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Abstract: Accurate forecasting of daily new COVID-19 cases remains a critical challenge for effective 
epidemiological surveillance and healthcare system preparedness. This study proposes a data-driven 
predictive framework that leverages advanced data mining techniques to model daily COVID-19 case 
trends using a comprehensive dataset comprising case statistics, demographic attributes, vaccination 
status, cluster information, and temporal indicators. The methodology involves systematic data 
preprocessing, feature engineering—including lagged and temporal variables—and the application of 
regression-based and time-series forecasting models. Model performance is rigorously evaluated using 
standard statistical error metrics to assess predictive reliability. The results indicate that incorporating 
vaccination categories, cluster-related features, and historical lag variables substantially enhances 
forecasting accuracy, enabling the models to capture nonlinear dynamics and temporal dependencies in 
case progression. The findings demonstrate the effectiveness of data mining approaches in improving 
short-term COVID-19 case prediction, thereby providing a technically robust framework for real-time 
epidemic modeling and informed public health decision-making. 

Keywords: COVID-19 prediction, Data mining, Public health, Regression analysis, Time series forecasting, Vaccination 
impact. 

 
1. Introduction  

The COVID-19 pandemic has engulfed the entire world, challenging healthcare systems, 
economies, and societies at every turn. As the virus evolves, controlling its spread remains a 
priority globally. Basic sound pandemic control relies on daily new COVID-19 case prediction, 
which directly influences resource allocation and planning within health systems for prompt and 
effective public health interventions. These models are usually very informative but narrow in 
scope and do not incorporate multifactorial predictors such as vaccination status, case clusters, and 
holiday-influenced dynamics. This limitation affects the effectiveness of these models when dealing 
with rapidly changing trends of cases in real-world settings, highlighting the need for more 
sophisticated and data-rich approaches. 

In this regard, the present study utilizes an elaborate dataset representing a wide range of 
COVID-19-related factors, including but not limited to detailed case statistics, demographic 
information, and vaccination records. This paper bridges the gap between theoretical modeling and 
practical applications using advanced data mining methods. It will explain how vaccination 
programs, community clusters, and seasonal elements interact in determining the pandemic 
trajectory, combining regression analysis with time-series forecasting. This holistic approach 
provides better accuracy not only in predicting new cases each day but also gives useful insights for 
policymakers to stay ahead of the pandemic curve. 
 
1.1. Problem Statement 

One of the significant barriers to performing public health planning is the challenge of making 
an accurate forecast of new COVID-19 cases daily in real-time. Current prediction methods do not 
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consider the interaction of key factors such as vaccination coverage, formation of case clusters, and 
behavioral changes brought on by holidays. These inadequacies leave health systems vulnerable to 
sudden rises in cases, which may burden available resources and jeopardize public safety. The 
dynamic nature of the pandemic, its new variants emerging, and vaccination trends have 
highlighted the shortcomings of existing models. This situation necessitates a more reliable and 
comprehensive forecasting system that considers these relationships and provides accurate, up-to-date 
predictions. 
 
1.2. Objective 

Based on the prevailing understanding of the subject, this study undertakes the development of a 
prediction model using state-of-the-art data mining techniques that can predict the daily new cases of 
COVID-19 infection. In summary, in order to validate the performance of regression and time-series 
models, preprocess and engineer features with the aim to enhance data quality, and identify and quantify 
the most important factors affecting case trends. A key area of focus is examining how vaccination 
status, cluster data, and lagged factors might increase forecasting accuracy. The ultimate aim would be 
the provision of an evidence-based framework to help government and healthcare decision-making 
during the current pandemic. 
 
1.3. Motivation 

Given that it tackles important, practical issues, this research has the potential to revolutionize 
pandemic management. The ability to forecast accurately will enable the community, governments, and 
healthcare systems to prepare for surges, utilize resources optimally, and conduct treatments on time. 
This study integrates case cluster data with vaccination status, offering a fresh perspective beyond 
traditional modelling techniques. It addresses key questions about how vaccination efforts and 
behavioural patterns reflect on case dynamics. Moreover, these findings have wide-ranging implications 
for future outbreaks, providing a scalable and adaptable framework for epidemiological modelling. 
 
1.4. Research Questions 
This study is guided by the following key questions: 

• What are the most critical predictors of daily new COVID-19 cases, and how do variables such as 
vaccination status, case clusters, and holiday effects influence these trends? 

• How can the integration of lagged features and historical case data enhance the accuracy of 
predictive models? 

• What are the comparative strengths and limitations of regression analysis versus time-series 
forecasting in modeling COVID-19 case trends? 

• To what extent do the model's predictions align with actual case data, and how can these insights 
inform public health policy and pandemic preparedness? 

• By answering these questions, this research aims to deliver a robust and practical solution to a 
pressing global challenge, equipping policymakers with the tools they need to mitigate the impact 
of COVID-19. 

 

 

 

 



729 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 727-781, 2026 
DOI: 10.55214/2576-8484.v10i1.11687 
© 2026 by the author; licensee Learning Gate 

 

 

Table 1. 
 Comparison Table of Research Papers. 

 Author(s) and 
Year/Reference 

Dataset Used Algorithms Used Evaluation Metrics 

1. Chimmula and Zhang 
[1] 

Johns Hopkins University 
COVID-19 Data Repository 

Long Short-Term 
Memory (LSTM) 

RMSE, MAE 

2. Rustam et al. [2] WHO COVID-19 Dataset ARIMA, Linear 
Regression 

RMSE, MAPE 

3.  Tuli et al. [3] Public datasets (Google 
Mobility) 

ARIMA, Bayesian 
regression 

R2 score, RMSE 

4. Ahuja et al. [4] Indian Ministry of Health 
Dataset 

Decision Trees, 
XGBoost 

Accuracy, Precision, Recall 

5. Hu et al. [5] Proprietary hospital data (China) SVM, Random Forest F1-score, ROC-AUC 
6. Yan et al. [6] COVID-19 Data Hub Gradient Boosting 

Machine (GBM) 
MAE, RMSE 

7. Petropoulos and 
Makridakis [7] 

Google COVID-19 Dataset LSTM, CNN MSE, MAE 

8. Altay et al. [8] WHO COVID-19 Dashboard ARIMA, Prophet MAE, RMSE 

9. Xu et al. [9] Public data (GitHub COVID-19) Deep Neural Networks 
(DNN) 

Accuracy, Precision, Recall 

10. Zhang et al. [10] WHO Dataset, country-specific 
data 

Improved LSTM-
ARIMA, CNN 

RMSE, F1-score 

11. Mengistie [11] WHO, Worldometer, GitHub, 
and DingXiangYuan 

Fbprophet Python 
library  
 

N/A 

12. Solayman et al. [12] Israeli Ministry of Health SMOTE, Logistic 
Regression, Decision 
Tree, Random Forest, 
KNN, SVM, AdaBoost, 
XGBoost, ANN, CNN, 
hybrid CNN-LSTM 

Accuracy, Precision, 
Recall, F1 Score  

13.  Ghafouri-Fard et al. 
[13] 

N/A ANN, LSTM, ANFIS, 
ARIMA, MLP 

RMSE, MAE, R2, MAPE 

14.  Awadh et al. [14] Self-report study/data  Naive Bayes, MLP, J48 Pearson correlation 
coefficient, Prediction 
accuracy, building time, 
and error average  

15. Allmuttar and Alkhafaji 
[15] 
 

A mixture of datasets from 
various scenarios  

K-Means Clustering Normalized cross-
correlation 

16.  Ahouz and Golabpour 
[16] 

Johns Hopkins University 
COVID-19 Data Repository 
 

Least-Square Boosting 
(LSBoost) 

Percent error between 
predicted and actual values  

17. Satar et al. [17] Public dataset Naïve Bayes, Decision 
Tree, ANN  

Accuracy, Precision, Recall  

18. Muhammad et al. [18] Coronavirus dataset of the Korea 
Centers for Disease Control & 
Prevention (KCDC) 
 

Decision Tree, SVM, 
Naive Bayes, Logistic 
Regression, Random 
Forest, KNN 

Accuracy  

19. Rane et al. [19] N/A LSSVM, SIR, SEIR, 
SVM, ETS, Linear 
Regression, LASSO 
Regression, ANN, 
ARIMA, MLP, ELM, 
NNETAR, CNN, 

Advantage, Disadvantage  
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RNN, LSTM, GRU, 
NARNN, Bi-LSTM 

20. NOOR et al. [20]  Humandata website Linear Regression  RMSE, MAE 

 

2. Literature Review 
A review of existing literature on COVID-19 forecasting highlights a variety of models used for 

data analysis and prediction, including both traditional statistical methods and advanced machine 
learning algorithms. Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Linear 
Regression, Random Forest, and XGBoost have been chosen for our study due to their robust 
performance in handling structured and unstructured data. These algorithms also correspond to the 
trend of previous research, which indicates that the combination of various methods is necessary for 
accurate and reliable forecasts. 

Among these, time-series models, including ARIMA and LSTM, are widely applied in Chimmula 
and Zhang [1] and other studies. However, most of them perform poorly in handling nonlinear patterns 
or highly complex datasets. On the other hand, research by Ahuja et al. [4] and Hu et al. [5] has shown 
that our backbone models, such as Random Forest and XGBoost, are very effective at capturing 
complex correlations within the data. CNNs have proven their versatility for policy-based scenario 
modeling through successful applications of hybrid models such as CNN-LSTM by Petropoulos and 
Makridakis [7] and are also adept at identifying spatial patterns. Most of the above studies used 
publicly available datasets, for example, Google Mobility data, WHO databases, and the Johns Hopkins 
COVID-19 Repository. Such datasets can represent wide generalizability, but often do not have the 
granularity for a particular region. 

Our choice of algorithms provides adaptability to a wide range of dataset characteristics, whether 
structured, such as linear regression, or unstructured, such as CNN. Additionally, some machine 
learning techniques, such as Random Forest and XGBoost, perform better in unbalanced datasets or 
noisy environments, which is consistent with the research conducted by Solayman et al. [12] and Yan 
et al. [6], where these algorithms outperformed more straightforward statistical approaches. 

Our methodology also addresses a few common limitations present in the literature. For instance, 
we added the metrics of precision, recall, and F1-score to provide a more comprehensive evaluation of 
our models; most studies have only focused on accuracy metrics such as RMSE and MAE. Furthermore, 
the advantages of hybrid and ensemble models, such as the combination of CNNs and Random Forest 
for the analysis of spatial-temporal data, were employed to mitigate the challenges in long-term 
predictions by leveraging the strengths of hybrid and ensemble approaches. 

The choice between ANN, XGBoost, Linear Regression, Random Forest, KNN, LSTM, and CNN 
reflects a balance necessary among the data in terms of simplicity and computational efficiency that are 
needed vis-à-vis predictive power. These algorithms include a number that are well-adapted to handling 
diverse data and are also flexible enough for both short-run and long-run prediction. Going ahead, this 
methodological approach can be supplemented by incorporating practical constraints, interpretable AI-
based techniques, and ensemble methods further to enhance the interpretability and robustness of the 
predicted outcomes in changing environments. 
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3. Dataset Description 
 
Table 2. 
 Description of Datasets. 

No. Feature Name Abbreviation Type Measurement Unit 

1 Date DATE Categorical N/A 

8 Day DAY Categorical N/A 

9 New Cases CASES_NEW Continuous Count 

10 Imported Cases CASES_IMPORT Continuous Count 

11 Recovered Cases CASES_RECOVERED Continuous Count 

12 Active Cases CASES_ACTIVE Continuous Count 

13 Cluster Cases CASES_CLUSTER Continuous Count 

14 Unvaccinated Cases CASES_UNVAX Continuous Count 

15 Partially Vaccinated Cases CASES_PVAX Continuous Count 

16 Fully Vaccinated Cases CASES_FVAX Continuous Count 

17 Booster Cases CASES_BOOST Continuous Count 

18 New Deaths DEATHS_NEW Continuous Count 

19 New Deaths DoD DEATHS_NEW_DOD Continuous Count 

20 Unvaccinated Deaths DEATHS_UNVAX Continuous Count 

21 Partially Vaccinated Deaths DEATHS_PVAX Continuous Count 

22 Fully Vaccinated Deaths DEATHS_FVAX Continuous Count 

23 Booster Deaths DEATHS_BOOST Continuous Count 

24 Holiday Indicator HOLIDAY Categorical Binary (0 = No, 1 = Yes) 

 
3.1. Exploratory Data Analysis (EDA) 

In general, EDA and data visualization offer a wealth of detailed insights regarding the 
distribution of trends, correlations, and anomalies in this dataset. The creation of all these 
visualizations was developed using vis.py. The insight description into the key pattern of 
establishing data and the statistical relationship from the application of the statistical techniques 
adopted, aside from the detailed visualizations, also serves. 
 
3.1.1. Data Quality Assessment 

Since there are no missing values for any of the columns, imputation is not necessary, and hence, 
the data set is complete for analysis. However, some clear outliers can be seen in the case and death 
count-related variables such as “cases_new,” “cases_import,” “deaths_new,” and vaccination-related 
features. These are critical occurrences, such as surges of COVID-19, which are relevant for 
understanding oscillations of the epidemic. Skewness studies indicated that most variables had a 
considerable positive skewness, especially for cases and deaths. For instance, some of the highest 
values included “cases_import” and “deaths_boost,” with values 5.03 and 5.18, respectively, because 
their distribution contained very rare extreme data points. The low skewness and lack of outliers in 
time-based variables such as year, month, and day showed that the dataset was well distributed. 
 
3.1.2. New Cases Over Time 

A line plot was used to view the trend of new COVID-19 instances over time. The oscillations were 
observed as peaks and falls in the figure of the cases. These patterns provide insights into the evolution 
of the pandemic and could be linked with measures such as vaccination drives or lockdowns. 
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Figure 1. 
New Cases Over Timeline Graph. 

3.1.3. New Deaths Over Time 
This line graph provides information on times of high mortality by showing the trend of COVID-

19-related fatalities. It made it possible to comprehend the effects of the virus and the efficacy of 
interventions such as social seclusion and medical developments. 

 

 
Figure 2. 
New Deaths Over Timeline Graph. 
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3.1.4. Scatter Plot with Regression: Active Cases vs. Deaths 
The association between active cases and deaths was depicted statistically using a scatter plot with a 

regression line, which offered insight into whether greater active case counts were associated with more 
fatalities. The seriousness of ongoing instances was clarified by this depiction. 

 

 
                       Figure 3. 
                        Scatter Plot for Active Cases vs. New Deaths. 

 
3.1.5. Cases on Weekends vs. Weekdays 

This investigation contrasted the distribution of new cases on weekends and weekdays using 
boxplots and violin plots. The graphs showed possible variations in social behavior and case 
reporting, indicating either a larger or lower number of cases on particular days. 
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  Figure 4. 
  Boxplot of New Cases by Weekend/Weekday. 

 

 
Figure 5. 
Violin Plot of New Cases by Weekend/Weekday. 

 
3.1.6. Recovery Rate Over Time 

The recovery rate was monitored over time using a smoothed line plot. Key milestones, such as the 
50% recovery rate, were highlighted in this graphic, which also showed when the pandemic recovery 
process was making progress or regressing. 
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                              Figure 6. 
                                Recovery Rate Over Timeline Plot. 
 

3.1.7. New Cases Highlighting Holidays 
Holidays were shown as red scatter dots on a line plot that displayed the trend of new instances 

over time. This graphic examined the relationship between holidays and increases in the number of 
cases, offering insights into how social behavior shifts during celebratory times. 
 

 
                                   Figure 7. 
                                     New Cases Highlighting Holidays Line Plot. 
 

3.1.8. Stacked Area Plot for Total Cases by Vaccination Status 
A stacked area plot, broken down by vaccination status, showed the overall number of cases 

over time. This made it possible to comprehend how vaccination campaigns affected the distribution 
of cases and brought attention to patterns in immunization rates. 
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Figure 8. 
Stacked Area Plot for Total Cases by Vaccination Status. 

 

3.1.9. Pie Chart for Proportions of Cases by Vaccination Status 
A straightforward but efficient method of comparing the prevalence of cases across various 

vaccination groups was provided via a pie chart that showed the relative proportions of cases by 
vaccination status. 
 

 
      Figure 9. 
       Pie Chart for Proportions of Cases by Vaccination Status. 
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3.1.10. Recovery Rate by Significant Events 
The recovery rate was monitored over time using a line plot annotated with prominent events, such 

as lockdowns and vaccination rollouts. In addition to highlighting the influence of significant 
interventions on recovery trends, this graphic included a historical background. 

 

 
                      Figure 10. 
                       Recovery Rate by Significant Events. 

 
3.1.11. Death Rate Over Time with Significant Events 

The death rate over time was also shown using a line plot that was annotated with significant 
occurrences. It made it possible to compare how mortality rates changed as a result of significant 
turning points, such as the introduction of new treatments or vaccination campaigns. 

 

 
             Figure 1. 
              Death Rate Over Time with Significant Events. 
 

3.1.12. Statistical Insights and Anomalies 
The dataset's case and death counts showed significant fluctuation, as indicated by the 

numerous outliers. For instance, “cases_new” contained 168 outliers, whereas “deaths_new” had 295 
outliers. These outliers corresponded to known pandemic waves and were critical for understanding 
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periods of rapid transmission and mortality. Skewness analysis revealed that vaccination-related 
variables, such as “cases_pvax” and “deaths_boost,” exhibited significant skewness, indicating a 
concentration of values in lower ranges with sporadic severe cases. 

Temporal variables such as year, month, and “week_of_year” showed no outliers and moderate 
skewness, indicating a consistent data distribution. However, the “is_weekend” variable has a 
modest skewness of 0.95, indicating an uneven distribution of cases across weekdays and weekends. 

 

 
Figure 12. 
Scatter Plot of Attributes. 
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                               Figure 13. 
                                 Histogram of Attributes. 
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Figure 14. 
Box Plot of Attributes. 

 

 
Figure 15. 
Daily Cases and Deaths Over Timeline Graph. 

 



741 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 727-781, 2026 
DOI: 10.55214/2576-8484.v10i1.11687 
© 2026 by the author; licensee Learning Gate 

 

In a nutshell, the dataset's exploration phase efficiently blends statistical analysis with a range 
of visualizations to find trends, correlations, and anomalies. The research provides a comprehensive 
assessment of the pandemic's course, including the recovery rate and fatality patterns, as well as the 
impact of vaccination status and key events. By finding essential patterns and linkages, this EDA lays 
the groundwork for future modelling and decision-making in understanding COVID-19 dynamics. 
 
3.2. Data Pre-Processing 

The dataset used in this analysis is sourced from data.gov.my and consists of three datasets: 
"cases by state," "cases by vaccination status," and "deaths due to COVID-19." The dataset initially 
included a state column, which displayed identical data repeated for each of the 14 states in 
Malaysia. Furthermore, the dataset included a final collection of data that represented Malaysia as a 
whole. To avoid disturbances when aligning and combining the datasets, we chose to keep only the 
rows that correspond to Malaysia in their entirety. This provided data consistency and eliminated 
redundancy caused by state-specific information. During the integration process, the state column 
was eliminated because it became unnecessary after just keeping Malaysia-wide data. 

Additionally, the vaccination status and death attributes from the other two datasets were 
concatenated and added to the dataset to improve the analysis. The start and end dates of each 
dataset were aligned to maintain consistency, and the combined dataset contained 1,707 rows of 
data. 
 
3.2.1. Holiday 

To improve the dataset, a holiday attribute was added, with a value of 1 denoting public 
holidays and 0 representing non-public holidays. The holiday data was collected from 
publicholidays.com.my, which provided official public holiday dates for Malaysia across a wide range 
of time. This addition aimed to study the potential effect of vacations on the number of new COVID-
19 cases. 
 
3.2.2. Date 

Furthermore, feature extraction was applied to the date column to generate new temporal 
attributes that could provide insights into trends over time. A script called date_adjust.py was 
created to extract different attributes from the date column. These characteristics included the year, 
month, and day of the month, as well as the day of the week (Monday is 0 and Sunday is 6), the week 
of the year, the quarter of the year, and a binary indicator for weekends. The feature extraction was 
carried out as follows: 
 

 
        Figure 16. 
         Code Snippet of Date Feature Extraction. 
 

These preprocessing methods guaranteed that the dataset was completely ready for analysis, 
with an emphasis on temporal aspects and external factors such as vacations that could influence 
COVID-19 case trends. 

https://data.gov.my/data-catalogue
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3.3. Data Cleaning 
Various visualization techniques and statistical checks to verify that our dataset does not require 

preprocessing. 
 

Table 1. 
Dataset Missing Values, Outliers & Skewness. 

Column Missing Values Outliers Detected Skewness 
year 0 0 -0.02 
month 0 0 -0.04 

day 0 0 0.01 
day_of_week 0 0 0.00 

week_of_year 0 0 -0.04 

quarter 0 0 -0.04 
is_weekend 0 0 0.95 

cases_new 0 168 2.89 
cases_import 0 225 5.03 

cases_recovered 0 164 2.89 
cases_active 0 182 2.78 

cases_cluster 0 272 2.49 
cases_unvax 0 236 2.78 

cases_pvax 0 294 5.09 

cases_fvax 0 267 3.37 
cases_boost 0 272 4.72 

deaths_new 0 295 4.42 
deaths_new_dod 0 297 3.75 

deaths_unvax 0 302 3.76 
deaths_pvax 0 310 5.05 

deaths_fvax 0 348 2.79 
deaths_boost 0 182 5.18 

holiday 0 278 1.83 

 
3.3.1. Missing Values  

First, we assessed missing values by generating a heatmap using Seaborn's heatmap function and 
calculating the count of missing values per feature with Python's isnull().sum(). The heatmap showed no 
highlighted cells, and the summary table confirmed zero missing values across all features. 
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                                                              Figure 17. 
                                                                 Summary Table of Missing Values. 
 

3.3.2. Outliers 
Next, we evaluated outliers in the numerical features using box plots created with Matplotlib. 

The outliers in the case-related attributes, such as cases_new, cases_import, cases_recovered, and 
others, were identified using box plots, which visually highlight data points outside the whiskers 
(1.5 times the interquartile range). These outliers likely correspond to extreme values observed 
during the peak periods of the COVID-19 pandemic, such as surges in cases due to new variants, 
major outbreaks, or vaccination campaigns. While these outliers are significant, they are not 
indicative of errors or anomalies but rather reflect real-world events associated with the pandemic's 
unpredictable nature. For example, the high number of cases or deaths during critical moments of 
the pandemic would naturally result in extreme values that fall outside the usual range, and these 
should be viewed as part of the dataset's natural variability. As such, these outliers are justified and 
should not be removed, as they accurately represent the data during a time of unprecedented global 
health crisis. 

 
3.3.3. Skewness 

The dataset reveals significant skewness in several variables related to COVID-19 cases and 
deaths, with skewness values consistently above 1, indicating a right-skewed distribution. 
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Specifically, the columns cases_import, cases_pvax, cases_boost, deaths_new, and deaths_boost exhibit 
extreme skewness values, ranging from 4.42 to 5.18. This high skewness is likely a result of the 
pandemic's exceptional nature, particularly during the peak periods when the number of cases and 
deaths soared dramatically. During these times, a large number of cases and deaths occurred in a 
relatively short time span, leading to an overrepresentation of high values in the dataset and 
contributing to the right-skewed distribution. 

The skewness observed in these columns is justified by the pandemic’s irregular and unpredictable 
progression. For example, cases_import may have shown a sharp increase in imported cases during the 
height of international travel restrictions and virus spread, while cases_pvax and cases_boost would 
have spiked as vaccination campaigns were rolled out at varying speeds across different regions. 
Similarly, the deaths_new and deaths_boost columns reflect a surge in mortality rates, especially at the 
peak of the pandemic, where large numbers of deaths were reported within short time intervals. 

Given the nature of these data, the skewness is not indicative of data quality issues but rather 
reflects the exceptional circumstances of the pandemic. Therefore, while the skewness is pronounced, it 
is a natural characteristic of the dataset and should be interpreted in the context of the pandemic's peak 
periods. 

In summary, after analyzing the dataset, it was found that no preprocessing was necessary. First, 
there were no missing values across any of the attributes, which indicated that the dataset was already 
complete and did not require imputation or handling of null values. Secondly, the dataset exhibited 
skewness in several columns, especially those related to COVID-19 cases and deaths, with skewness 
values ranging from 2.49 to 5.18. However, this skewness is expected due to the exceptional nature of 
the pandemic, where there were significant spikes in cases and deaths, especially during peak periods. 

Lastly, the outliers detected through box plots were justified as they correspond to real-world 
events during the pandemic, such as surges in cases and deaths, and therefore do not require removal or 
correction. Consequently, given the absence of missing values, the natural skewness, and the justified 
presence of outliers, no further preprocessing was performed on the dataset after its creation. 
 
3.4. Feature Selection 
3.4.1. Correlation Matrix 

The correlation matrix is a widely used technique for feature selection, as it quantifies the linear 
relationships between features and the target variable. This method involves calculating pairwise 
Pearson’s correlation coefficients, which measure the strength and direction of the linear relationship 
between variables. A correlation heatmap is often used to visualize these relationships, making it easier 
to identify patterns and redundancies in the data. 

To use this strategy, first compute the correlation matrix for all feature pairings, including the 
target variable. Pearson’s correlation coefficient values range from -1 to +1, where values close to +1 or 
-1 indicate a strong positive or negative linear relationship, respectively. Values near 0, on the other 
hand, suggest no linear relationship. Once the correlation matrix is computed, it can be interpreted to 
guide feature selection. Features that show a strong correlation with the target variable, those with 
absolute correlation coefficients above a predefined threshold, such as |0.3|, should be retained as they 
are likely to contribute to predictive performance. 

At the same time, the matrix can highlight issues of multicollinearity, where two features are highly 
correlated with each other (|correlation| > 0.85). Multicollinearity can introduce redundancy, as one 
feature may not add significant new information. In such cases, one of the correlated features should be 
removed to simplify the model and reduce overfitting. 
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                                      Figure 2. 
                                        Correlation Heatmap for Feature Selection. 
 

The correlation matrix method is quick and straightforward to implement, making it an 
excellent starting point for feature selection. It helps identify linear relationships between features 
and the target while also revealing redundant features. For example, in the heatmap provided, 
features with low correlation to the target variable could be safely excluded, as they are unlikely to 
contribute to the model’s performance. Additionally, highly correlated features (observed as off-
diagonal high correlations) should be addressed by retaining only one of them. 

By streamlining the dataset, the correlation matrix improves model efficiency and 
interpretability, paving the way for more advanced feature selection techniques or model-building 
efforts. 
 
3.4.2. Feature Importance Analysis using XGBoost  

Feature importance analysis offers a method to determine the contribution of each input feature 
to the prediction of COVID-19 in this scenario. In XGBoost, this involves evaluating how much 
each input feature influences the model’s performance during training. During the training phase of 
the model, XGBoost constructs a series of decision trees sequentially, with each attempting to 
correct the errors from the previous ones. The model starts by splitting the data based on feature 
values to reduce the overall loss function. Subsequently, feature importance is computed through 
methods such as gain, weight, and coverage. During these processes, the improvement is measured 
by observing the model’s loss function due to the split involving a feature. This step indicates each 
feature’s contribution to reducing prediction errors. Then, the importance of the features can be 
assessed by analyzing the total number of times a feature is used in splits across all the trees. The 
scores of each input feature are normalized and sum up to 1. 
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Figure 19. 
 Feature Importance Bar Chart using XGBoost 
 

XGBoost is chosen to determine the importance of each input feature as it is a gradient-boosting 
algorithm well-known for its speed and accuracy, allowing better analysis of complex datasets. Other 
than that, this algorithm helps to provide insights into which variables influence the prediction the 
most, which aligns with the goal of understanding the key drivers of the target variable, in this case, 
“cases_new”. The uniqueness of XGBoost is that it can handle non-linear relationships and interactions 
between common features in real-world datasets, making it more straightforward to extract and 
visualize feature importance while saving time in model interpretation. 
 
3.4.3. Feature Importance Analysis using ANNs  
 

 
 Figure 3. 
 Feature Importance Bar Chart using ANNs. 
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Artificial Neural Networks (ANNs) can also be used to determine the feature importance of the 
dataset due to their advantages in capturing complex and non-linear relationships in the data. Methods 
such as permutation importance provide a way to assess the relevance of each variable even though 
ANNs function as black boxes. The permutation importance works by evaluating the model's 
performance and determining how much it deteriorates when the value of a single feature is shuffled. 
This strategy is excellent for artificial neural networks because they can understand the complicated 
connections between features and do not require any direct interpretation of weights, which can be 
difficult in non-linear models. Despite the intricacy of their internal workings, ANNs can efficiently 
identify the features that contribute the most to the model's prediction by recording feature patterns 
and interactions. 
 
3.4.4. Feature Importance Analysis using Random Forest 
 

 
   Figure 21. 
   Feature Importance Bar Chart using Random Forest. 

 
Random Forest is a type of algorithm that can be implemented to determine the feature 

importance of each variable due to its ability to model complex relationships in data while providing 
a straightforward measure of feature relevance. This algorithm functions by constructing various 
decision trees during training and aggregating their predictions. In this context, it computes the 
importance of each feature by evaluating how much the feature reduces impurity across all trees in 
the forest. This step is performed by observing the decrease in model performance when the values 
of a certain feature are removed. Additionally, Random Forest is useful in capturing both linear and 
non-linear relationships, making it relatively robust to overfitting issues, especially when used with 
a large number of trees. 
 
3.5. Architecture Diagram  

The method begins with data collection, which involves gathering raw datasets on COVID-19 
cases, vaccination status, and mortality from credible sources. This stage lays the groundwork for 
future analysis by ensuring that all necessary data is available for processing. The Datasets 
Integration & Alignment phase combines numerous datasets into a cohesive form. This entails 
matching data properties, such as date formats, to maintain uniformity. By addressing conflicts and 
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condensing data, a cohesive dataset is created for the next stages. Next, Feature Engineering is 
implemented to enrich the dataset with more meaningful variables. The key steps are adding a 
binary "holiday" property (1 for holidays, 0 for non-holidays) and extracting date-related 
information such as “year”, “month”, “day”, “day_of_week”, “week_of_year”, “quarter”, and 
“is_weekend”. These features provide temporal context for deeper analysis. 

 

 
Figure 22. 
Architecture Diagram of the Project. 

 
The Data Cleaning Process ensures that the dataset is free of errors, missing values, and 

unnecessary columns. This stage removes superfluous features, such as state, and verifies data integrity 
through exploratory tests. The end result is a refined dataset that is ready for model training. With a 
clean dataset, the Model Training & Prediction stage uses machine learning models to forecast the 
target variable (e.g., cases_new). The initial models are trained with all available features to assess 
performance and identify areas for improvement. 

The Evaluate stage assesses model performance using metrics such as R-squared or mean squared 
error. This evaluation guides the next step, Feature Selection, which employs Iterative Recursive 
Feature Elimination (RFE). Low-importance or redundant features are systematically removed during 
retraining models to refine the feature set. Finally, during the Feature Refinement step, the iterative 
feature selection process is completed, and only the most relevant features are retained. This results in 
the Final Dataset, which is optimized for accuracy and efficiency in predictive modeling. 
 
3.6. Training and Testing Set Overview 
The total of observations: 1706  
The number of features or variables: 17  

By using the 80:20 split, the training set will consist of 1,364 observations, whereas the testing set 
will consist of 342 observations. 
 
Table 4. 
Training and Testing Dataset. 

Dataset Number of observations Number of features 
Training set 1364 17 

Testing set 342 17 



749 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 727-781, 2026 
DOI: 10.55214/2576-8484.v10i1.11687 
© 2026 by the author; licensee Learning Gate 

 

4. Methodology 
4.1. Artificial Neural Networks (ANNs)  

Artificial Neural Networks (ANNs) were chosen as the principal approach for forecasting daily new 
COVID-19 cases. Inspired by the structure of the human brain, ANNs are composed of interconnected 
layers of neurons that analyze data using weighted connections and activation functions. They are 
especially well-suited for modeling complex, non-linear interactions and working with datasets that 
contain a variety of features. This adaptability makes them ideal for the dataset, which includes 
temporal, categorical, and numerical information. ANNs also excel in regression problems with 
continuous target variables, such as “cases_new,” enabling more accurate forecasts. 
 
4.1.1. Justification  

ANNs were chosen for their capacity to generalize and extract detailed patterns from the 
dataset. The non-linear modeling capabilities, scalability, feature integration, and strong 
regularization approaches are the most important aspects affecting this decision. ANNs incorporate 
non-linearity into the data through activation functions such as ReLU, allowing them to capture 
complex patterns and dependencies. Their scalability provides effective computing for datasets of 
different sizes and complexity. Furthermore, ANNs naturally learn feature importance during 
training, eliminating the requirement for explicit feature engineering. 
 
4.1.2. Strengths 

Artificial neural networks (ANNs) have various advantages that make them effective machine 
learning tools. They are extremely adaptable, capable of modeling both linear and non-linear 
connections within data, increasing their usefulness across a wide range of applications. ANNs also 
perform autonomous feature learning during training, detecting complicated feature interactions 
without the need for considerable preprocessing. Their scalability enables them to process enormous 
datasets efficiently, especially when supplied with many layers and neurons. Furthermore, strong 
regularization techniques such as dropout and early halting are used to improve generalization and 
avoid overfitting. 
 
4.1.3. Weaknesses 

Despite their advantages, artificial neural networks (ANNs) have certain limitations. Training 
these networks can be computationally expensive, especially for deep architectures and large 
datasets, necessitating substantial resources. Because ANNs are more sophisticated than simpler 
models, it is difficult to understand how they arrive at precise predictions. Furthermore, ANNs are 
hyperparameter sensitive; obtaining peak performance involves precise adjustment of parameters 
such as learning rate, number of layers, and number of neurons. 
 
4.1.4. Architecture Overview and Working Mechanism 

This project's ANN design consists of an input layer, three hidden layers, and one output layer. 
The input layer accepts normalized features from the dataset, with each input representing a feature. 
The hidden layers include a first layer with 128 neurons and ReLU activation to capture complex 
associations, a second layer with 64 neurons and ReLU activation to refine learned patterns, and a 
third layer with 32 neurons. The output layer, which consists of a single neuron with a linear 
activation function, returns the predicted value for “cases_new”. 

The working mechanism consists of a feedforward pass in which input features are multiplied 
by weights, summed with biases, and passed through activation functions. Outputs from one layer 
are used as inputs for the next. The Mean Squared Error (MSE) loss function is used to compute 
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the difference between anticipated and actual values for the log-transformed target variable. 
Backpropagation computes the gradients of the loss function, and the Adam optimizer adjusts the 
weights to minimize the loss. The model is trained across 20 epochs to achieve a balance between 
computational efficiency and model learning. It also employs mini-batches of size 32 to promote 
effective learning. The model's prediction accuracy and explanatory capacity are evaluated using 
measures such as RMSE, MAE, and R² (Coefficient of Determination). 

As a result, ANNs were chosen for their capacity to model nonlinear connections and successfully 
handle heterogeneous data sources. The design, which includes hidden layers with ReLU activations 
and strong regularization algorithms, allows the ANN to generalize patterns in data while limiting 
overfitting. Despite their computational cost and interpretability problems, ANNs are an effective tool 
for regression tasks such as forecasting “cases_new,” providing accurate and actionable forecasts. 
 
4.2. Convolutional Neural Network (CNNs) 

Convolutional Neural Networks (CNNs) are deep learning models designed to analyze structured 
grid-like input such as pictures, time series data, and geographical data. They are regarded as one of the 
most well-known machine learning tools, especially for tasks requiring spatial or sequential data 
patterns. Furthermore, CNNs can learn directly from raw data, making them extremely fast and reliable 
in forecasting COVID-19 instances based on prior data. 
 
4.2.1. Justification 

CNNs were chosen based on the dataset size of 1706 observations, which is adequate to train a CNN 
model. This algorithm is functional with large datasets and can handle the complexity of the data better 
than simpler models. Even though CNNs are usually used for image classification tasks, they are also 
applicable to time-series data like COVID-19 case numbers over time. Next, the dataset consists of both 
continuous and categorical data. CNNs can handle continuous data efficiently by learning the spatial or 
even temporal patterns from the data values. 

On the other hand, CNNs can be adapted for categorical data by utilizing embeddings, enabling the 
prediction model to process and learn from both types of features simultaneously. Moving on, in this 
scenario, the target variable is continuous data, and the goal is to predict future values of COVID-19 
cases based on historical trends. CNNs are equally effective in solving regression problems when 
properly adapted. Furthermore, CNNs are capable of learning patterns and relationships in the data, 
such as seasonality and fluctuations in the spread of the virus, resulting in more accurate predictions of 
the continuous variable. 
 
4.2.2. Strengths 

CNNs are capable of learning complex spatial and temporal pattern data due to their architectural 
design, which includes three main features: convolutional layers, activation functions, and pooling 
mechanisms. The number of cases in the dataset is crucial in COVID-19 prediction, as it often involves 
complex trends, seasonality, and shifts over time. Furthermore, this algorithm can effectively capture all 
the temporal dependencies in time-series data, making it more suitable for time-series forecasting tasks 
such as predicting upcoming COVID-19 cases. CNNs process data by breaking it into several 
overlapping windows, each containing a certain temporal context. They analyze these windows to learn 
the relationships between past and future values. 
 
4.2.3. Weaknesses  

CNNs are designed to capture local patterns within a certain receptive field. Although they excel in 
detecting short-term dependencies in time-series data, they still struggle with long-term dependencies. 
In this case, CNNs might be unable to account for the influence of distant past events without 
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significant adjustments, resulting in low accuracy of prediction for COVID-19 cases. Next, CNNs 
are a type of algorithm that requires significant resources and a large volume of data for training to 
avoid issues like overfitting. In cases where the dataset is noisy, it may fail to generalize well to 
upcoming new data. For instance, small regional datasets for COVID-19 with irregular reporting 
might not provide enough information for CNNs to learn and predict the cases properly. 
 
4.2.4. Architecture Overview and Working Mechanism 

CNNs are designed to operate by applying numerous filters (convolutions) to input data to 
detect local patterns and relationships, which are then passed through multiple layers to capture 
increasingly abstract features. The layers work by using convolutional layers to filter the input data, 
hierarchically sliding across the data to detect local variables. In current time-series data, these 
filters can capture all the important temporal patterns, such as spikes in COVID-19 cases or 
interactions between variables. Moving on, an activation function such as Rectified Linear Unit 
(ReLU) is then applied. This non-linearity enables the network to learn and adapt to complex 
patterns beyond linear relationships, allowing it to capture more distinctive trends in the dataset. 

The existing pooling layers in the CNNs help to reduce the data's dimensionality while 
preserving all the crucial information. This step helps to minimize the computational load needed 
and emphasizes high-level patterns such as long-term trends in COVID-19 cases. After the 
convolution and pooling layers, the data is passed through fully connected layers where each neuron 
is connected to every neuron in the previous layer. These layers allow the network to combine the 
features learned from earlier layers to produce more complex predictions. Lastly, the output layer 
will consist of a single neuron to produce a continuous value, which is the number of cases for the 
next time period. 

In conclusion, CNNs are a powerful method for predicting COVID-19 situations because they 
can successfully capture the temporal and geographical correlations in the data. They are effective in 
predicting future COVID-19 cases by capturing sequential or geographical patterns in data and 
identifying all trends, such as case peaks. 
 
4.3. K-Nearest Neighbours (KNN) 

The K-Nearest Neighbours (KNN) algorithm was selected as an alternative approach for 
predicting daily new COVID-19 cases (cases_new). KNN is a simple yet effective machine learning 
method that predicts target values based on the similarity between data points. By considering the 
closest k data points in feature space, KNN performs classification or regression tasks without 
relying on an explicit model structure. This instance-based learning technique is particularly well-
suited for smaller datasets or datasets where local patterns in the data hold significant predictive 
power. Its interpretability and ability to work with mixed feature types make it a viable choice for 
the given dataset, which includes temporal, categorical, and numerical features. 
 
4.3.1. Justification 

The K-Nearest Neighbours (KNN) algorithm was used as an alternative method for forecasting 
daily new COVID-19 instances (cases_new). KNN is a basic yet effective machine learning 
technique that predicts target values based on the similarity of input points. KNN solves 
classification or regression tasks without the need for an explicit model structure by taking into 
account the nearest k data points in feature space. This instance-based learning technique is 
particularly well-suited for smaller datasets or datasets where local patterns in the data hold 
significant predictive power. Its interpretability and ability to work with mixed feature types make 
it a viable choice for the given dataset, which includes temporal, categorical, and numerical features. 
 



752 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 727-781, 2026 
DOI: 10.55214/2576-8484.v10i1.11687 
© 2026 by the author; licensee Learning Gate 

 

4.3.2. Strengths 
KNN has various characteristics that make it a viable option for certain regression problems. It 

is non-parametric, which means it makes no assumptions about the underlying data distribution, 
allowing it to deal with non-linear interactions efficiently. The technique is straightforward to build 
and understand since predictions are based on the average or majority class of the nearest 
neighbors. Furthermore, KNN adjusts to local patterns by focusing solely on neighboring data points in 
the feature space, requiring less preparation and working directly with normalized input. 

 
4.3.3. Weaknesses  

KNN also has limitations. Its prediction phase can be computationally costly for large datasets since 
distances must be calculated for each data point during inference. It has difficulty with high-dimensional 
data because of the "curse of dimensionality," which decreases the efficiency of distance-based 
measurements. KNN is also extremely sensitive to feature scaling, necessitating rigorous normalization 
or standardization to avoid inaccurate distance computations. Furthermore, the algorithm's performance 
is significantly reliant on hyperparameters such as the k value and the distance metric, which must be 
optimized through experimentation. 
 
4.3.4. Architecture Overview and Working Mechanism 

The KNN implementation for this project entails determining the best value of k (number of 
neighbors) and an appropriate distance measure. Following data normalization, the method predicts 
“cases_new” for a given input by locating the k nearest neighbors in the feature space and calculating 
the weighted or unweighted average of their target values. The working mechanism is summarized as 
follows: features are normalized to ensure that all dimensions contribute equally to distance calculations, 
distances between test points and all training points are calculated, the k nearest neighbors are chosen 
based on the shortest distances, and the predicted value for “cases_new” is calculated as the mean of 
these neighbors’ target values. Hyperparameter optimization, including tuning the value of k, is 
performed using cross-validation to minimize prediction error. 

Finally, KNN was chosen because of its simplicity and interpretability in forecasting new COVID-
19 instances on a daily basis. Its ability to capture local patterns without depending on sophisticated 
mathematical frameworks makes it a strong candidate for datasets with non-linear correlations. While it 
confronts obstacles such as computational expense and scale sensitivity, effective preprocessing and 
hyperparameter optimization can help to alleviate these issues. KNN provides reliable and interpretable 
results for regression tasks such as forecasting "cases_new" by utilizing nearest neighbors. 
 
4.4. Linear Regression 

Linear regression is a fundamental algorithm for machine learning and statistical modeling. It was 
chosen as a baseline model for this problem because it is simple, interpretable, and appropriate for 
regression tasks. The approach assumes a linear connection between the dependent variable (cases_new) 
and the independent variables, making it an appropriate initial step in modeling the data. 
 
4.4.1. Justification  

Linear regression was chosen due to its computing efficiency and interpretability, making it an 
excellent baseline model for this work. It scales well to small and medium-sized datasets, guaranteeing 
quick computation with minimal cost, even when dealing with a substantial number of features. The 
dataset includes both continuous variables, such as cases_active and cases_recovered, and categorical 
variables, such as one-hot-encoded holiday variables. Linear regression may handle such data well if 
categorical variables are appropriately represented. This approach, designed primarily for regression 
issues, aims to forecast a continuous target variable, cases_new, by minimizing the mean squared error 
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(MSE) and determining the best-fitting line. Its simplicity and suitability for the provided data and 
issue type made it an obvious decision. 

 
4.4.2. Strengths 

Linear regression has numerous major advantages that make it an appropriate solution for our task. 
It is easily interpretable since the coefficients immediately indicate the link between each 
characteristic and the target variable. This transparency enables stakeholders to simply grasp how 
the model generates predictions. Furthermore, it is computationally inexpensive, requiring minimal 
resources and training quickly, making it an ideal starting point for exploratory research. Linear 
regression serves as a baseline model, providing a point of comparison for evaluating the 
performance of more sophisticated models. Additionally, the model sheds light on the relevance of 
features, with each coefficient representing the size and direction of the association between a 
characteristic and the target variable. 

 
4.4.3. Weaknesses 

Despite its advantages, Linear Regression has certain drawbacks. One important disadvantage 
is that it may underperform if the characteristics' relationship to the target variable is nonlinear. In 
this instance, more complicated models may be required to reflect the real underlying patterns. 
Furthermore, Linear Regression is susceptible to multicollinearity, in which highly linked features 
might skew the model's coefficient estimations. This makes it difficult to identify each feature's 
genuine contribution. Additionally, the model is sensitive to outliers, which can have a 
disproportionate impact on the results, making it less resilient in cases involving extreme values in 
the data. 

 
4.4.4. Architecture Overview and Working Mechanism 

Linear Regression presupposes a linear connection between the input characteristics and the 
target variable. The model is described by this equation: 

𝑦 =  𝛽0 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ +  𝛽𝑛𝑋𝑛 + ϵ     (1) 
Where: 
y: Predicted value of cases_new 

𝛽0: Intercept of the regression line 

𝛽𝑖: Coefficients for each feature 

ϵ: Residual error (difference between actual and predicted values) 

Cost Function: 𝐽(𝛽) =  ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1
         (2) 

Where: 

𝑦𝑖 : Actual value of cases_new 

𝑦̂𝑖 : Predicted value 
Linear regression fits the model using optimization approaches such as ordinary least squares 

(OLS), which estimates coefficients by minimizing the cost function. The formula for this is: 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦                              (3) 
Where X is the matrix of feature values, and Y is the vector of goal values. The model also 

implies that the residuals (errors) satisfy certain requirements, including independence, constant 
variance (homoscedasticity), and normality. One-hot encoding is used to convert categorical 
information into a numerical representation appropriate for the regression model. Regularized 
Linear Regression techniques, such as Ridge and Lasso, can also be used to address multicollinearity 
and overfitting by adding penalty terms to the cost function to limit the model's complexity. 
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4.5. Random Forest 
Random Forest is a popular ensemble learning approach for regression and classification 

applications. It was chosen for this challenge because it can handle datasets with complicated 
feature interactions and is resistant to overfitting. The approach is particularly well-suited to 
datasets containing both continuous and categorical variables, hence it is a good choice for the 
provided dataset. 
 
4.5.1. Justification  

Random Forest was chosen because of its adaptability and ability to accurately depict complex 
relationships. It is especially well-suited for medium to large datasets, as it uses parallel processing to 
quickly train numerous decision trees while handling high-dimensional feature spaces. The dataset 
includes both continuous variables, such as cases_active and cases_recovered, and categorical variables, 
such as one-hot-encoded state and holiday indicators. 

Random Forest can process various variable types with minimal preprocessing and is capable of 
tolerating missing values during training. Random Forest reduces the Mean Squared Error (MSE) 
across numerous decision trees while performing regression tasks, such as forecasting daily new 
COVID-19 cases (cases_new). Its capacity to simulate nonlinear linkages and variable interactions 
makes it an ideal solution for this situation. 

 
4.5.2. Strengths 

Random Forest has many advantages that make it ideal for this purpose. As an ensemble learning 
technique, it integrates numerous decision trees to provide a more accurate and robust prediction. By 
aggregating predictions from several trees it decreases the possibility of overfitting in a single decision 
tree. The model excels at capturing nonlinear correlations and complicated interactions between 
variables that linear models struggle with. Additionally, Random Forest provides a measure of feature 
relevance, which aids in identifying the most significant characteristics in predicting the target variable. 
Despite being a more sophisticated model, its structure helps to prevent overfitting and ensures that it 
generalizes effectively to new data. 

The model's use of multiple trees also helps improve interpretability, as it ranks features based on 
their importance, offering useful insights into the factors driving predictions. 
 
4.5.3. Weaknesses 

Despite its advantages, Random Forest has certain drawbacks. One of the primary disadvantages is 
that it can become computationally expensive with a large number of trees or very high-dimensional 
data, resulting in longer training durations and increased memory use. The model's complexity can also 
make it more difficult to comprehend than simpler models, particularly when there are a significant 
number of trees. Although Random Forest is resistant to overfitting, it may struggle with unbalanced 
data in which specific classes or ranges of the target variable are underrepresented, resulting in skewed 
predictions. Finally, Random Forest's use of numerous decision trees can be resource-intensive, needing 
more processing power and time than simpler models such as Linear Regression. 
 
4.5.4. Architecture Overview and Working Mechanism 

Random Forest generates several decision trees using bootstrapped subsets of the training data. 
The approach begins by creating numerous random subsets of the training dataset using a technique 
known as bootstrapping. These subsets are used to train specific decision trees. Each tree is constructed 
by recursively splitting nodes according to the characteristic that reduces the variance of the target 
variable (cases_new) within the subset. The splitting criteria aim to limit the variation in anticipated 
values at each node. The trees in the forest are trained individually, and the results of all the trees are 
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combined to provide the final forecast. In regression tasks, the final prediction is the average of the 
predictions from each tree. 

At each split of a tree, random subsets of characteristics are evaluated to identify the appropriate 
split, increasing tree diversity and decreasing overfitting. Once trained, the trees can handle new data 
by averaging the predictions of each individual tree in the forest. The model may also determine feature 
relevance based on how much each feature contributes to reducing variation across the trees. 
Hyperparameters such as n_estimators (the number of trees), max_depth (the maximum depth of 
trees), and min_samples_split (the minimum number of samples required for a split) can be adjusted 
to improve model performance. In addition, out-of-bag (OOB) error estimates can be employed for 
model assessment, allowing the technique to do cross-validation without requiring a separate 
validation set. 
 
4.6. LSTM 

LSTMs are well-suited for sequential data applications, such as forecasting new COVID-19 
cases, since they maintain knowledge of prior time steps over long durations. Unlike classic 
feedforward networks or simple ANNs, LSTMs efficiently manage the vanishing gradient problem, 
allowing them to learn from extended sequences without losing information. 
 
4.6.1. Justification  

This model was chosen for this task because of its extraordinary capacity to model temporal 
sequences and understand long-term dependencies, making it appropriate for time series data such 
as daily COVID-19 cases. LSTMs efficiently handle the vanishing gradient problem, allowing them 
to learn from extended sequences while preserving crucial information. As a result, they are ideal 
for sequential data applications such as forecasting "cases_new." The dataset comprises both 
temporal characteristics, like "date," and continuous variables such as "cases_active" and 
"cases_recovered." These inputs provide the LSTM with the necessary temporal context to identify 
patterns and trends in the data. 
 
4.6.2. Strengths 

One of the main advantages of LSTMs is their capacity to capture temporal dependencies. Their 
memory process, aided by cell states and gates (input, forget, and output), guarantees that they store 
and update pertinent information throughout time. This enables them to concentrate on crucial 
historical data that contributes to reliable projections. Furthermore, LSTMs are noise-resistant and 
generalize well when regularization techniques such as dropout are used. 
 
4.6.3. Weaknesses 

Despite these advantages, LSTMs have significant drawbacks. Training LSTMs is 
computationally costly, particularly for large datasets, due to their recurrent nature and reliance on 
the backpropagation through time (BPTT) technique. LSTMs' performance is also highly sensitive 
to hyperparameter adjustments, and incorrect selections may lead to unsatisfactory results. Another 
disadvantage is the difficulty in understanding the model, as LSTMs sometimes operate as "black 
boxes" with limited transparency into their decision-making processes, even when internal states 
are displayed. 
 
4.6.4. Architecture Overview and Working Mechanism 

An LSTM's architecture consists of several essential components. The input gate, forget gate, 
and output gate are the three gates present in each of the memory cells that comprise the LSTM 
layer. The forget gate determines which information from the current time step should be discarded, 
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while the input gate decides which information should be stored in the memory cell. The output gate 
controls which data is transmitted to the next time step or layer. This gating mechanism allows the 
LSTM to filter out noise and retain relevant information over time, enabling the model to focus on the 
most significant temporal patterns. 

Input sequences of preset lengths, such as 7-time steps, are formed by the input layer, which 
receives lagged variables and designed characteristics. At each time step, the LSTM layer uses memory 
cells with gating mechanisms to choose which information should be output, forgotten, or retained. The 
input gate chooses what fresh information to add, the output gate controls the information sent to the 
following layer, and the forget gate eliminates unnecessary information. To lessen overfitting, a dropout 
layer is used to randomly remove a portion of connections during training. The final prediction 
(cases_new) for the specified sequence is generated by the dense output layer. The Adam optimizer, 
which adaptively modifies learning rates for effective training, is used to optimize by minimizing a loss 
function, such as mean squared error (MSE). 
 
4.7. XGBoost 

This algorithm was included in this study due to its ability to handle the amount of data we have 
and to determine the interactions between variables. It is, however, quite effective at making 
predictions, especially in the case of a regression task, since it can make predictions through a boosting 
process. Further, we explain why it is appropriate to use XGBoost, what the advantages of using 
XGBoost are, and how XGBoost can be implemented. In addition, its architecture and working 
mechanism are also described. 
 
4.7.1. Justification 

Since we are dealing with a dataset that contains both continuous and categorical features, such as 
data that is one-hot-encoded, XGBoost is a suitable candidate model for our dataset due to its ability to 
handle missing values and split decisions. Moreover, XGBoost is designed for medium to large datasets 
and provides high scalability and speed using its histogram-based algorithms and parallel computation. 

The primary task is to forecast the number of new COVID-19 cases (cases_new) on a daily basis, 
which is a regression problem. Since XGBoost is capable of minimizing loss functions such as Root 
Mean Squared Error (RMSE) to the best extent possible, it is very suitable for this task. This makes it 
suitable for capturing trends, dependencies, and patterns in the data to make accurate predictions. 
 
4.7.2. Strengths 

XGBoost excels in several areas, making it a powerful machine learning model. A major strength of 
this model is that it can handle missing values and integrate them into the split optimization process 
during training. Additionally, XGBoost includes both L1 (Lasso) and L2 (Ridge) regularization to 
prevent overfitting and improve the model’s ability to generalize. The model also provides tools for 
evaluating feature importance, which helps in selecting important predictors and improving the 
interpretability of the model. Furthermore, XGBoost is a powerful tool for handling lagged features and 
thus is able to capture trends and temporal dependencies in time series data. 
 
4.7.3. Weaknesses 

Despite all this, XGBoost has some limitations. The training process of large datasets with 
extensive hyperparameter tuning can be resource-demanding. Also, the model is not easy to interpret 
because of the ensemble nature of XGBoost, although feature importance can be evaluated. In addition, 
if not properly regulated and tuned for the best parameters, there is a possibility of overfitting, which is 
not good for the performance of a model. 
4.7.4. Architecture Overview and Working Mechanism 
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XGBoost is a systematic approach to building predictive models. First of all, for the purpose of 
this study, lag_1 to lag_7 are defined as the lag variables of “cases_new” to account for the temporal 
characteristics. The features are a mix of numerical variables, categorical variables such as “holiday,” 
and derived variables like “is_weekend.” The boosting process begins with an initial prediction, which is 
the mean of the target variable. Subsequent decision trees model the residuals, iteratively improving 
predictions by focusing on correcting errors made by previous trees. 

The splitting of the tree is done by a greedy algorithm that selects the node split that reduces 
the loss function the most, such as RMSE for regression. It then chooses the split with the highest 
gain, and from this split, it determines the best feature and threshold to split on. XGBoost 
minimizes a regularized objective function that includes a term for the loss function, such as RMSE, 
and a term that describes model complexity to improve generalization. The techniques used for 
regularization include L1 regularization, which results in sparsity, with some features having their 
weights set to prevent zero, thereby reducing overfitting. 

Optimization and regularization of L2 parameters involve adjusting hyperparameters such as 
learning rate, maximum depth, subsample rate, and “colsample” in trees to achieve the optimal 
model complexity. Early stopping rounds are used to halt training when improvement on the 
validation set ceases, in order to obtain the best performance. The important features that 
contribute to the model’s ability to make predictions are, for instance, “cases_recovered” and 
“cases_cluster,” which help in understanding how the model works. 

In summary, XGBoost was selected as it is robust in handling large datasets, mixed data types, 
and temporal dependencies in order to predict daily new COVID-19 cases. It has both strengths and 
weaknesses; the strengths include its ability to handle missing values, its regularization term, and 
its capacity to rank features by their importance. However, it is computationally expensive and can 
overfit if not properly tuned. It is designed to make interpretable and accurate predictions through 
its architecture of iterative boosting, regularized optimization, and parameter tuning. In this case, 
XGBoost is a suitable approach for a regression task. 
 

5. Evaluation Indices 
In the evaluation process, all the models used four metrics to assess the performance of the 

regression model predicting new COVID-19 cases. 
Firstly, Root Mean Squared Error (RMSE) was used to determine the performance of the 

regression model and interpret its performance. This intuitive measure makes it easier to apply the 
model in real life, as it focuses more on significant deviations that the model should minimize during 
the optimization process. Its formula is expressed as: 

RSME = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2               (4) 

where yi represents the actual values and 𝑦̂𝑖 denotes the predicted values. RMSE is particularly useful in 
regression tasks for its ability to guide the model towards better generalization. 

In addition to that, Mean Absolute Error (MAE) was also used to measure the average size of 
errors without concerning itself with direction. Unlike the Mean Squared Error (MSE) and the 
Root Mean Squared Error (RMSE), the MAE treats all errors with the same importance and is 
therefore a very good metric to use when there are outliers or the error distribution is not uniform. 
MAE is calculated as: 

MAE = 
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1                 (5) 

 
The third metric, Mean Absolute Percentage Error (MAPE), was employed to assess the 

average error as a percentage of the actual values. This metric is particularly useful for 
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understanding prediction accuracy relative to the scale of the target variable, making it easier to 
interpret across datasets with varying magnitudes. MAPE is calculated as: 

𝑀𝐴𝑃𝐸 =  
100

𝑛
|

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|               (6) 

Lastly, R-squared (R²) was also used to assess how much of the variance in the target variable is 
explained by the variability model. In values of the data, R² close to 1 indicates that the model has 
captured most of the data variability, while values close to 0 indicate that the model does not explain the 
data variability well. 

These metrics were chosen to provide a comprehensive view of the model’s performance. The 
RMSE and MAE offer insights into the accuracy of the predictions, while R² measures how effectively 
the model explains data variability. Therefore, these metrics are useful in assessing whether the model is 
suitable for the regression task at hand. 

 

6. Model Development 
6.1. Training and Testing Process 

In order to forecast COVID-19 cases, five different models will be employed. A standardized 
training and testing process was followed for each of the models. The initial step was to divide the 
dataset into 80% for training and 20% for testing. The training data was used to establish patterns, 
while the testing data was not exposed to the model during training, in order to assess its performance 
on new data. Using an 80:20 split is generally a good approach to ensure sufficient data for training 
while reserving enough data for evaluating the model's performance. Moving on to the evaluation 
process, all models were evaluated on the testing set using performance metrics such as RMSE, MAE, 
R2, and MAPE. This comparison of results across models allows for a comprehensive assessment in 
determining the most effective technique. 

 
6.2. Software and Tools 

All of the models were written in Python because it is a language that has many libraries for the 
tasks of machine learning, data preprocessing, and deep learning. The following programming 
languages and libraries were leveraged in the implementation: 

 
6.3. Programming Language 

• Python: The primary language for data preprocessing, modeling, and evaluation. 
 

6.4. General Libraries 

• Pandas: For data manipulation, including feature creation and one-hot encoding of categorical 
variables. 

• NumPy: For numerical work such as logarithms and reversing the scaling of outputs. • 
Matplotlib: For data visualization, including heatmaps of correlations, learning curves, and 
residuals. 

• Matplotlib: For visualization of data, including heatmaps of correlations, learning curves, and 
residuals. 

• Scikit-learn: For splitting the dataset, scaling the features, and calculating evaluation metrics such 
as RMSE, MAE, R2, and MAPE. 

 
6.5. Model-Specific Libraries  

• TensorFlow/Keras (for ANN and CNN): TensorFlow is a popular open-source library that can be 
used for neural networks. 
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• XGBoost: for IT building, is trained as a library well for gradient evaluation, a boosted decision 
tree, and can be used for hyper-parameter tuning and performance tuning of the model. 

• Random Forest: This is where the module in Scikit-learn is ensemble with features like 
RandomForestRegressor for model training. 

 
6.6. Artificial Neural Networks (ANNs) 
6.6.1. Hyperparameter Tuning 

The hyperparameters of the artificial neural network (ANN) were not optimized using a 
systematic approach; instead, they were set heuristically. The activation function used in the 
network architecture consisted of two nonlinear hidden layers. The network was configured with 64 
neurons in one layer and 32 neurons in the other, with a batch size of 32. The ReLU activation 
function was chosen, which provides a reasonable balance between computational resources and 
model training time. The model was trained for 20 epochs, and early stopping was implemented 
based on the validation loss trend. The Adam optimizer was used due to its ability to tune the 
learning rate during training, thereby reducing the need for adjusting hyperparameters. Other 
automated search techniques, like Grid Search or Random Search, were not employed due to the 
simplicity of the architecture; instead, hyperparameters were fine-tuned based on validation 
performance. 
 
6.6.2. Settings and Configurations 

The number of features in the input layer was made to be equal to the number of features in the 
training data. Three hidden layers of fully connected layers with 128, 64, and 32 neurons were 
employed, and the ReLU activation function was used in all of them. There was no activation 
function in the output layer, as it is for a regression task, and it has a single neuron. 
 
6.7. Convolutional Neural Networks (CNN) 
6.7.1. Hyperparameter Tuning 

The hyperparameters, such as the number of filters in the CNN, the size of filters, the batch size, 
the learning rate, and the number of epochs, play a significant role in the performance of the CNN 
model. The key parameters of this model are explained as follows. The 1D Convolutional Neural 
Network has 64 filters in the first convolutional layer. The number of filters is a parameter that 
determines the number of feature maps produced by the convolution operation and is usually 
increased to identify more complex features at the cost of increased computational complexity. The 
first convolutional layer has a common filter size of 3x3. This is to limit the window through which 
the convolution operation is applied to the input. 

The batch size in this algorithm is set to 32, as it ensures that there is enough memory and the 
model converges well. Small batch sizes have high gradient noise, while large batch sizes take a 
long time to train. The learning rate of a model describes how much the model adjusts its weights 
during the training process. The Adam optimizer with an initial learning rate of 0.001 was used. 
When the model is trained on a CNN, it is trained for 20 epochs, which helps in preventing 
overfitting. The number of look-back historical window data, which should be 10, is employed. This 
is considered for hyperparameter tuning to make accurate predictions. Adjustments can be made 
based on the results. 
 
6.7.2. Settings and Configurations 

The data of each variable was reshaped into a 3D format to be compatible with the Conv1D 
layer of the CNN. The input layer of the CNN matched the dimensions of the image data. Next, two 
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3x3 convolutional layers were employed, each followed by 2x2 max pooling. The convolutional layers 
were then followed by a fully connected dense layer with 64 neurons. The output layer contained a 
single neuron, suitable for regression tasks, with no activation function. 
K-Nearest Neighbours (KNN) 

 
6.7.3. Hyperparameter Tuning 

The K-Nearest Neighbours (KNN) algorithm depends on the proper selection of hyperparameters to 
achieve the optimal trade-off between the model’s generalization capability and its ability to fit the 
training data. The two most important hyperparameters are the value of k (the number of neighbors 
considered) and the distance metric used, such as Euclidean or Manhattan distance. The value of k 
determines how many nearest neighbors to consider for classification, and the distance metric defines 
how to measure the similarity between data points. These hyperparameters should be tuned to minimize 
prediction errors and avoid overfitting, often through grid search or other fitting methods. 

 
6.7.4. Settings and Configurations 

The KNN model is a simple model that predicts the target variable as the mean or weighted mean of 
the k nearest neighbors. To achieve optimal performance, the dataset was normalized before applying 
the KNN algorithm because KNN is sensitive to the scale of the features. The optimal number of 
neighbors, k, was also tested across a range of values; smaller values are suitable for capturing local 
patterns, while larger values help reduce noise. Additionally, different distance metrics were evaluated 
to identify the most suitable for the characteristics of the dataset. 

 
6.8. Linear Regression 
6.8.1. Hyperparameter Tuning 

Linear regression models are straightforward and require minimal tuning. However, some level of 
regularization was employed to improve the models’ ability to generalize. Both Ridge (L2) and Lasso 
(L1) regularization were applied to prevent overfitting by penalizing large coefficients. The amount of 
penalty was controlled by the alpha parameter. 
 
6.8.2. Settings and Configurations 

The linear regression model assumes that the input features and the target variable are linearly 
related. Both Ridge and Lasso regularization techniques were employed, and the alpha parameter was 
adjusted to achieve a good fit and sufficient generality of the model. 
 
6.9. Random Forest 
6.9.1. Hyperparameter Tuning 

To ensure the Random Forest model had sufficient capacity, the number of trees (n_estimators) was 
set to 100. The maximum depth (max_depth) of each decision tree was restricted to 10, while the 
minimum samples required to split an internal node (min_samples_split) was set to 2. Additionally, the 
maximum number of features considered for each split (max_features) was set to the square root of the 
total number of features, a common practice that helps prevent overfitting and reduces computational 
complexity. 
 
6.9.2. Settings and Configurations 

The Random Forest was set with 100 trees in the ensemble. The maximum depth of each tree was 
limited to 10, and the minimum samples required to split an internal node was set to 2. The 
max_features parameter was set to the square root of the total number of features to control the 
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complexity of the individual trees. A random state of 42 was set to ensure reproducibility across 
different runs. 

 
6.10. XGBoost 
6.10.1. Hyperparameter Tuning 

XGBoost is a highly customizable algorithm, and hyperparameters were fine-tuned for optimal 
performance. The learning rate (eta) was set to 0.1, a standard value used to control the step size in 
gradient boosting. The maximum depth (max_depth) was set to 6 to control the complexity of the 
individual trees and prevent overfitting. The model was set to run for 100 boosting rounds 
(n_estimators). Data during each boosting round was subsampled at a ratio of 0.8 to help reduce 
overfitting. The "colsample_bytree" parameter was also set to 0.8. 

 
6.10.2. Settings and Configurations 

The gradient descent step size was adjusted using the XGBoost model with a learning rate of 
0.1. To minimize model complexity and lower the chance of overfitting, the maximum depth of the 
trees (max_depth) was set at 6. 100 was chosen as the number of boosting rounds (n_estimators). 
To increase model resilience and avoid overfitting, subsampling (subsample) and feature sampling 
(colsample_bytree) were used at ratios of 0.8. 

Early stopping was activated with early_stopping_rounds=10, which meant that after ten 
rounds in which no increase in validation performance was observed, the training process would 
end. Up to 100 boosting cycles were used to train the model; however, if validation performance 
stopped improving, training would end sooner. 

 
6.11. LSTM 
6.11.1. Hyperparameter Tuning 

LSTM is a fully customizable model, with hyperparameters tailored for optimal performance. 
The learning rate was adjusted to 0.001 to achieve a consistent balance between computational 
efficiency and model performance. The batch size was set to 32 to limit the quantity of data handled 
at each training stage. The number of LSTM units was set to 100, allowing the model to accurately 
capture temporal patterns. A dropout rate of 0.3 was used to prevent overfitting and ensure that the 
model can generalize effectively to complex patterns. Early stopping was implemented to cease 
training if validation performance did not improve within a predetermined number of epochs, 
ensuring efficient use of training resources. 

 
6.11.2. Settings and Configurations 

The learning rate was set to 0.001 for the LSTM model to achieve a good balance between 
efficient convergence and stable training performance. Furthermore, the batch size was optimized 
for computational efficiency, with a setting of 32. The LSTM layer had 100 units to learn the 
temporal dependencies in the data effectively. To prevent overfitting, a dropout rate of 0.3 was 
utilized to ensure that it generalizes well. Early stopping is implemented when the validation loss 
does not decrease over a preset number of epochs so that the training does not become overly 
complex or begin overfitting. 
 
6.12. XGBoost 
6.12.1. Hyperparameter Tuning 

Several important hyperparameters were tuned to ensure that the model neither overfits nor 
underfits. The following settings were used for all models: The learning rate was set to 0.1 to 
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control the step size during training. To prevent overfitting, the maximum depth was limited to 6, 
helping to select an optimal model complexity. The subsample parameter was set to 0.8, meaning 
that 80% of the data was used for training each tree, improving the generality of the ensemble 
model. Similarly, the colsample_bytree parameter was set to 0.8, enhancing the model's robustness. 
Early stopping was incorporated to reduce overfitting and ensure efficient training, with the process 
terminating if the validation RMSE did not improve for 10 consecutive rounds. 

Manual hyperparameter tuning was employed by iterating over different values based on domain 
knowledge. However, for further refinement, techniques such as Grid Search or Random Search could 
be explored to automate and optimize the parameter selection process. 

 
6.12.2. Settings and Configurations 

The XGBoost model was configured with several key parameters. The objective was set to 
'reg:squarederror' to specify that the task is a regression problem using squared error as the loss 
function. Root Mean Squared Error (RMSE) was selected as the evaluation metric to assess model 
performance. Key hyperparameters were chosen to balance model complexity and performance, 
including learning_rate=0.1, colsample_bytree=0.8, subsample=0.8, and max_depth=6. 

Early stopping was enabled with early_stopping_rounds=10, allowing training to halt if no 
improvement was observed in validation performance for 10 consecutive rounds. The model was trained 
for up to 100 boosting rounds, with training stopping early if no further improvement was seen on the 
validation set. 

 
6.12.3. Data Handling 

To include temporal dependencies in the model, lag features (lag_1 to lag_7) were derived to 
incorporate the previous values of the target variable, thereby improving prediction accuracy. Any row 
containing missing values (which were introduced by the lagging process) was dropped to ensure 
dataset consistency. 
 

7. Results and Discussion 
The following results and discussion under A and B will present the performance of each model on 

both the training and testing datasets, primarily focusing on the comparison of R-squared values. 
Additionally, under C. Comparisons of Models, the overall performance of the models, and their respective 
subsets will be analyzed, considering all four evaluation metrics, providing a comprehensive assessment 
of each model's effectiveness. 
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7.1. Training Sets  
 
Table 5. 
 Top 5 Iterations for Training Sets based on Average R2 Values. 

Parameters Training 

Remove quarter, is_weekend, 
deaths_vax, day, holiday, deaths new 
dod, deaths unvax, deaths new, day of 
week, year, deaths pvax, cases import, 
deaths boost 

Models RMSE R2 MAE MAPE 

ANN 129.28 0.9995 73.83 18.95% 

CNN 762.15 0.9845 387.36 24.05% 

KNN 774.18 0.9839 329.83 17.57% 

Linear 
Regression 

3.95 0.9967 2.36 2.64% 

LSTM 1074.75 0.9691 602.01 113.21% 

Random Forest 178.84 0.9989 56.31 1.77% 

XGBoost 71.80 0.9999 47.27 22.42% 

Average 427.85 0.9904 214.14 28.66% 

Remove quarter, is_weekend, 
deaths_vax, day, holiday, 
deaths_new_dod 

Models RMSE R2 MAE MAPE 

ANN 529.04 0.9912 277.13 27.59% 

CNN 720.79 0.9861 363.73 22.70% 

KNN 774.19 0.9839 329.88 17.43% 

Linear 
Regression 

7.89 0.9983 3.84 1.73% 

LSTM 1,016.50 0.9724 590.27 215.62% 

Random Forest 198.76 0.9987 64.36 1.84% 

XGBoost 62.64 0.9999 41.55 19.27% 

Average 472.83 0.9901 238.68 43.74% 

Remove quarter, is_weekend, 
deaths_vax, day, holiday 

Models RMSE R2 MAE MAPE 

ANN 131.66 0.9995 76.35 20.36% 

CNN 739.03 0.9854 373.37 23.26% 

KNN 774.19 0.9839 329.87 17.42% 

Linear 
Regression 

2.27 0.9889 1.30 1.46% 

LSTM 1,070.02 0.9694 722.31 303.25% 

Random Forest 201.16 0.9987 64.51 1.96% 

XGBoost 66.33 0.9999 44.84 21.31% 

Average 426.38 0.9894 230.37 55.57% 

Remove quarter, is_weekend, 
deaths_fvax 

Models RMSE R2 MAE MAPE 

ANN 210.98 0.9986 113.72 20.73% 

CNN 730.01 0.9858 370.04 23.92% 

KNN 774.19 0.9839 329.87 17.43% 
Linear 
Regression 

1.24 0.9900 7.67 9.34% 

LSTM 1,135.90 0.9655 680.11 431.54% 

Random Forest 193.96 0.9988 62.35 1.82% 

XGBoost 66.15 0.9999 44.87 18.13% 

Average 444.63 0.9889 229.81 74.70% 

Remove quarter, is_weekend, 
deaths_vax, day, holiday, deaths new 
dod, deaths unvax, deaths new, day of 
week, year, deaths pvax, cases import, 
deaths boost, cases cluster 

Models RMSE R2 MAE MAPE 

ANN 403.59 0.9949 229.77 65.38% 

CNN 755.57 0.9847 379.42 21.80% 

KNN 776.17 0.9838 332.09 17.94% 

Linear 
Regression 

3.95 0.9982 2.36 2.65% 

LSTM 1,204.90 0.9612 672.85 41.48% 

Random Forest 177.06 0.9990 55.89 1.76% 
XGBoost 76.51 0.9998 49.98 23.75% 

Average 485.39 0.9888 246.05 24.97% 
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According to Table 5, the focus is mainly on the average R2 metric for evaluating each model's 
performance and selecting the top-performing models based on their average R2 in each iteration, 
also known as the coefficient of determination. It helps measure how well each model explains the 
variance in the dependent variable. It is chosen because it provides a clear indication of the model’s 
ability to predict the outcome accurately. A higher R2 value indicates better model performance, 
with a value of 1 signifying perfect prediction, and values closer to 0 indicating that the model does not 
explain the variability in the data well. 

As demonstrated in Table 1, the highest average R2 value is 0.9904, observed in the subset where 
parameters such as “quarter, is_weekend, deaths_vax, day, holiday, deaths new dod, deaths unvax, 
deaths new, day of week, year, deaths pvax, cases import, deaths boost” are removed. This indicates that 
the removal of certain irrelevant or noisy features enables the models to better fit the training data and 
explain the variance in the target variable. In this case, XGBoost provides the highest R2 value of 0.999, 
followed closely by ANN with 0.9995. Both models demonstrate that these models can achieve near-
perfect fits when these particular features are excluded. 

By analyzing the results, it is proven that XGBoost consistently shows the best R2 performance 
across all iterations, with each R2 value approaching 1.0, indicating its superior ability to fit the data 
compared to other models. This is mainly due to its ability to capture complicated patterns and 
relationships in the dataset through boosting. Next, ANNs perform outstandingly well, especially in 
iterations with fewer parameters, with R2 values approaching an average of 0.9995. The ability to model 
and understand non-linear relationships contributes to its strong fit. Based on the table, XGBoost, 
ANNs, and Random Forest perform well in predicting new cases. The Linear Regression model 
performs well when fewer features are present, but is weaker compared to more complex models like 
ANN and XGBoost. 

 
7.2. Testing Set 
 
Table 6. 
Top 5 Iterations for Testing Sets based on Average R2 Values. 

Parameters Testing 

Remove quarter, is_weekend, 
deaths_vax, day, holiday, 
deaths_new_dod, deaths_unvax, 
deaths_new 

Models RMSE R2 MAE MAPE 

ANN 221.41 0.9985 103.95 9.09% 

CNN 136.54 0.9611 60.01 22.63% 

KNN 248.12 0.9135 165.12 123.85% 

Linear 
Regression 

2.72 0.9782 1.69 8.69% 

Random Forest 439.80 0.9939 149.80 3.89% 

LSTM 268.19 0.8972 171.17 96.81% 

XGBoost 94.51 0.9875 38.05397 1468.44% 

Average 201.61 0.9614 98.54 247.63% 

Remove quarter, is_weekend, 
deaths_vax, day, holiday, 
deaths_new_dod 

Models RMSE R2 MAE MAPE 

ANN 514.40 0.9917 281.10 24.77% 

CNN 127.06 0.9664 57.61 21.71% 

KNN 247.78 0.9134 164.77 123.83% 

Linear 
Regression 

7.87 0.9965 3.91 2.01% 

Random Forest 446.42 0.9937 155.20 4.04% 

LSTM 295.88 0.8748 184.32 87.74% 

XGBoost 74.33 0.9922 36.72553 592.06% 

Average 244.82 0.9612 126.23 122.31% 
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Remove quarter, is_weekend, 
deaths_vax, day, holiday, 
deaths_new_dod, deaths_unvax 

Models RMSE R2 MAE MAPE 

ANN 590.77 0.9891 311.76 27.25% 

CNN 128.79 0.9654 59.88 22.05% 

KNN 247.78 0.9134 164.80 123.84% 

Linear 
Regression 

1.91 0.9892 1.15 9.02% 

Random Forest 435.27 0.9940 148.84 3.93% 

LSTM 315.07 0.8581 187.24 100.21% 

XGBoost 91.22 0.9883 38.58665 1458.61% 

Average 258.69 0.9568 130.32 249.27% 

ALL 

Models RMSE R2 MAE MAPE 

ANN 510.04 0.9918 235.47 17.89% 

CNN 119.81 0.9701 58.62 21.81% 

KNN 247.78 0.9134 164.77 123.83% 

Linear 
Regression 

6.23 0.9954 3.49 3.86% 

Random Forest 449.36 0.9936 152.25 4.00% 

LSTM 342.75 0.8320 171.00 64.02% 

XGBoost 98.97 0.9860 39.08 15.13% 

Average 253.56 0.9546 117.81 35.79% 

Remove quarter and is_weekend 

Models RMSE R2 MAE MAPE 

ANN 147.56 0.9993 81.11 7.29% 

CNN 126.85 0.9665 59.41 21.66% 

KNN 154.65 0.9234 154.21 110.92% 

Linear 
Regression 

6.23 0.9932 3.49 3.86% 

Random Forest 453.35 0.9934 153.25 4.01% 

LSTM 360.27 0.8144 239.99 147.83% 

XGBoost 98.97 0.9863 39.08266 15.18% 

Average 192.56 0.9538 104.36 44.39% 

 
Table 6 above presents a comparison of model performance for different subsets of features 

across various models used, including ANNs, CNN, KNN, Linear Regression, Random Forest, 
LSTM, and XGBoost during the testing phase. For each iteration, the models are evaluated based 
on four metrics: Root Mean Squared Error (RMSE), Coefficient of Determination (R2), Mean 
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This table aims to evaluate 
and compare the performance based on their ability to explain the variance in the target variable, 
which is most effectively captured by the R2 value. 

As shown in Table 2, the highest average R2 value is obtained when parameters such as 
“quarter, is_weekend, deaths_vax, day, holiday, deaths_new_dod, deaths_unvax, deaths_new” are 
removed from the dataset, with an average R2 of 0.9614. This indicates that removing these specific 
features enhances the models' ability to capture the underlying patterns in the data and explain the 
variability in the target variable. By eliminating these features, the performance of each model can 
be improved due to a greater focus on more relevant features. Furthermore, it is evident that models 
like ANN and Random Forest consistently demonstrate stronger performance, with ANN in 
particular achieving a high R2 score across most subsets, indicating its capacity to capture more 
complex nonlinear relationships in the data. 

Despite that, Linear Regression also performs well in predicting the COVID-19 cases, especially 
when fewer features are used, indicating its effectiveness in simpler linear relationships. CNN, KNN, 
and LSTM models do show lower average R2 scores when compared with other models, proving 
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that they are more sensitive to irrelevant features in the data. Next, performance metrics like RMSE, 
MAE, and MAPE are useful in understanding the error magnitude and percentage error in the testing 
phase, but are least important to R2 in terms of identifying the model that best explains the variance in 
the target variable. For instance, although CNN produces lower RMSE values compared to ANN in 
certain subsets, its lower R2 indicates that it is not as effective in capturing the overall patterns in the 
data. 

The reason for focusing on R2 instead of other performance metrics like RMSE, MAE, and MAPE is 
due to the fact that R2 directly evaluates the model’s explanatory power. This feature is particularly 
useful in this case, where the goal is to understand the relationship between input features and the 
target variable, which is cases_new. Besides, the R2 metric has been prioritized as it directly reflects the 
degree of effectiveness of each model in fitting the data, making it the most appropriate measure for 
assessing the predictive capability of the models. 

To sum up, ANN acts as the most reliable and effective model in predicting COVID-19 cases, 
presenting an exceptional performance in both the training and testing processes. With a near-perfect 
R2 value of 0.9995 in the training set and consistently high scores in the testing sets, ANN has proven 
its ability to capture the sophisticated nonlinear relationships in the dataset. Additionally, it has 
demonstrated its reliability in accurately predicting COVID-19 cases while maintaining strong 
generalization capabilities. 

7.3. Comparison of Models 
 

 
Figure 23. 
 Comparison of RMSE Across Models. 
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                         Figure 24. 
                           Comparison of R2 Across Models. 
 

 
                      Figure 25. 
                       Comparison of MAE Across Models. 
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                       Figure 26. 
                        Comparison of MAPE Across Models. 

 
Below is a detailed breakdown and comparison of how each model performed across the different 

subsets based on RMSE, R², MAE, and MAPE metrics, also shown in Figure 18, Figure 19, Figure 20, 
and Figure 21. These metrics reflect the accuracy, fit, and generalization of each model. 
Conditioned Subset 1: Remove quarter, is_weekend, deaths_fvax, day, holiday, deaths_new_dod, 
deaths_unvax, deaths_new. 

• Best Model: Linear Regression 

• RMSE: 2.72 (lowest) 

• R²: 0.9782 (strong fit) 

• MAE: 1.69 (lowest) 

• MAPE: 8.69% (very low) 

• Other Observations: 

• XGBoost had good performance with low RMSE (94.51) but extremely high MAPE (1468.44%), 
indicating instability in predictions for some cases. 

• ANN and CNN showed moderate performance, with ANN having a lower MAPE (9.09%) but a 
higher RMSE compared to CNN. 

 
Conditioned Subset 2: Remove quarter, is_weekend, deaths_fvax, day, holiday, deaths_new_dod 

• Best Model: Linear Regression 

• RMSE: 7.87 (lowest) 

• R²: 0.9965 (best fit) 

• MAE: 3.91 (lowest) 

• MAPE: 2.01% (very low) 

• Other Observations: 

• XGBoost had the second-lowest RMSE (74.33) but again suffered from high MAPE (592.06%). 

• CNN had stable and consistent results (RMSE: 127.06, MAPE: 21.71%). 
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Conditioned Subset 3: Remove quarter, is_weekend, deaths_fvax, day, holiday, deaths_new_dod, 
deaths_unvax. 

• Best Model: Linear Regression 

• RMSE: 1.91 (lowest) 

• R²: 0.9892 (excellent fit) 

• MAE: 1.15 (lowest) 

• MAPE: 9.02% (low) 

• Other Observations: 

• XGBoost continued its trend of low RMSE (91.22) but had a very high MAPE (1458.61%), 
making it unreliable. 

• Random Forest performed decently with RMSE (435.27) but had higher MAE and MAPE 
compared to the best model. 

Conditioned Subset 4: ALL Parameters 

• Best Model: Linear Regression 

• RMSE: 6.23 (lowest) 

• R²: 0.9954 (best fit) 

• MAE: 3.49 (lowest) 

• MAPE: 3.86% (very low) 

• Other Observations: 

• CNN showed the second-best performance with an RMSE of 119.81 and a MAPE of 21.81%, 
maintaining consistency. 

• ANN showed high RMSE (510.04), indicating weaker performance on this subset. 
 
Conditioned Subset 5: Remove quarter and is_weekend 

• Best Model: Linear Regression 

• RMSE: 6.23 (lowest) 

• R²: 0.9932 (strong fit) 

• MAE: 3.49 (lowest) 

• MAPE: 3.86% (very low) 

• Other Observations: 

• ANN showed competitive performance (RMSE: 147.56, MAPE: 7.29%) and is notable for being 
stable across subsets. 

• XGBoost showed good RMSE (98.97) but again suffered from high MAPE in specific cases. 
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Table 6. 
Comparison of Models. 

Model Strengths Weaknesses 
Linear Regression Best across all subsets with the lowest RMSE, 

MAE, and MAPE 
Performance may decline in more complex datasets 
or nonlinear cases. 

XGBoost Excellent RMSE and R² in most subsets An extremely high MAPE indicates instability in 
predictions. 

ANN Good R², low MAPE in some subsets, and stable 
performance 

RMSE is generally higher than other models. 

CNN Consistent RMSE and MAPE across subsets Struggles with very low MAPE compared to 
simpler models. 

Random Forest High R² and moderate RMSE Higher MAE and MAPE in comparison to Linear 
Regression. 

KNN Weakest performance overall High RMSE, MAE, and MAPE across all subsets. 
LSTM Moderate RMSE but unstable MAPE across 

subsets 
Struggles with generalization and precision. 

 
In the subset with all parameters removed (minimal features), linear regression emerged as the best-

performing model, consistently outperforming all others across key metrics such as RMSE, MAE, and 
MAPE. While ANN and CNN showed reasonable performance, XGBoost struggled significantly with 
MAPE, highlighting its instability when features were limited. 

For the subset with all parameters included (full features), Linear Regression was again the clear 
winner, achieving the lowest RMSE, MAE, and MAPE. CNN demonstrated consistent results across 
metrics but was not as competitive as Linear Regression. The inclusion of all features appeared to 
benefit most models, showcasing the importance of comprehensive data in enhancing predictive 
accuracy. 

When a few parameters were removed (quarter and weekend), the outcomes were quite similar to 
those of the full-feature subset. The model still performed well with most of the features, as this subset 
also showed high accuracy. Other models, such as ANN and CNN, did a reasonable job but did not 
outperform Linear Regression in terms of accuracy. 

In conclusion, Linear Regression was the best model overall in all subsets because it had low 
RMSE, MAE, and MAPE. XGBoost and ANN are promising, but they are unstable in MAPE and are 
not as reliable in some situations. It is clear that more features improve performance for all models, 
while the minimal feature subset shows that Linear Regression is simple and robust, with high accuracy 
even with fewer parameters. 

 
7.4. Parameter Analysis 
7.4.1. Artificial Neural Network (ANNs)  

The importance of key features and parameters in ANNs cannot be overemphasized, as they 
determine the overall performance of the model. This analysis provides an in-depth insight into how the 
relevance of features and hyperparameter settings work together to achieve optimal results. 

The accuracy of an ANN is greatly dependent on the quality and relevance of the input features. 
Such features include deaths_new, cases_active, and deaths_unvax because they are in direct relation to 
the trends of mortality and active cases, which the model is trying to predict (cases_new). Temporal 
variables like month, day, and is_weekend capture seasonal and behavioral trends and hence provide 
important information to the model. On the other hand, poor or superfluous features increase noise, 
which negatively affects accuracy. Low-variance or weakly related features to the target variable are not 
useful, while multicollinearity (high correlations between features) distorts the model’s ability to 
identify the importance of individual features, resulting in poor learning. 
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The effectiveness of the ANN is also determined by its architecture, and some features are 
critical when designing the network. The most important variables are the number of hidden layers 
and the number of neurons in each layer because they define what complex relationships the model 
can learn. Increasing these in a free and unregulated model will improve the capacity of the model, 
but also the risk of overfitting. The ReLU activation function was chosen for hidden layers to deal 
with non-linear relationships, and a linear activation function was used in the output layer, as it is a 
regression problem. Also, the learning rate was adjusted (for example, 0.001) to achieve a good 
trade-off between the rate of convergence and the avoidance of oscillations in the search for the 
optimum. 

 

 
                 Figure 27. 
                  ANN Training & Validation over Epochs. 
 

7.4.2. Convolution Neural Network (CNN) 
The filters in a Conv1D layer represent how many different feature maps this layer will learn 

from the input data. The filters are mainly used for extracting features such as edges and shapes 
from the current time-series data. The more filters used in this model, the more efficient the model 
becomes at capturing complex and varied features, and hence learns to identify detailed patterns in 
the data. However, with an increase in the number of filters, the number of parameters in the model 
also increases, and if the dataset is not sufficient to support the complexity, it may result in 
overfitting. Therefore, it is significant to use an appropriate number of filters to extract relevant 
patterns without impairing the model’s ability to generalize to new data. In the current case of time-
series forecasting, different filters assist the model in identifying aspects like periodicity and 
anomalies in the data. 

Moving on to the kernel size, it is another important parameter that describes the width of the 
sliding window in the convolutional layer. For instance, a kernel size of 3 indicates that each filter 
examines a sequence of 3 consecutive time steps in the input data. The kernel size has a significant 
impact on the resolution of each specific data that the CNN model can learn to capture. A smaller 
kernel size of 3 or 5 is effective in identifying fine-grained and local patterns, while a larger kernel 



772 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 727-781, 2026 
DOI: 10.55214/2576-8484.v10i1.11687 
© 2026 by the author; licensee Learning Gate 

 

size can be better at capturing long-range patterns. Therefore, it is important to choose an appropriate 
kernel size to learn significant trends and relationships between the time steps in time-series data. A 
kernel size of 3 is a good balance because it enables the model to detect local temporal patterns without 
overfitting to short-term noise. 

As shown in Figure 27 below, both the kernel sizes of 3 and 5 obtain high R2 values, which 
indicate that the model performs well on the testing set. However, it has been found that the model 
with a kernel size of 3 achieved a higher R2 value of 0.9696. This demonstrates that using a smaller 
kernel size is more effective at extracting relevant features from the data, as the R2 values are closer to 
1. 

 

 
                             Figure 28. 
                               Line Chart of R2 Scores with Different Kernel Size. 
 
 

7.4.3. K-Nearest Neighbours (KNN) 
The performance of the K-Nearest Neighbours (KNN) algorithm is highly dependent on the quality 

of input features and the proper tuning of hyperparameters. This analysis explores the significance of 
these factors and how they influence the model’s ability to make accurate predictions. 

KNN is a method used to select k nearest neighbors based on calculating distances in the feature 
space, and these neighbors are employed for classification or regression. Features such as deaths_new, 
cases_active, and deaths_unvax are cases (cases_new). Very essential features like deaths and time affect 
the model’s performance, as they explain the disease's incidence among unvaccinated individuals. 
However, noise and redundant features, such as month, day, and is_weekend, can distort the model's 
direction, hindering its understanding in worst-case scenarios. Low-variance or irrelevant features may 
reduce the model’s overall effectiveness. The method is therefore used for classification or regression, 
selecting the most useful features for capturing the evolution of cases. 
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Additionally, hyperparameters like the number of neighbors (k) play a pivotal role in KNN. A 
smaller k value increases sensitivity to local patterns, which can improve predictions for highly non-
linear data but may make the model prone to noise. Conversely, a larger k smoothens predictions by 
averaging over a wider neighborhood, reducing variance but potentially overlooking finer details. In 
KNN, identifying relevant and meaningful features is critical, as the algorithm relies on calculating 
distances in the feature space. Features such as deaths_new, cases_active, and deaths_unvax are 
particularly important, as they provide direct insights into mortality trends, active case counts, and 
vaccination status, which are key indicators for predicting new cases (cases_new). Temporal 
features like month, day, and is_weekend are valuable for capturing seasonality and behavioral 
trends that influence case numbers. However, irrelevant or redundant features can introduce noise, 
adversely affecting model performance by skewing distance calculations. Features with low variance 
or minimal correlation to the target variable contribute little to predictive accuracy. Additionally, 
multicollinearity, high correlation among features, can distort the model’s overall effectiveness. 

The choice of distance metric, such as Euclidean or Manhattan, also impacts the algorithm’s 
ability to measure similarity effectively. Euclidean distance is commonly used but may not perform 
well if features have different scales, making normalization essential. Weighting schemes, such as 
uniform weights or distance-based weights, influence how much impact each neighbor has on the 
prediction. Using distance-based weights ensures closer neighbors have a greater impact, which can 
improve accuracy. The hyperparameters in KNN play a pivotal role in its performance. Another 
important consideration is feature scaling (e.g., normalization or standardization), since KNN is 
highly sensitive to the scale of input features. Without proper scaling, features with larger ranges 
may dominate distance calculations, reducing the impact of other, potentially more important, 
features. Cross-validation is employed to test different values of k and distance metrics, ensuring the 
chosen hyperparameters balance bias and variance effectively. 

In conclusion, the performance of KNN depends heavily on the selection of relevant features 
and the tuning of hyperparameters such as k and the distance metric. Proper preprocessing, 
including feature scaling and normalization, is essential to ensure accurate distance calculations and 
meaningful predictions. By leveraging the most relevant features and optimizing hyperparameters, 
KNN can deliver reliable and interpretable results for predicting new COVID-19 cases. 
 

 
            Figure 29. 
             Training and Testing for KNN. 
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7.4.4. Linear Regression 
The simple yet highly sensitive Linear Regression algorithm is described below in relation to its 

predictive accuracy. The performance of the model in Linear Regression depends on the selection of 
relevant features and the tuning of hyperparameters, which can significantly influence its accuracy. 
Features such as deaths, active cases, and deaths among unvaccinated individuals are likely the most 
important predictors, as they have a linear relationship with the dependent variable (cases_new) and can 
capture COVID-19 trends, including seasonal effects, mortality, and active cases. Temporal features like 
month, day, and is_weekend are also valuable for capturing patterns in disease prevalence and severity 
that vary over time. Since linear regression models assume that the relationship between independent 
variables and the dependent variable is linear, it is important to remove highly correlated or redundant 
features, as they may lead to multicollinearity, which can result in unreliable estimates. 

Hyperparameter tuning of the model's coefficients is not typically necessary for Linear Regression, 
as the model is simple and its coefficients are not complex. However, it is possible to improve model 
generalization by using techniques such as Ridge (L2 regularization) and Lasso (L1 regularization), 
which help prevent overfitting, especially when there are many features or when the data is noisy. These 
techniques are added to the cost function as a penalty term. Ridge regularization penalizes the sum of 
the squared coefficients, while Lasso regularization penalizes the absolute value of the coefficients. The 
strength of regularization is controlled by the alpha parameter, which determines the amount of penalty 
applied during training. With the alpha value, the model can find a balance that fits the training data 
well and also generalizes effectively to unseen data. 

The performance of the Linear Regression model is usually checked using measures like Mean 
Squared Error (MSE) or R-squared (R²). These values help assess how accurate the predictions are and 
how much variance in the data is explained by the model. Cross-validation is used to identify the optimal 
alpha value that minimizes error and avoids overfitting. In short, with proper feature selection and 
appropriate application of regularization, Linear Regression can be a very useful method for predicting 
new COVID-19 cases. 
 

 
                   Figure 30. 
                    Training and Testing for Linear Regression. 
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7.4.5. Random Forest  
Random Forest is a type of algorithm that makes decisions based on decision trees by relying 

heavily on the selection of input features and fine-tuned hyperparameters. For instance, using suitable 
input features like cases_active and deaths_new is crucial, as it shows information such as the current 
state of the pandemic. This step allows the model to understand mortality trends, current active cases, 
and the vaccination status of patients. Next, temporal features like day, month, and is_weekend are also 
useful as they help in capturing human behaviors and seasonal patterns of COVID-19 cases. 
Including critical features is also beneficial in training and testing a Random Forest algorithm, as it 
exhibits high variance and strong predictive value for the target variable. Additionally, feature 
selection techniques can be incorporated into this algorithm to prevent unnecessary features, such 
as noise, from affecting the model's performance. 

The key hyperparameters in a random forest are the number of trees, the maximum depth of 
each tree, and the number of features considered when splitting each node. The larger the dataset, 
the higher the number of trees needed. This helps control the overall size of the ensemble and 
improves the model's performance by reducing overfitting issues, which can lead to high variance. 
Moving on, the maximum depth of each tree limits the growth of individual trees by controlling the 
model's complexity. Using an appropriate value for the depth of each tree helps avoid building a 
model that is too complex and computationally intensive. For example, if the maximum depth is too 
deep, the model may overfit. Conversely, if the maximum depth is too shallow, the model may 
underfit. 
 

 
          Figure 31. 
          Training and Testing for Random Forests. 
 

7.4.6. LSTM 
The feature selection and suitable hyperparameter choice are the core of an LSTM, especially for 

time series prediction. Variables like “deaths_fvax” and “deaths_unvax” might influence the target 
variable, and the relevance of the selected features is directly related to how well the model can learn 
from hidden and complex patterns. By using the right features, LSTM could easily achieve a deep 
understanding of predicting COVID-19 cases. Other than that, temporal features like “day,” “month,” 
and “week_of_year” help to capture seasonal and cyclic patterns, while “is_weekend” reflects the changes 
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in the behavioral pattern of testing trends and population mobility. The “cases_active” is considered 
important as it allows the model to learn short-term dynamics relevant for time-sensitive predictions. 

Moving on, MinMaxScaler is a tool used to normalize the features of datasets, as it ensures that 
all variables are scaled to a similar range, enhancing the efficiency with which the model learns. 
Hyperparameters such as the number of timesteps will determine how much history is included in 
each prediction. For example, using the information from the past 10 days as the timestep. Next, the 
implementation of the right number of layers and neurons is crucial as it determines the capability of the 
LSTM to learn various complex relationships. A two-layer structure with 128 and 64 units allows the 
model to understand high-level and finer-grained temporal patterns of the datasets. Additionally, 
dropout layers prevent issues like overfitting during training by randomly shutting off some neurons, 
allowing the model to generalize better to new and unseen data. 

The "Adam" optimizer is included as it defines how much the model can update its weights during 
the training process. There is a trade-off between computational efficiency and convergence speed. The 
loss function and mean squared error are more effective for regression tasks since they penalize larger 
errors more severely. This combination of features has clearly performed well on LSTM, as shown in 
Figure 32 below. The figure displays a graph comparing the actual COVID-19 values versus the 
predicted values using the LSTM model. It can be observed that the model has effectively captured the 
trends but tends to underestimate the peaks. Therefore, it can be concluded that the model is highly 
suitable for time-series prediction, with only minor deviations during volatile periods. 
 

 
            Figure 432. 
             LSTM Testing Data against Actual COVID Cases. 
 

7.4.7. XGBoost 
This model was configured carefully by using a selected set of parameters to optimize its 

performance for the regression task. The objective parameter was set to “reg:squarederror” as it helps to 
ensure that the model is tailored to predict continuous numerical values. One of the evaluation metrics 
used was Root Mean Squared Error (RMSE), which calculates the average magnitude of errors between 
the actual and predicted values. A lower RMSE reflects higher model performance and serves as a key 
metric for early stopping and determining the optimal number of boosting rounds. 
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The performance of XGBoost heavily depends on the relevance of the input features. For 
instance, variables like deaths_new and cases_active are important because they directly reflect 
trends in active cases and population mortality rates, which are key predictors of new COVID-19 
cases. Next, the temporal features like “month,” “day,” and “is_weekend” capture seasonal patterns, 
providing valuable context for the model to produce more reliable and accurate predictions. By 
utilizing these features, this model can easily detect shifts in case trends and align predictions with 
real-world factors, especially public holidays. It is necessary to identify redundant or irrelevant 
features, as they may introduce noise that will influence the model's predictive accuracy. 

Moving on, the configuration of hyperparameters in XGBoost helps to balance the model's 
capability in understanding and learning the dataset. The number of maximum tree depth is one of 
the critical factors as it directly affects the model's complexity and generalization capabilities. As 
shown in the figure below, the relationship between tree depth and R2 scores reveals that deeper 
trees will maximize the model's performance. It is shown that the training and testing R2 results 
improve significantly up to a depth of 4-6, where the testing R2 plateaus. Beyond this range, the 
training R2 approaches 1.0, indicating a perfect training fit, while the testing R2 shows minimal or 
no improvement, signaling overfitting. 

 

 
                     Figure 33. 
                      Max-depth Against R2 Score. 

 
Hence, the maximum tree depth was capped at 6 as it achieves an optimal balance between 

capturing complex patterns while avoiding overfitting. The model is able to learn gradually by 
setting the learning rate to 0.1, as it ensures a stable learning progression while avoiding the risk of 
overfitting. This comprehensive tuning of hyperparameters allows XGBoost to generalize well 
while exploiting the depth of trees to obtain the complicated patterns without succumbing to noise 
or overfitting. Other than that, the subsampling and column sampling rates were set to 0.8, as it 
allows each boosting round, and the tree utilises random subsets of data and features. This 
randomness not only reduces overfitting but also enhances model robustness and diversity. 
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                             Figure 34. 
                               XGBoost Training and Testing RMSE. 

 
As shown in Figure 34, it reveals the relationship between the number of boosting rounds and the 

Root Mean Squared Error (RMSE) for both training and testing datasets in the model. Initially, RMSE 
decreases rapidly as the model learns from the data, with significant improvements observed in the first 
40-60 boosting rounds. After this point, the reduction slows down, and the curves have turned flat, 
showing that the diminishing gains from additional boosting. While the training RMSE continues to 
decrease, the testing RMSE stabilizes, highlighting the importance of early stopping to prevent 
overfitting. This balance ensures optimal model generalization without compromising its ability to 
capture underlying patterns. 
GitHub Link 
https://github.com/MafiaBossQQ/CovidPredictionDM.git 
YouTube Link 
https://youtu.be/6qzhKbLZbCE?si=PmI0EC4gqRgpxbSk  
 
7.5. Research Directions and Future Work 

Future research can be used to address various types of limitations in this study, which helps to 
enhance the predictive accuracy and robustness. One of the promising directions is the development of 
hybrid models by combining the strengths of each deep learning technique, for instance, ANNs and 
CNNs. These hybrid models could increase the accuracy of predicting COVID-19 cases. Next, the 
creation of real-time prediction frameworks can also be considered, as it promotes the processing of 
streaming data. Such systems allow timely and accurate predictions during an ongoing pandemic, 
making them an important utility for public health interventions. Transfer learning is also one of the 
methods that can be applied in this study, as it offers pretrained models to be fine-tuned for certain 
tasks, especially when dealing with smaller datasets. 

https://github.com/MafiaBossQQ/CovidPredictionDM.git
https://youtu.be/6qzhKbLZbCE?si=PmI0EC4gqRgpxbSk
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Based on the results of each model, several areas of investigation can be further explored to 
improve the overall applicability and performance of the predictive models used. By increasing the 
number of training epochs for models like ANNs and CNNs, the convergence rate will be increased, 
provided the regularization techniques are applied to avoid issues like overfitting. Moving on, other 
machine learning models like Long Short-Term Memory (LSTM) and Gated Recurrent Units 
(GRU) can be implemented due to their capability in time-series forecasting. Next, utilizing large 
datasets by including different features like regional variations and different phases of the pandemic 
will significantly improve the generalization and predictive accuracy of the models. 

Other than that, advanced feature engineering by considering external factors like vaccination 
rates, government policy changes, or even weather conditions, which could highly influence the 
COVID-19 trends. Explainable Artificial Intelligence (XAI) methods should be incorporated into 
these predictive models as they help to ensure the results are interpretable for healthcare 
professionals and policymakers. It is a method that allows human users to understand and trust the 
output created by machine learning algorithms. Furthermore, fine-tuning the hyperparameters for 
models like Random Forest and XGBoost helps to optimize each model's performance. For instance, 
adjusting the number of trees, learning rate, and kernel size. By considering and addressing all these 
directions in future work, the reliability and applicability of the predictive models could be 
improved. 
 

8. Conclusion 
In summary, the COVID-19 pandemic causes various challenges to the global healthcare 

systems, necessitating accurate prediction models for daily new cases to effectively plan 
interventions, allocate necessary resources, and improve public health policies to achieve specific 
healthcare goals. It is crucial to understand the current situation and predict COVID-19 cases, as it 
helps mitigate the impact of the virus on public health and economic stability. This study includes a 
comprehensive dataset collected from three different sources: regional COVID-19 statistics, 
vaccination data, and demographic information. The raw dataset has been pre-processed to make it 
suitable for further analysis. For instance, missing values were addressed, inconsistent entries were 
resolved, and outliers were managed to ensure data integrity. 

In order to address the challenges of predicting COVID-19 cases with high reliability, various 
machine learning models were employed and evaluated. The models include Artificial Neural 
Networks (ANN), Convolutional Neural Networks (CNN), Linear Regression, Random Forest, 
XGBoost, K-Nearest Neighbors (KNN), and Long Short-Term Memory (LSTM). These models 
were selected due to their ability to handle high-dimensional, time-series, and tabular datasets. The 
main objective of this study is to determine which model is most suitable for predicting daily new 
COVID-19 cases by developing a robust predictive framework. This process involved the 
identification of relevant features through feature importance analysis. This aims to maximize the 
predictive performance of each model, evaluate the impact of feature selection, and record the results 
of each machine learning technique to identify the most effective model. 

Based on the R² values alone, the ANN model emerged as the most effective among the tested 
methods, achieving an impressive R² score of 0.9614, the lowest RMSE, and competitive MAPE 
values. However, when all four performance metrics are considered, Linear Regression 
outperformed other models, including ANN. Other than that, the best-performing feature subset 
excluded variables such as "quarter," "is_weekend," "deaths_vax," "day," and "holiday." This 
highlights the importance of feature selection analysis in boosting each model's performance by 
removing less impactful variables, resulting in a more robust framework for capturing the 
underlying and complex patterns while effectively explaining variability in COVID-19 case trends. 
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As a result, this research lies in its potential to support current pandemic management through 
accurate prediction of daily new COVID-19 cases, allowing more informed decisions on resource 
allocation, vaccination strategies, and containment measures. Beyond COVID-19, the methodologies 
and insights can be adapted for other public health challenges, emphasizing the transformative 
potential of data mining and machine learning in addressing global crises and fostering resilience in 
healthcare systems. 
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