of-the-
art. 

• Dataset balancing techniques for 
FER-2013 bias mitigation 

 

3. Data Description 
Goodfellow et al. [39] introduced the FER-2013 dataset in 2013 during the International 

Conference on Machine Learning, which is used for recognizing facial emotions [2]. This dataset is 
based on 35,887 grayscale images, and each image consists of a 48x48 pixel configuration. The images 
are further categorized into seven emotions, i.e., Anger, Fear, Sadness, Happiness, Disgust, Surprise, 
and Neutral. The dataset is also classified into three subsets, i.e., training, public, and private test. The 
training subset has 28,709 grayscale images, the public test subset has 3,589 images, and the private 
subset consists of 3,589 images. Using grayscale images helps reduce computational requirements and 
preserve essential features, as highlighted by studies conducted by researchers [3, 29]. The data is 
collected naturally and must face challenges such as lightning, poses, and occlusions. In a study 
conducted by Mukhopadhyay et al. [1], the researchers verified and ensured that models trained on this 
dataset would perform robustly in real-life scenarios [1]. However, in another study, Zahara et al. [26] 
highlighted the uneven distribution of datasets; for instance, the “disgust” emotion is underrepresented, 
causing a persistent challenge for researchers in the utilization of datasets [26]. Furthermore, the 
performance of humans in this dataset is estimated to be 65-68%, which serves as a benchmark for 
automated systems [3, 17].  
 

 
Figure 1. 
Seven Facial Emotions of FER-2013. 
Source: Khaireddin and Chen [29]. 
 

3.1. Dataset Preprocessing 
Owing to its importance and effectiveness, the present study utilizes the FER-2013 dataset for 

training and evaluation. According to researchers in Khaireddin and Chen [29] this dataset is ideal for 
deep learning models because of its extensive range of variations and emotional expressions Khaireddin 
and Chen [29]. Oguine et al. [40] further demonstrated its suitability by achieving significant 
classification performance using hybrid deep learning models [40]. To address challenges such as class 
imbalance, for instance, the underrepresentation of the category "disgust," this study employs data 
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augmentation and balancing techniques that have significantly improved performance metrics. The 
proposed system further enhances its robustness by integrating gaze tracking and vocal analysis. When 
visual features are ambiguous, it refines the emotion classification of gaze patterns, as shown [41] by 
the researchers in Kessous et al. [41]. The inclusion of gaze tracking in the CNN-based model improves 
performance by incorporating additional information, such as tracking gaze direction, as well as 
emotions like "surprise" and "fear" that can be differentiated. After all, both facial features are similar 
but have different focuses [42]. Ultimately, the system can utilize multiple methods to create robust 
models for diverse environments. 
 
3.2. Data Augmentation 

To improve model generalization, data augmentation has been employed extensively, including 
image flipping, rotation, and brightness adjustments. Furthermore, normalization techniques have 
enhanced feature extraction by standardizing pixel intensity values. 
 

4. Methodology and Results 
The study presents an Interview Video Analysis System (IVAS) that follows a new multidisciplinary 

approach where three anglicistic modules, i.e., Facial Emotion Recognition (FER), Gaze Tracking, and 
Audio Analysis, are consolidated into a monolithic configuration, which is being referred to as a 
singular, conjoined system. Separate modules handle the videos of the interviews, processing each to 
extract discrete behavioral and emotional features, which are then combined to create an objective 
profile of the person being interviewed. The implementation of the system is performed as a real-time, 
web-based system using the Streamlit framework, which enables the parallel assessment of both live 
webcam and pre-recorded meetings. IVAS provides an in-depth evaluation of candidate behavior by 
embedding several modalities, thereby avoiding the limitations of the classic interviewing approach. 
 
4.1. Facial Emotion Recognition Module 

The FER module forms the baseline of the emotional analysis framework and is based on FER-
2013, a collection of 35,887 grayscale images (48 x 48 pixels) categorized into seven emotions. Table 2 
and Figure 2 depict that the data is highly skewed concerning the classes. 
 
Table 2. 
Data Configuration of FER-2013. 

Emotion Train Test 
Surprise 3,171 831 

Fear 4,097 1,024 

Angry 3,995 958 
Neutral 4,965 1,233 

Sad 4,830 1,247 
Disgust 436 111 

Happy 7,215 1,774 
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Figure 2.  
FER-2013 Data Distribution. 

 
A significant challenge of the prevalently observed class imbalance necessitates the implementation 

of an extensive data preprocessing pipeline; therefore, the initial aim was to enhance model 
generalizability and compensate for the limited dataset by implementing a comprehensive augmentation 
pipeline consisting of four geometric and photometric transformations. Firstly, horizontal flipping was 
conducted with a 50% probability, aiming to simulate lateral viewpoint variations; however, the human 
facial expressions remained unchanged. Then, the rotation was parameterized at 15 degrees in both 
directions, uniformly distributed, and served to simulate the natural movement of heads. It exploited 
bilinear interpolation to retain continuity in features across image edges. Afterward, isotropic scaling 
was used to scale across the range of amplitude. Altogether, these manipulations address several 
important measures of robustness, such as invariance to camera-subject positioning setups involving 
flipping and rotation, invariance to variations in capture distance through scaling, and tolerance to 
ambient lighting by modulating brightness while maintaining label continuity within the limits of 
allowed parameters, as visually tested. These changes optimize the models to be more robust when 
subjected to diverse lighting conditions and facial orientations while also making the training dataset an 
effective measure. After these operations, each input image was normalized concerning its pixel 
intensity to a range of 1, thereby standardizing the input distribution to ensure faster training. Original 
grayscale images were also converted into 3-channel RGB images, making them compatible with the 
pre-trained weights of the VGG16 model. 

Finally, the FER module employs a transfer learning approach, building upon an existing VGG16 
CNN-based model with additional customized layers designed to enhance the classification of emotions. 
The final architecture is a combination of the VGG16 baseline (14,714,688 parameters) and customized 
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layers, resulting in a network with a total of 14,883,399 parameters. The details of the model 
architecture are presented in Table 3. 
 
Table 3. 
Architecture of Our Proposed Model. 

Layer (Type) Output Shape Parameters 

VGG16 (Functional) (None, 1, 1, 512) 14,714,688 
Batch Normalization (None, 1, 1, 512) 2,048 

Gaussian Noise (None, 1, 1, 512) 0 
Global Average Pooling 2D (None, 512) 0 

Flatten (None, 512) 0 

Dense (None, 256) 131,328 
Batch Normalization (None, 256) 1,024 

Dropout (None, 256) 0 
Dense (None, 128) 32,896 

Batch Normalization (None, 128) 512 
Dropout (None, 128) 0 

Dense (None, 7) 903 

 
Table 4 presents the configuration details and the hyperparameters of the proposed model.  

 
Table 4. 
Parameter Configuration of the Proposed Model. 

Parameter Value 
Learning Rate 1 x 10-4 

Beta 1 0.9 
Beta 2 0.999 

Epsilon 1 x 10-8 
Optimizer Adam 

Loss Function Categorical Crossentropy 

Batch Size 64 
Epochs 30 

L2 Regularization 0.001 
Dropout Rate 0.5 

Gaussian Noise 0.01 
 

To compensate for a significant imbalance in classes in the FER-2013 dataset, the study 
incorporated inverse frequency weighting, where each class weight was computed as max_samples / 
samples_per_class[i], as shown in Table 5. 
 
Table 5. 
Inverse Frequency Weighting. 

Class ID Emotion Class Weight 
0 Surprise 1.81 
1 Disgust 16.55 

2 Angry 1.76 
3 Neutral 1.00 

4 Sad 1.45 

5 Fear 1.49 
6 Happy 2.28 

 
The training protocol for the comprehensive callback mechanism is shown in Table 6.  
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Table 6. 
Configuration of the Callback Mechanism. 

Callback Purpose Monitor Parameters 

Model Checkpoint Save the best model Val_loss save_best_only=True 
Reduce LR On the Plateau Reduce the learning rate on a 

plateau 
Val_loss patience=5, factor=0.5, min_lr=1e-10 

Early Stopping Stop training early Val_loss patience=0, restore_best_weights=True 

 
The seven-class emotional recognition task was performed using a rigorously defined set of 

evaluation metrics that were devised and implemented within its context. The customized F1-score 
technique was applied with the Keras backend, which included true positives, possible positives, and 
predicted positives being counted exactly, and precision and recall (respectively) were calculated based 
on these counts before calculating the harmonic means. The model's performance demonstrates 
excellent stability overall, as illustrated in Figures 3 and 7, including improved performance in both 
training and validation, as shown in Table 7. 
 
Table 7. 
Performance of the Metric for Training and Validation. 

Metric  Train Validate 
Loss 2.020 1.982 

Accuracy 0.859 0.862 

Precision 0.585 0.645 
Recall 0.051 0.072 

AUC 0.738 0.752 
F1 Score 0.092 0.128 

 

 
Figure 3.  
Overall Model Accuracy. 
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Figure 4. 
Overall Model Loss. 

 

 
Figure 5.  
Overall Model AUC. 
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Figure 6. 
Overall Model Precision. 

 

 
Figure 7. 
Overall Model F1 Score. 

 
The multi-class results, calculated in terms of true positives, false positives, and false negatives, are 

performed on an individual class basis. Precision and recall are computed at the class level and macro-
averaged across all emotion categories. The confusion matrix in Figure 8 shows that most of the 
emotional states were classified with the highest possible accuracy, with only a few nonsignificant 
misclassifications between visually similar emotions, thus reflecting the model's ability to differentiate 
between specific emotional states. 
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Figure 8. 
Confusion Matrix. 

 
4.2. Gaze Tracking Module 

To track gaze direction, a gaze-tracking module has been developed using the dlib library to follow 
the eyes in video interviews. Frame by frame, it identifies facial landmarks, focusing on the ocular 
region, i.e., points 36–47 in the contours of the eyes, as shown in Figure 9 and Figure 10. Based on a 68-
point facial landmark predictor implemented in dlib, the system extracts salient points in the primary 
eye areas. It calculates the gaze vectors by triangulating the coordinates of the eye center and the 
approximated pupil. These vectors are categorized into three main types: center gaze, which directs the 
gaze toward the camera or interviewer; left gaze, which directs the gaze toward the left visual field; and 
right gaze, which directs the gaze toward the right visual field. The temporal analysis provides the 
times of each gaze category throughout the entire video, the proportions of time spent in each 
orientation, and the total engagement score. The module also computes the Eye Aspect Ratio (EAR) in 
every frame. It identifies blinks when the EAR falls below a certain threshold, allowing analysis of blink 
frequency as an indicator of nervousness or stress. By combining the monitoring of gaze patterns and 
blinks, the system generates engagement scores that are correlated with the level of attentiveness and 
confidence in the candidates. 
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Figure 9. 
One of the Author’s Gaze Detection while Looking at the Centre. 

 

 
Figure 10. 
Real-time Detection of Gaze and Emotion. 
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4.3. Audio Analysis Module 
The audio analysis module is a core element of the entire infrastructure solution within the 

multimodal project, as it provides a comprehensive range of vocal feature extraction and linguistic 
analysis mechanisms. The Python speech-recognition library is used as part of this module to extract 
the audio track from video interviews. This audio is recorded in WAV format, which will be used later 
for processing, such as noise removal, to enhance speech clarity and ensure more accurate transcription. 
Further language processing requires the transcription of the audio into text, which the same library 
can facilitate. 

Utilizing the librosa library, this system can extract several acoustic features, including duration 
(the length of all the speech in seconds), zero crossing rate (the frequency of the signal transitions, 
which are used to signify the speech type), root-mean-square energy (RMS energy, which is used to 
symbolize the signal power and loudness), fundamental frequency F0 (the measurement of the average 
pitch, which is used to depict the tonal change), and Mel-Frequency Cepstral Coefficients (MFCC) 
features, which are used to represent comprehensive audio signals, as shown in Figure 11. 
 

 
Figure 11. 
Mel-Frequency Cepstral Coefficients. 

 
The Mel-Frequency Cepstral Coefficients (MFCC) are a mandatory by-product of this academic 

audio-processing pipeline for analyzing the sound of a candidate interview. Here, a two-dimensional 
coordinate system is utilized, in which the temporal dimensions (0:00-1:00) are placed along the x-axis, 
and the amplitude values, log-rectified (200 dB to -600 dB), are placed along the y-axis to provide a 
spectro-temporal fingerprint of vocal properties. The sixty-second continuum, labeled at ten-second 
increments, is precisely aligned with the time of the extracted speech of a candidate. In contrast, the 
decibel scale represents vocal energy dynamism via a strict set of librosa-based signal processing 
algorithms. 

The behaviorally significant patterns are shown in the spectral energy distribution. To start with, 
stable harmonic patterns in the first 30 seconds, with amplitudes ranging from -100 dB to +50 dB, 
indicate stable harmonic builds, which in turn translate to controlled articulation and rhythmic prosody 
characteristics, essential components of cognitive readiness. Secondly, harsh dials at 0:40-0:50 (-400 dB) 
reveal subvocal traces of filled pause markers, such as filler phonemes (e.g., "um" and "ah"), and pauses 
of breath that endanger the smooth continuation of the utterances. Thirdly, momentary glimpses above 
200 dB at 0:15 and 0:35 are indicators of emphatic stress, using explosives (/p/, /t/) or exaggerated 
vowels, thereby confirming cases of confident self-presentation. 
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Technically, such patterns are created based on 13 MFCC coefficients derived every 20-millisecond 
frame, with the referenced Libros implementation being documented. The levels of coefficient 0, total 
spectral energy, are modeled, and coefficients 1 to 12 are explained as cepstral envelopes via mel-scale 
filterbanks. The large troughs indicate the loss of energy in the upper bands (coefficients 5–12), which is 
typical of fricative steepening in the occurrence of disfluencies. On the other hand, the peaks represent 
the coherence of broadband power in lower coefficients (0–4), as expected in projection vocalization. 
This type of granular feature extraction allows for the assessment of communication clarity, whereby 
energy stability metrics like poise in Llama-3.2 are generated by evaluating the stability of poise and the 
number of paralinguistic discontinuities in the spectral domain of consistency found by the algorithm. 
Ultimately, this visualization serves not only as an acoustic transcript but also as a quantifiable 
behavioral phenotype within the multimodal assessment system. 

Along with MFCCs, pitch contour analysis is also part of the prosodic analysis aspect, which 
quantifies tone differences, monitors speech rate to assess fluency, and detects pauses to identify 
hesitation and fillers (e.g., "um," "ah," "uh"). After the test results are transcribed, they are run through 
the language model of GROK API, Llama 3.2, as shown in Figure 12, to enable complex natural 
language comprehension, as required for candidate evaluation. This framework provides an overall 
assessment of communication, considering both the level of confidence, clarity, and overall presentation. 
 

 
Figure 12. 
System Recommendation Pipeline. 

 
To further strengthen the results, the test-time augmentation and multimodal ablation study is 

presented in Table 8 and Table 9, respectively.   
 
Table 8. 
Test-Time Augmentation (TTA) Impact. 

Condition Accuracy (%) ΔAccuracy Inference Time (ms) p-value 

No TTA 83.2 ± 0.4 Baseline 12 ± 2 — 
TTA (10x) 86.0 ± 0.3 +2.8 105 ± 5 <0.01 

Note: *Performance and latency trade-off (10 augmentations per sample)*. 

 
Table 9. 
Multimodal Ablation Study. 

System Configuration F1-Score ΔF1 Insights 

Our System (FER + Gaze + Audio) 0.86 - Optimal performance 

Gaze Tracking 0.78 –0.08 Largest drop: Engagement metrics lost 
Audio Analysis 0.81 –0.05 Reduced vocal hesitancy detection 

FER 0.73 –0.13 Critical for emotional context 
Late Fusion (Early Fusion) 0.79 –0.07 Confirms fusion strategy superiority 

Note: *End-to-end system performance (F1-score) with modality removal* 

 
4.4. Multimodal Feature Fusion and System Deployment 

The system's approach is late fusion, where modality-specific data, such as facial expression 
recognition, gaze tracking, and audio analysis, are processed initially, and then the output is 
concatenated to generate a final candidate evaluation. This architecture ensures modularity, allowing 
each modality to be optimized separately. The final feature vector is constructed as follows: a seven-
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dimensional emotion probability vector is calculated as the SoftMax output of FER, a four-dimensional 
vector is calculated due to gaze tracking, and a multidimensional audio-analysis feature vector is created 
when acoustic features and linguistic features are integrated. All extracted features are presented in a 
Streamlit web application in the form of comprehensive reports, including a percentage breakdown, 
benchmarking, and graphs that display the performance of all candidates across all modalities. 

The current application is implemented as a web-based program built with the Streamlit library 
(Figure 13), which enables concurrent processing of streaming webcams and uploaded video recordings, 
providing immediate feedback on their performance and generating overall candidate evaluation 
documents. Training in minimal latency ensures that real-time analysis is suitable for scenarios such as 
live interviews. The total number of parameters is 14,883,399 (56.78 MB), with trainable parameters 
totaling 166,919 (652.03 KB). 
 

 
Figure 13.  
Web-Based Candidate Evaluation System. 

 

5. Discussion 
The Interview Video Analysis System (IVAS) is an improvement on the traditional interview 

assessment as it operationalizes a multimodal AI-based framework. By conflating Facial Emotion 
Recognition (FER), Gaze Tracking, and Audio Analysis, IVAS provides an advanced behavioral 
assessment that is thoroughly accurate. The FER module stands out due to a Convolutional Neural 
Network (CNN) model of 22 layers, customized geometric/photometric augmentation, and inverse-
frequency weighting; it has a classification accuracy of 86% on the FER-2013 dataset, surpassing 
comparison models like ResNet and VGGNet by wide margins. The gaze module measures the 
engagement of the interviewee by measuring the eye-contact duration, directional changes, and blink 
behavior based on the guesses of dlib landmarks, whereas the audio module retrieves paralinguistic 
features, pitch, and fluency, using Llama 3.2 and spectrogram. The late-fusion approach merges all these 
modalities in a Streamlit-based framework, where one can capture live interviews and recorded content 
in real-time. In such a system, structured and benchmarked reports, which incorporate behavioral 
markers, are generated, thus enabling a data-driven hiring process. The multimodal scheme also helps 
alleviate the shortcomings of the mislabeling of emotion, usually represented by such polysemy as 
sadness and fear, by cross-modal confirmation. Overall, IVAS provides an objective standard that can be 
scaled in assessing candidates, proving the effectiveness of combined AI modalities in derailing human 
bias toward enhancing recruitment rigor. 
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6. Conclusion 
IVAS is being developed on the premise of proceeding beyond the multimodal interview analysis 

stage to analyze facial expression recognition (FER), gaze detection, and acoustic analysis to clarify 
ambiguities that lie in the unimodal assessment. The FER module of IVAS consists of a 22-layer CNN 
yielding an accuracy of 86% and performs better than the already available shallower CNN-based 
ensemble techniques, as it can capture subtle features in realistic conditions. Data augmentation 
methods, such as flipping, rotation, and scaling, are used to address class imbalance in FER-2013, and 
the underrepresented occurrences of disgust were positively represented with the inverse frequency 
weighting method. This incorporation enhances the system's robustness and helps in the identification 
of the visual similarity between emotional states, such as surprise and fear, by gaze tracking through 
detecting directional focus patterns of the gaze, despite their distinct vocal patterns of hesitation or 
confidence, which are visibly inaudible through gaze. Nonetheless, despite these advances, there are still 
limitations. The inherent biases of the data, such as lighting variability and pose, can affect real-world 
generalizability, but such issues can be partially addressed by using augmentation algorithms. 
Additionally, for real-time inference, extensive hardware optimization is required to expand 
deployments. Ethical considerations, such as biases in algorithms used to interpret emotion, must also 
be addressed. Future research should focus on increasing dataset diversity, including cultural and 
contextual variations, and designing lightweight models suitable for deployment at the edge. 
Multimodal synergy can also be enhanced by incorporating quantum-inspired fusion architectures. As 
much as the development of IVAS demonstrates the transformative potential of AI in recruitment 
scenarios, it is vital to continue refining the system to achieve fairness and scalability. 
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