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Abstract: An intelligent information system for sensor-based human activity analysis using data mining
techniques presents a comprehensive study on developing a system that employs data mining to analyze
human activities based on sensor data. With advancements in wearable technologies and embedded
sensor systems, such as smartphones, smartwatches, and various environmental and object-attached
sensors, it is now possible to automatically and continuously recognize and track human activities
through sensor data collection. These techniques are generally known as sensor-based human activity
analysis and can be applied across multiple fields, including healthcare, entertainment, and artificial
intelligence system design. The core approach involves abstracting sensor data into higher-level activity
recognition through various data processing and mining methods. In this study, eight classifiers are
applied to the HARSense dataset, including naive Bayes (NB), decision tree, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), neural network, XGBoost, random forest (RF), and extra trees
classifier (ETC). The models are evaluated on the HARSense dataset, with the extra trees classifier
achieving the highest accuracy of 97.12%.

Keywords: Data mining techniques, Extra trees classifier (ETC), HARSense dataset, Decision tree, Human activity
recognition (HAR), Random forest (RF).

1. Introduction

Beyond typical application areas where research in human activity analysis is often focused, such as
health, sports, time and workplace management, or monitoring the qualitative behavior of patients with
certain neurological impairments, smart environments frequently address activity analysis in situations
where only raw sensor signals are available. These applications require sensory devices capable of
recording signals over time related to human activities, which intelligent algorithms can recognize from
these data sets. Experiences with this type of problem, even before the IoT revolution, led to the
development of a sensor called HARSense. This sensor, through its components and a Data Mining
tool, can generate the data necessary to solve human activity analysis problems. It has proven
particularly useful in the simulation of realistic sensor data files [1-37.

Human activity recognition (HAR), in HARSense, involves using a computational model to
automatically identify and classify human activities based on observations from sensors attached to the
body, such as accelerometers, gyroscopes, magnetometers, or others. These small devices can
accompany humans everywhere, unlike environmental sensors. In recent years, many researchers have
tocused on developing hardware and software to support various applications within smart
environments [4, 5.

However, existing methods and applications of sensor-based human activity analysis have not fully
explored the capability of data mining in processing raw sensor data and extracting more complex
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activity features. At the same time, as a form of data-driven science, the emerging technology called
"Big Data" heavily relies on data mining techniques for pattern analysis and knowledge discovery. In
recent years, integrating data mining techniques into human activity analysis has gained increasing
attention in the fields of activity monitoring and pervasive computing. It is important to study the use of
modern data mining tools and methods and to develop new intelligent information systems for sensor-
based human activity analysis. The outcomes of such studies will not only provide advanced solutions
for current activity analysis approaches but also open opportunities for developing more sophisticated
analyses and applications using recognized activity data [6].

Human action analysis has gained significant attention in computer vision and artificial intelligence
over recent years. It is a crucial technology for context-aware systems and devices, providing essential
inputs for understanding human intentions and behaviors in various settings. Typically, human activity
recognition systems rely on sensory data collected by specialized sensors that monitor specific activities
and environmental factors. These sensors generally include cameras, microphones, and accelerometers,
which capture information about a subject's actions and movements across visual, auditory, and motor
domains [7, 87.

The term of human activity within the context of the HARSense dataset refers to the process of
humans making observable and actionable decisions in both real and virtual environments. To describe
group behavior, unique patterns in motion and posture during various routine activities are identified.
The collective responses observed are correlated with these activities. Support for understanding human
activities is best achieved through analyzing human decision-making processes using learning methods.
The research aims to perform this analysis from device logs employing machine learning and data
mining techniques [17].

This paper employs machine learning and data mining techniques for human activity analysis in the
HARSense dataset, utilizing eight classifiers: naive Bayes (NB), decision tree, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), neural network, XGBoost, random forest (RF), and extra trees
classifier (ETC). We achieved promising results with the extra trees classifier.

The remainder of this study is organized as follows. Section 2 presents an overview of the most
relevant studies and existing approaches related to activity recognition, highlighting their
methodologies and limitations. Section 3 introduces the main machine learning classifiers employed in
this work, outlining their theoretical foundations and comparative characteristics. Section 4 describes
the proposed methodology, including dataset description, preprocessing steps, and evaluation measures.
Section 5 reports and analyzes the experimental results obtained from both individual and ensemble
classifiers, supported by performance metrics and confusion matrix visualizations. Finally, Section 6
concludes the study by summarizing key findings and discussing potential directions for future research.

2. Related Work

Hassan et al. [27] introduced a robust human action analysis framework utilizing deep learning and
smartphone sensors. The method involved extracting efficient features from raw data, including
autoregressive coefficients, median, and mean. These features were processed using kernel principal
component analysis (KPCA) and linear discriminant analysis (LDA) to enhance robustness.
Subsequently, a Deep Belief Network (DBN) was trained for effective action recognition. The approach
was tested on twelve different physical actions, achieving a mean recognition rate of 89.61% and an
overall accuracy of 95.85% [27].

Chin et al. [97] investigated Daily Actions analysis on the human actions primitives recognition
dataset. They studied human action data captured through classification by a wrist-worn accelerometer.
The classification was based on various daily activities performed by a normal person. A wrist-worn tri-
axial accelerometer was used to collect acceleration data along the X, Y, and Z axes during each test.
Nine statistical parameters, combined with energy spectral density and the relationships between
accelerometer interpretations, were used to extract sixty-three features from the raw data. For the
classification process, Ranker, Tabu Search, and Particle Swarm Optimization were employed to test
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and select the most relevant features. Classification algorithms such as Random Forest, Support Vector
Machine, and k-Nearest Neighbors were implemented. The results showed that SVM with a radial basis
function kernel achieved the highest accuracy, with a correct classification rate of 91.5% [97].

Padmaja et al. [10] introduced a random split point procedure using the Extra Trees method for
human activity recognition. It generates K random split points from all dataset features and selects the
best based on the maximum information gain score. The approach was tested on two datasets: HAR and
HAPT, containing six and twelve activities, respectively. The HAR dataset includes smartphone sensor
signals for three static and dynamic daily activities, while the HAPT dataset features six postural
transitions from these activities. The proposed method achieved an accuracy of 92.63% on HAPT and
94.16% on HAR datasets, demonstrating its effectiveness in activity recognition tasks [107].

Bukht et al. [117 introduced a framework based on a decision tree for human activity recognition
using feature fusion. The study emphasizes feature fusion and optimal feature reduction. The proposed
method involves four main steps: first, frame preprocessing to enhance video contrast and remove noise;
second, applying a statistical method for silhouette extraction; third, feature extraction and fusion using
SIFT and ORB; and fourth, feature reduction with t-distributed stochastic neighbor embedding (t-SNE).
The final step is action recognition via a decision tree. Experiments conducted on UT Interaction data
achieved a recognition rate of 95% [117.

Khan et al. [127] developed a human action recognition model utilizing the Human Action
Recognition Trondheim (HARTH) dataset. The model aims to identify various daily human activities in
free-living environments, which are challenging due to unplanned actions. While controlled data can
yield optimal results, real-world applications often face difficulties. The framework employs machine
learning classifiers with time-domain features extracted from sensor data. Specifically, the multilayer
perceptron (MLP) classifier achieved an accuracy of 92.92% [127.

Khan et al. (1387 applied human action recognition in the wild, which involved selecting an in-the-
wild, extra-sensory dataset comprising six activities: bicycling, walking, running, standing, sitting, and
lying down. Three machine learning classifiers, decision trees, random forest, and k-nearest neighbors,
were used for time domain feature extraction and human action recognition. The proposed system
achieved an accuracy of 89.98% with the random forest classifier [137.

Zhu et al. [147 proposed applying the Extra-Trees classifier for human action recognition (HAR)
using a wearable sensor device carried by the experimenter to collect motion data. The experiment
compared three classifiers: decision tree, KNN, and extra-trees. The accuracy results were 87.75%,
90.77%, and 93.25%, respectively, with the extra-trees classifier achieving the highest accuracy [147].

Nematallah and Rajan [157 introduced a study that conducted a quantitative analysis of mother
wavelet function selection for wearable sensors used in human action analysis. It employed a method
combining wavelet packet transform with the energy-to-Shannon-entropy ratio, utilizing two
classification algorithms: decision tree (DT) and support vector machines (SVM). The researchers
examined six different mother wavelet families with varying numbers of vanishing points. Experiments
were performed on eight datasets: HAR70+, REALDISP, PAMAP2, DaLiAc, HARsense, HARTH,
WISDM Activity Prediction, and MHEALTH. The balanced accuracy achieved with decision tree (DT)
and support vector machines (SVM) was 74.62% and 76.53%, respectively, using the Coifl4-based
wavelet packet transform [157.

Table 1 summarizes the related work representing the study, the dataset used, the applied method,
and its performance measures.
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Table 1.
Related work summary.
Study Dataset Method | Advantages Disadvantages Application Accuracy
Hassan, et al. | Smartphone | DBN Robust teature | Complex feature- | Fitness and | 95.85%
[e] Dataset extraction using | engineering and training | Lifestyle Apps
KPCA and DBN | increase system
enables better | difficulty
activity distinction
Chin, et al. | Human SVM Utilizes a diverse age | Potential for reduced | Wearable 91.5%
9] Motion group (19-91 years) | accuracy with specific | Activity
Primitives and multiple daily | activities due to wrist | Trackers
Detection activities for broader | sensor placement
Dataset relevance
Padmaja, et al. | HAR ETC Reduced Still requires a sizable | Elderly Care 92.63%
[10] HAPT computational  time | dataset and  careful 94.16%
and faster model | parameter selection for
building  due  to | optimal performance
randomized split
selection
Bukht, et al. | UT DT The method is | Only one classifier (DT) | Surveillance 95%
[11] interaction simple, interpretable, | is used, without | systems
data and efficient using a | comparison to  more
decision tree. advanced models.
Khan, et al. | HARTH MLP Focuses on free- | Limited generalization | rehabilitation 92.92%
[12] living environments, | since performance may
making the model | differ across varied real-
more realistic than | life conditions.
scripted setups.
Khan, et al. | in-the-wild | RF Evaluated on an | Limited to only six | patient activity | 89.98%
[138] extra- extra-sensory dataset, | predefined activities, | tracking
sensory enhancing real-world | restricting
dataset applicability. generalizability.
Zhu, et al. | HAR ETC Uses wearable sensor | Focuses only on | motion-based 93.25%
[14] data, which is reliable | traditional ML classifiers | interaction
and widely applicable.
Nematallah HARsense DT Proposes an optimal | The computational | activity-aware 74.62%
and Rajan SVM mother wavelet | complexity of  the | automation 76.53%
[15] selection method, | wavelet packet transform
improving HAR | may hinder real-time
performance. applications.

3. Preliminaries
This section offers an overview of the machine learning classifiers used in this study. Each classifier
has unique characteristics, assumptions, and learning strategies that affect its performance across
different data domains. The classifiers include traditional statistical models, distance-based algorithms,
tree-based ensembles, and neural architectures. Their theoretical foundations, advantages, and
limitations are briefly summarized to provide context for their selection and comparative analysis within
the proposed framework.
1. Naive Bayes Classifier (NB)
Naive Bayes classifiers are a family of linear probabilistic classifiers assuming features are
tentatively independent given the target class. The strength of this assumption is what gives
the classifier its name. These classifiers are among the simplest Bayesian network models [167].
ii.  Support Vector Machine (SVM) Classifier
Support vector machines (SVMs) are supervised max-margin models with associated learning
algorithms that analyze data for classification and regression analysis. SVMs can efficiently
perform non-linear classification using the kernel trick [177].
iii.  Decision Tree Classifier

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I: 1119-1137, 2026

DOI: 10.55214/2576-8484.v1011.11864

© 2026 by the authors; licensee Learning Gate



1123

A Decision Tree Classifier is a supervised machine learning algorithm that uses a tree-like
model to classify data. It is a popular and widely used algorithm because of its effectiveness,
interpretability, and simplicity. Decision Trees can handle missing values by using surrogate
splits. They are robust to noisy data, as the tree structure can absorb some noise levels.
However, Decision Trees may suffer from overfitting, especially when the tree is deep or the
sample size is small. Additionally, training Decision Trees can be computationally expensive,
particularly for large datasets [187].
iv.  K-Nearest Neighbors (KNN) Classifier
The K-Nearest Neighbors (KNN) classifier is a supervised machine learning algorithm that
classifies new data points based on the majority vote of their k-nearest neighbors. KNN is easy
to implement and understand. It can manage non-linear relationships between features and is
robust to noisy data. However, KNN can be computationally expensive for large datasets.
Finding the optimal value of k can be challenging, and KNN is sensitive to feature scaling [197].
v.  Neural Network Architecture
A neural network architecture is a type of machine learning model inspired by the structure and
function of the human brain. It consists of interconnected nodes (neurons) arranged in layers
that transform and process inputs to produce outputs. Neural networks can approximate any
continuous function and handle noisy or missing data. They can also be parallelized for efficient
computation. However, they require significant computational resources and may overfit
training data if not properly regularized. Additionally, complex neural network models can be
difficult to interpret [207.
vi.  Xgboost Classifier
XGBoost (Extreme Gradient Boosting) is an open-source, supervised machine learning
algorithm that uses gradient boosting to classify data. It is widely employed for classification
and regression tasks due to its high performance, scalability, and interpretability. XGBoost is
known for its accuracy and speed. It provides feature importance scores, facilitating result
interpretation. Additionally, XGBoost can handle missing values without imputation and
manage large datasets efficiently. However, it requires careful hyperparameter tuning to
prevent overfitting and demands significant computational resources for large datasets [217].
vii.  Random Forest (RF) Classifier
A Random Forest (RI) classifier is an ensemble learning algorithm that uses multiple decision
trees for data classification. It is popular and widely used in machine learning due to its
simplicity, interpretability, and effectiveness. RI" often achieves high accuracy because of its
ensemble approach. It can handle noisy data and outliers effectively. RIFF provides feature
importance scores, making results easier to interpret. Additionally, RF can manage high-
dimensional data with many features. However, RIF can be computationally expensive for large
datasets and may overfit if the number of decision trees is too high [227].
viii.  Extra Trees Classifier (ETC).
The Extra Trees Classifier (ETC) is an ensemble learning method that uses multiple decision
trees to classify data. It is similar to the Random Forest Classifier but with key differences. ETC
trains faster than Random IForest because it does not use bootstrap sampling. It can handle
noisy data and outliers effectively. ETC provides feature importance scores, which facilitate
result interpretation. It is capable of managing high-dimensional data with many features.
However, ETC may have lower accuracy than Random Forest due to the lack of bootstrap
sampling. Additionally, ETC can overfit if the number of decision trees becomes too large [237].
To facilitate a clearer understanding, Table 2 presents a comparative summary of the main
properties, advantages, and limitations of the discussed machine learning classifiers.
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Classifier Advantages Disadvantages Common Applications
NB - Fast and Simple - "Naive" Assumption of feature | - Text Classification
- Works with less data independence - Sentiment Analysis
- handle high dimensions - Often less accurate than complex | - Real-time Prediction
models
SVM - Effective in high dimensions - Slow on large datasets - Image Classification

- Versatile with different kernels - Not great with noisy or | - Bioinformatics
overlapping data - Handwriting Recognition
Decision Tree - Easy to interpret - Prone to overfitting - Credit Scoring

- Handles both
categorical data
- Non-parametric

numerical and

- Unstable; small data changes can
alter the tree

- Customer Segmentation

KNN - Simple and intuitive - Slow prediction time on large | - Recommender Systems
- No training phase datasets - Image Recognition
- Adapts easily to new data - Performance degrades with many | - Anomaly Detection
features
Neural - Learns complex, non-linear | - "Black box" nature makes it hard | - Image and Speech
Network patterns to interpret - Requires large | Recognition
- Can automatically learn features amounts of data - Natural Language
- Computationally expensive to | Processing (NLP)
train - Autonomous Driving
XGBoost - high performance - Complex and more difficult to | - Sales IForecasting
- Built-in regularization to prevent | tune - Fraud Detection
overfitting - Can be sensitive to
- Natively handles missing values hyperparameters
RF - High accuracy and robust to | - Less interpretable than a single | - Banking (credit risk)
overfitting decision tree - Stock Market Prediction
- Handles large datasets efficiently - Can be slow to make predictions if
- Provides feature importance scores | it has many trees
ETC - Very fast to train - Increased randomness might | - Feature Selection

- Added randomness can reduce
variance

slightly increase bias

4. Methodology

The proposed methodology for human activity recognition is organized into five main stages, as
shown in Figure 3. The process begins with data acquisition, where motion signals are collected using
smartphone sensors such as the accelerometer and gyroscope. The collected data then undergoes
preprocessing, which includes cleaning and label encoding to ensure consistency and noise removal.
During the model training phase, the processed dataset is split into training and testing subsets, and the
Extra Trees Classifier is used to learn activity patterns. The trained model is subsequently evaluated in
the model evaluation stage using key performance metrics such as accuracy, precision, recall, and F1-
score. Finally, the activity recognition stage interprets the model outputs to identify various human
activities. This structured workflow provides a systematic and reproducible approach for accurate

activity classification.
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Figure 1.
Methodology.

This section outlines the methodological framework employed in this study, encompassing data
acquisition, preprocessing, and model evaluation. It begins with a detailed description of the dataset
used, including its structure, sources, and relevant attributes. The subsequent subsection discusses the
preprocessing techniques applied to prepare the data for model training, such as cleaning, normalization,
and encoding. Finally, the evaluation measures used to assess the performance and reliability of the
proposed models are presented. Together, these components establish a systematic approach that
ensures the robustness and validity of the experimental results.

4.1. Data Set Description

The experiments were based on the HARSense dataset, which contains subject-wise daily living
activity data collected from smartphone gyroscope and accelerometer sensors. The smartphone was
fixed on users’ front and waist pockets. Running was performed on a football playground, while all other
activities took place in a laboratory. The dataset comprises 17 columns and 94,198 rows. The activities
include walking, standing, upstairs, downstairs, running, sleeping, and sitting. The column descriptors
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are: RV (Rotational Vector in X, y, and z axes), RR (Rotational Rate in X, y, and z axes), Gravity
(Gravity in X, y, and z axes), Acc (Linear Acceleration in X, y, and z axes), and AG (Acceleration due to
Gravity in X, y, and z axes) [247]. Table 3 provides detailed descriptions of the dataset features.

Table 3.

HARSense Data Features Description.

Column Description Sensor/Origin

AG-X,AG-Y,AG-Z | Angular Gyroscope. These values represent the rate of rotation (angular | Gyroscope
velocity) of the device around its X, Y, and Z axes.

Acc-X, Acc-Y, Acc-Z | Total Acceleration. This is the raw acceleration measured along the X, Y, and Z | Accelerometer

axes. It includes both the force of gravity and the linear acceleration caused by
the user's motion.

Gravity-X, Gravity-
Y, Gravity-Z

Gravity Vector. This is the isolated gravity component of the total acceleration.
It indicates the direction of "down" relative to the device's coordinate system.

Sensor Fusion

RR-X, RR-Y, RR-Z

Rotation Rate. It measures the speed of rotation around the X, Y, and Z axes.

Gyroscope

RV-X, RV-Y, RV-Z

Rotation Vector. This is a composite value representing the device's orientation
in space. It is derived by fusing data from the accelerometer and gyroscope. The
three values are components of a vector, with the direction indicating the axis of
rotation and the magnitude indicating the angle of rotation.

Sensor Fusion

Cos Cosine of an Angle. the cosine of the angle between the device's main axis and | Calculated
the vertical (gravity) vector. Feature
Activity Activity Label. This is the target variable you are trying to predict. It is a | Ground Truth

categorical label describing the physical activity being performed at that moment
(e.g., 'walking', 'sitting’, 'running").

Figure 2 illustrates the distribution of data samples across seven activity classes in the dataset. The
most common activities are 'Walking' (25,371 samples) and 'Sitting' (19,784 samples), forming the
majority. Conversely, activities like 'downstairs' (8,487 samples) and especially 'Sleeping’' (2,377 samples)
are significantly underrepresented.

25000 A

20000 -

15000 A

10000 -

Number of Samples

5000 -

Figure 2.

Activity Class

Activity Target Distribution.
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4.2. Data Preprocessing

To ensure the integrity and suitability of the HAR Sense dataset for machine learning applications,
comprehensive data preprocessing steps were implemented to enhance data quality and model
performance.

During the data preprocessing stage, the dataset was examined for missing and incomplete values.
The “Acc-Y” column contained several missing values. To maintain data consistency and prevent errors
during model training, these missing values were imputed with zeros using the command. This
approach assumes that the absence of sensor readings corresponds to a neutral state (no acceleration)
along the Y-axis, which is reasonable for inertial sensor data.

An exploratory data analysis was conducted to understand the characteristics of the sensor features,
with the resulting distributions visualized in Figure 3. The gyroscopic measurements (AG- and RR-
prefixes) exhibit sharp, leptokurtic distributions centered at zero, indicating that the device was
predominantly static, with high-velocity movements appearing as outliers. In contrast, the total
acceleration (Acc-) features show a wider variance, characteristic of dynamic human motion. The gravity
vector components reveal a primary device orientation, with Gravity-Y heavily skewed toward 9.8 m/s2.
The multimodal distributions of the Rotation Vector (RV-) components and the cos feature confirm that
a diverse range of device orientations and user postures were captured. This variety is essential for
training a robust and generalizable activity recognition model.

AG-X AG-Y AG-Z Arcc-X
40000 || 40000 I 40000 1 | B000D ‘|
30000 1 || 30000 1 I 30000 4 | 40000 A
20000 ' 20000 1 u 20000 - | ‘|
20000
10000 1 10000 - 10000 "
0+— T JL T T 01— ‘lLyi 0 T JH T 0= T T
40 -20 0 4 -50 0 50 -50 0 50 -0 -5 0 bL]
Acc-Y Acc-Z Gravity-X Gravity-Y
50000 = 60000 I
I 40000 4
10000 - I
40000 - H 40000 | ih 30000 1 I
_ 20000
20000 20000 1 5000 J
II 10000
01— T 01— . 0 " 0 ‘v'—v—"vd—v‘Jr
-50 0 50 -50 0 50 -5 0 5 10 -0 -5 0 5 10
Gravity-Z RR-X RR-Y RR-Z
[
15000 1 40000 1 I 40000 - || I
I 40000
10000 ' 30000 I |
l I 20000 1 20000 4 _
5000 | ] II 20000
II I I I 10000 -
0 0 —v—JLv— 0 0
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ik oo | el TR
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Figure 3.
Features Distribution.

First, non-informative columns were removed to reduce dimensionality and noise, aligning with
data cleaning best practices. Missing values in the dataset were imputed with zeros to prevent adverse
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effects on model training. Outlier analysis was conducted using statistical methods to identify
anomalous data points that could skew model learning. These steps aimed to improve data quality and
model performance by systematically addressing irrelevant features, missing data, and outliers.

Next, the encoding of categorical variables was performed. Activity labels, being categorical, were
converted into a numerical format using label encoding techniques. This step is essential for machine
learning algorithms to process categorical data effectively. Each activity was assigned a numeric value
(Table 4).

Table 4.

Numeric value association for each activity.
Activity Numerical assignment
Running 0
Sitting
Sleeping
Standing
Walking
Downstairs
Upstairs

B[] =

|

Following the cleaning and transformation steps, the dataset was structured to facilitate machine
learning modeling. This involved organizing the data into a format suitable for algorithmic processing,
ensuring that all features were appropriately scaled and encoded.

Finally, to evaluate model performance, the dataset was divided into training and testing subsets,
with 80% allocated for training and 20% for testing.

4.8. Evaluation Measures
The performance of the proposed models is evaluated using multiple measures, which are accuracy,
precision, recall, and F'1-score. These measures are briefly explained in the following paragraphs
A) Accuracy is the ratio of correct predictions to total predictions, calculated as Accuracy = (TP +
TN) / (TP + FP + FN + TN). It is useful when classes are balanced, but it can be misleading with
imbalanced classes [257].
B) Precision is the number of correct classes returned by the classification model, calculated as
Precision = TP/(TP+FP). It is useful when the cost of false positives is high [257.
C) Recall is the ability of a model to find all relevant cases within a dataset, and it is calculated as:
Recall = TP/(TP+FN). Recall is useful when the cost of false negatives is high [257.
D) Fi1-Score is the harmonic mean of precision and recall and can be determined as: F1 = 2
*Precision * Recall/(Precision + Recall) or F1 = 2*TP/(2*TP + FP + FN). The F1-score
provides a balanced measure of both precision and recall [257.

5. Experiment Results

All experiments were conducted using Google Colaboratory (Colab), a cloud-based platform that
provides a flexible and efficient environment for developing and testing machine learning models. The
Colab environment was configured to run on Ubuntu 22.04.4 LTS (64-bit) with Python 3.10. The
computational setup included an Intel(R) Xeon(R) CPU @ 2.20 GHz, 12 GB of RAM, and an optional
NVIDIA Tesla T4 GPU with 16 GB VRAM, which was utilized to accelerate training processes where
applicable.

Multiple experiments have been conducted to examine the performance of individual classifiers,
such as Neural Network architecture, Naive Bayes, decision trees, SVM, and KNN classifiers. The
results of these classifiers were compared with those obtained from ensemble learning techniques,
including random forest, extra trees, and XGB.
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In these experiments, the dataset was divided into 80% for training and 20% for testing. The results
of the classical individual classifiers are listed in Table 5, and Figure 4 shows their accuracy. The results
of the ensemble classifiers are in Table 6, with Figure 5 illustrating their accuracy. Precision, recall, and
F1-score were calculated for each activity, followed by overall accuracy. Both macro-average and
weighted-average metrics were computed; the macro-average treats all activities equally, while the
weighted-average assigns weights based on the ratio of samples per activity.

In addition to the quantitative performance metrics, the confusion matrices for both the individual
and ensemble classifiers are presented in Figures 4 and 5, respectively. These matrices offer a detailed
visualization of each model’s classification performance across different activity categories, highlighting
correctly and incorrectly predicted instances.

Table 5.
Classical individual classifiers' results for all activities.
Activity no. 0 1 2 3 4 5 6 macro avg. weighted avg.
Precision 0.95 0.99 0.99 0.98 0.9 0.88 0.86 0.94 0.98
g Recall 0.9 1 1 0.99 0.96 0.78 0.84 0.98 0.938
~< F1-score 0.92 1 0.99 0.99 0.98 0.83 0.85 0.98 0.938
Accuracy 0.9341
Precision 0.92 0.96 0.99 0.85 0.71 0.88 0.82 0.87 0.85
£ | Recall 0.88 1 1 0.96 0.93 0.43 0.39 0.8 0.84
; F1-score 0.9 0.98 0.99 0.9 0.8 0.57 0.53 0.81 0.82
Accuracy 0.8358
§ Precision 0.9 0.99 1 0.99 0.91 0.8 0.78 0.91 0.91
; Recall 0.88 1 1 0.99 0.91 0.8 0.8 0.91 0.91
g F1-score 0.89 1 1 0.99 091 0.8 0.79 0.91 0.91
g Accuracy 0.9132
2 Precision 0.88 0.95 1 0.77 0.57 0.49 0.46 0.72 0.71
= | Recall 0.66 | 0.86 0.98 0.9 0.89 0.15 0.22 0.67 0.71
Lﬁ F1-score 0.74 091 0.99 0.83 0.69 0.28 0.3 0.67 0.68
g
‘Z“ Accuracy 07074
—~ = Precision 0.94 1 1 0.99 0.93 0.85 0.87 0.94 0.9%
5 g Recall 0.93 1 1 0.99 0.95 0.83 0.83 0.93 0.94
2 kot F1-score 0.94 1 1 0.99 0.94% 0.84 0.85 0.94% 0.94
= | Accuracy 0.9406
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Confusion matrices of classical machine learning algorithms.
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Table 6.
Ensemble classifiers' results for all activities.
Activity No. o 1 2 3 4 5 6 macro avg. | weighted avg.
9 precision 0.96 1 1 1 0.94 0.92 0.89 0.96 0.96
é recall 0.96 1 1 1 0.96 0.87 0.88 0.95 0.95
&) f1-score 0.96 1 1 1 0.95 0.9 0.89 0.96 0.96
= accuracy 0.958
% | precision 0.94 1 1 1 0.95 0.97 0.91 0.96 0.97
S recall 0.96 1 1 1 0.97 0.85 0.91 0.96 0.96
E f1-score 0.95 1 1 1 0.96 0.91 0.91 0.96 0.96
]
—g accuracy 0.9625
&
precision 0.96 1 1 1 0.96 0.97 0.93 0.97 0.97
w
é recall 0.97 1 1 1 0.98 0.89 0.92 0.96 0.97
|
4§ f1-score 0.97 1 1 1 0.97 0.93 0.93 0.97 0.97
€3}
accuracy 0.9712

It can be observed from the results of the experiments conducted using individual classifiers that the
KNN classifier achieved a high accuracy ot 93.41%. The F1-scores for all activities exceed 0.90, although
activity 5 has an I'1-score of 0.83, possibly due to overlapping features with other activities. Among all
classifiers, Naive Bayes had the lowest accuracy at 70.74%, indicating difficulties in modeling complex
activity patterns. Conversely, the neural network achieved the highest accuracy of 94.06%, owing to its
capacity to model complex feature relationships. However, neural networks require proper tuning to
prevent overfitting.

The results of the conducted experiments show that ensemble learning methods significantly
outperform individual classifiers. Two classifiers, KNN and Neural Networks, achieved high accuracies
of 98.41% and 94.06%, respectively. Conversely, Naive Bayes and SVM had the lowest accuracies of
70.74% and 83.58%, respectively, with difficulties in identifying Activities 5 and 6. The decision tree
classifier achieved a moderate accuracy of 91.32%.

Ensemble learning classifiers, including XGBoost, Random Forest, and Extra Trees, achieved
superior accuracies of 95.81%, 96.25%, and 97.12%, respectively. These models outperformed individual
classifiers. Extra Trees yielded the highest accuracy, macro average I 1-score, and weighted average F'1-
score at 97.12%, 97%, and 97%, respectively. Most classifiers accurately recognized Activities 1, 2, and
3, but faced difficulties with Activities 5 and 6, particularly Naive Bayes. These findings confirm that
ensemble models outperform individual classifiers in HAR recognition by combining multiple models to
enhance prediction robustness.
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Confusion matrices of ensemble machine learning algorithms.
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Table 7 summarizes the results from all classifiers regarding our experiment based on the
HARSense dataset, presenting accuracy, macro average, and weighted average for precision, recall, and
F1-score. Figures 6 and 8 illustrate the accuracy, macro, and weighted averages for precision, recall, and
I 1-score, respectively, from all applied classifiers.

Our accuracy results are compared against those from Nematallah and Rajan [157], who used
decision tree (DT) and support vector machines (SVM), achieving 74.62% and 76.53%, respectively,
with the coif14-based wavelet packet transform for the HARSense dataset. Our findings indicate that
the most effective machine learning technique for human activity analysis is the extra trees classifier,

with an accuracy of 97.12%.
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Table 7.
Summary results for the proposed methods.
Precision Recall F1-Score
Classifier Accuracy | Macro | Weighted | Macro | Weighted | Macro | Weighted
Avg Avg Avg Avg Avg Avg
Naive_bayes 0.7074 0.72 0.71 0.67 0.71 0.67 0.68
svim 0.8358 0.87 0.87 0.80 0.84 0.81 0.82
Decision_tree 0.9132 0.91 0.91 0.91 0.91 0.91 0.91
knn 0.9341 0.94 0.93 0.93 0.93 0.93 0.93
Neural network architecture keras 0.9406 0.94 0.94 0.93 0.94 0.94 0.94
XGBoost 0.9580 0.96 0.96 0.95 0.96 0.96 0.96
Random_forest 0.9625 0.97 0.96 0.96 0.96 0.96 0.96
Extra_trees 0.9712 0.97 0.97 0.97 0.97 0.97 0.97
Accuracy
) 09132 09341 09406 0958 09625 05712
0.8358
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Figure 6.

Accuracy results from all applied classifiers.
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Precision macro and weighted average results from all applied classifiers.
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Recall macro and weighted average results from all applied classifiers
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f1-Score macro and weighted average results from all applied classifiers.

6. Conclusion

The HARSense dataset provides an up-to-date resource for researchers in this domain. We
conducted experiments using various machine learning techniques, including the Naive Bayes classifier,
SVM classifier, decision tree classifier, KNN classifier, neural network architecture, XGB classifier,
random forest classifier, and extra trees classifier. We achieved promising results with the extra trees
classifier. In future work, we plan to explore other deep learning techniques on the HARSense dataset
and compare their performance. The most effective machine learning method evaluated for human
activity analysis was the Extra Trees classifier, with an accuracy of 97.12%.
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Data that support the findings of this study are available at the following link:
https://www.kaggle.com/datasets/nurulaminchoudhury/harsense-datatset.

Transparency:

The authors confirm that the manuscript is an honest, accurate, and transparent account of the study;
that no vital features of the study have been omitted; and that any discrepancies from the study as
planned have been explained. This study followed all ethical practices during writing.

Copyright:
© 2026 by the authors. This article is an open-access article distributed under the terms and conditions
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I: 1119-1137, 2026

DOI: 10.55214/2576-8484.v1011.11864

© 2026 by the authors; licensee Learning Gate


https://www.kaggle.com/datasets/nurulaminchoudhury/harsense-datatset
https://creativecommons.org/licenses/by/4.0/

1136

References

[
2]

[s]

[7]
[8]

[9]

[10]

RN
[12]

[18]

[14]

[15]

[16]
[17]

18]
[19]
[20]
[21]

[22]

23]

N. A. Choudhury, S. Moulik, and D. S. Roy, "Harsense: statistical human activity recognition dataset," IEEE
Dataport, 2021.

M. M. Hassan, M. Z. Uddin, A. Mohamed, and A. Almogren, "A robust human activity recognition system using
smartphone sensors and deep learning," Future Generation Computer Systems, vol. 81, pp. 807-313, 2018.
https://doi.org/10.1016/j.future.2017.11.029

S. Singh, N. A. Choudhury, and B. Soni, "Gait recognition using activities of daily livings and ensemble learning
models," in International Conference on Advances in IoT and Security with AI (pp. 195-206). Singapore: Springer Nature
Singapore, 2023.

A. A. Wazwaz, K. M. Amin, N. A. Semari, and T. F. Ghanem, "Enhancing human activity recognition using features
reduction in IoT edge and Azure cloud," Decision Analytics Journal, vol. 8, p. 100282, 2023.
https://doi.org/10.1016/j.dajour.2023.100282

A. O. Ige and M. H. M. Noor, "A survey on unsupervised learning for wearable sensor-based activity recognition,"
Applied Soft Computing, vol. 127, p. 109363, 2022. https://doi.org/10.1016/].a50¢.2022.109363

M. Z. Uddin and A. Soylu, "Human activity recognition using wearable sensors, discriminant analysis, and long
short-term  memory-based neural structured learning," Scientific Reports, vol. 11, p. 16455, 2021.
https://doi.org/10.1038/541598-021-95947-y

U. Verma, P. Tyagi, and M. Kaur, "Artificial intelligence in human activity recognition: A review," International
Journal of Sensor Networks, vol. 41, no. 1, pp. 1-22, 2028. https://doi.org/10.1504/1JSNET.2023.128503

N. Gupta, S. K. Gupta, R. K. Pathak, V. Jain, P. Rashidi, and J. S. Suri, "Human activity recognition in artificial
intelligence framework: A narrative review," Artificial Intelligence Review, vol. 55, pp. 4755-4808, 2022.
https://doi.org/10.1007/510462-021-10116-x

Z. H. Chin, H. Ng, T. T. V. Yap, H. L. Tong, C. C. Ho, and V. T. Goh, Daily activities classification on human motion
primitives detection dataset. Computational Science and Technology: 5th ICCST 2018, Kota Kinabalu, Malaysia, 29-30 August
2018. Singapore: Springer Singapore, 2018.

B. Padmaja, V. Prasad, and K. Sunitha, "A novel random split point procedure using extremely randomized (Extra)
trees ensemble method for human activity recognition," EAI Endorsed Transactions on Pervasive Health & Technology,
vol. 6, no. 22, pp. 1-10, 2020. https://doi.org/10.4108/eai.28-5-2020.164824

T. F. N. Bukht, H. Rahman, and A. Jalal, "A decision tree-based framework for human action recognition by using
feature fusion," Computer, vol. 3, p. 5, 2023.

S. Khan, S. H. Noorani, A. Arsalan, A. Mahmood, U. Rauf, and Z. Ali, "Classification of human physical activities and
postures during everyday life," in 2023 18th International Conference on Emerging Technologies (ICET) (pp. 98-103).
IEEE, 2023.

S. Khan et al., "A framework for daily living activity recognition using fusion of smartphone inertial sensors data," in
2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (pp. 1-6). IEEE,
20238.

H. Zhu, J. Guo, Z. Shao, Y. Zhang, Z. Ding, and H. Gong, "Extra-trees for human activity recognition using wearable
sensors," in 2022 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS) (pp. 801-804,).
IEEE, 2022.

H. Nematallah and S. Rajan, "Quantitative analysis of mother wavelet function selection for wearable sensors-based
human activity recognition," Sensors, vol. 24, no. 7, p. 2119, 2024. https://doi.org/10.8390/524072119

A. McCallum, "Graphical models, lecture2: Bayesian network represention," PDF). Retrieved, vol. 22, 2019.

A. Singh and S. Sharma, "Analysis on data mining models for internet of things," presented at the In 2017
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2017, pp. 94—100, 2017.

M. Nalluri, M. Pentela, and N. R. Eluri, "A scalable tree boosting system: XG boost," International Journal of Research
Studies in Science, Engineering and Technology, vol. 7, no. 12, pp. 86-51, 2020.

M. Suyal and P. Goyal, "A review on analysis of k-nearest neighbor classification machine learning algorithms based
on supervised learning," International Journal of Engineering Trends and Technology, vol. 70, no. 7, pp. 43-48, 2022.

S. Walczak, Artificial neural networks. In Encyclopedia of information science and technology. Hershey, PA: 1GI Global,
2018.

Z.A.Ali, Z. H. Abduljabbar, H. A. Tahir, A. B. Sallow, and S. M. Almufti, "eXtreme gradient boosting algorithm with
machine learning: A review," Academic Journal of Nawroz University, vol. 12, no. 2, pp. 320-334, 2023.
https://doi.org/10.25007/ajnu.vi2n2al612

A.N. S. Kinasih, A. N. Handayani, J. T. Ardiansah, and N. S. Damanhuri, "Comparative analysis of decision tree and
random forest classifiers for structured data classification in machine learning," Science in Information Technology
Letters, vol. 5, no. 2, pp. 13-24, 2024.

A. Sanmorino, L. Marnisah, and H. Sunardi, "Feature selection using extra trees classifier for research productivity
framework in Indonesia," in Proceeding of the Srd International Conference on Electronics, Biomedical Engineering, and
Health Informatics: ICEBEHI 2022, 5—6 October, Surabaya, Indonesia, 2023, pp. 13—21, 2023.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I: 1119-1137, 2026

DOI: 10.55214/2576-8484.v1011.11864

© 2026 by the authors; licensee Learning Gate


https://doi.org/10.1016/j.future.2017.11.029
https://doi.org/10.1016/j.dajour.2023.100282
https://doi.org/10.1016/j.asoc.2022.109363
https://doi.org/10.1038/s41598-021-95947-y
https://doi.org/10.1504/IJSNET.2023.128503
https://doi.org/10.1007/s10462-021-10116-x
https://doi.org/10.4108/eai.28-5-2020.164824
https://doi.org/10.3390/s24072119
https://doi.org/10.25007/ajnu.v12n2a1612

1137

[24] N. A. Choudhury, S. Moulik, and D. S. Roy, "Physique-based human activity recognition using ensemble learning and
smartphone  sensors," IEEE  Sensors  Jowrnal, vol. 21, no. 15,  pp. 16852-16860,  2021.
https://doi.org/10.1109/JSEN.2021.3077563

[25] M. Muntean and F.-D. Militaru, "Metrics for evaluating classification algorithms," in Education, Research and Business
Technologies: Proceedings of 21st International Conference on Informatics in Economy (IE 2022), 2023.

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I: 1119-1137, 2026
DOI: 10.55214/2576-8484.v1011.11864
© 2026 by the authors; licensee Learning Gate


https://doi.org/10.1109/JSEN.2021.3077563

