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Abstract: An intelligent information system for sensor-based human activity analysis using data mining 
techniques presents a comprehensive study on developing a system that employs data mining to analyze 
human activities based on sensor data. With advancements in wearable technologies and embedded 
sensor systems, such as smartphones, smartwatches, and various environmental and object-attached 
sensors, it is now possible to automatically and continuously recognize and track human activities 
through sensor data collection. These techniques are generally known as sensor-based human activity 
analysis and can be applied across multiple fields, including healthcare, entertainment, and artificial 
intelligence system design. The core approach involves abstracting sensor data into higher-level activity 
recognition through various data processing and mining methods. In this study, eight classifiers are 
applied to the HARSense dataset, including naïve Bayes (NB), decision tree, Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), neural network, XGBoost, random forest (RF), and extra trees 
classifier (ETC). The models are evaluated on the HARSense dataset, with the extra trees classifier 
achieving the highest accuracy of 97.12%.  

Keywords: Data mining techniques, Extra trees classifier (ETC), HARSense dataset, Decision tree, Human activity 
recognition (HAR), Random forest (RF). 

 
1. Introduction  

Beyond typical application areas where research in human activity analysis is often focused, such as 
health, sports, time and workplace management, or monitoring the qualitative behavior of patients with 
certain neurological impairments, smart environments frequently address activity analysis in situations 
where only raw sensor signals are available. These applications require sensory devices capable of 
recording signals over time related to human activities, which intelligent algorithms can recognize from 
these data sets. Experiences with this type of problem, even before the IoT revolution, led to the 
development of a sensor called HARSense. This sensor, through its components and a Data Mining 
tool, can generate the data necessary to solve human activity analysis problems. It has proven 
particularly useful in the simulation of realistic sensor data files [1-3]. 

Human activity recognition (HAR), in HARSense, involves using a computational model to 
automatically identify and classify human activities based on observations from sensors attached to the 
body, such as accelerometers, gyroscopes, magnetometers, or others. These small devices can 
accompany humans everywhere, unlike environmental sensors. In recent years, many researchers have 
focused on developing hardware and software to support various applications within smart 
environments [4, 5]. 

However, existing methods and applications of sensor-based human activity analysis have not fully 
explored the capability of data mining in processing raw sensor data and extracting more complex 
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activity features. At the same time, as a form of data-driven science, the emerging technology called 
"Big Data" heavily relies on data mining techniques for pattern analysis and knowledge discovery. In 
recent years, integrating data mining techniques into human activity analysis has gained increasing 
attention in the fields of activity monitoring and pervasive computing. It is important to study the use of 
modern data mining tools and methods and to develop new intelligent information systems for sensor-
based human activity analysis. The outcomes of such studies will not only provide advanced solutions 
for current activity analysis approaches but also open opportunities for developing more sophisticated 
analyses and applications using recognized activity data [6]. 

Human action analysis has gained significant attention in computer vision and artificial intelligence 
over recent years. It is a crucial technology for context-aware systems and devices, providing essential 
inputs for understanding human intentions and behaviors in various settings. Typically, human activity 
recognition systems rely on sensory data collected by specialized sensors that monitor specific activities 
and environmental factors. These sensors generally include cameras, microphones, and accelerometers, 
which capture information about a subject's actions and movements across visual, auditory, and motor 
domains [7, 8]. 

The term of human activity within the context of the HARSense dataset refers to the process of 
humans making observable and actionable decisions in both real and virtual environments. To describe 
group behavior, unique patterns in motion and posture during various routine activities are identified. 
The collective responses observed are correlated with these activities. Support for understanding human 
activities is best achieved through analyzing human decision-making processes using learning methods. 
The research aims to perform this analysis from device logs employing machine learning and data 
mining techniques [1]. 

This paper employs machine learning and data mining techniques for human activity analysis in the 
HARSense dataset, utilizing eight classifiers: naive Bayes (NB), decision tree, Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), neural network, XGBoost, random forest (RF), and extra trees 
classifier (ETC). We achieved promising results with the extra trees classifier. 

The remainder of this study is organized as follows. Section 2 presents an overview of the most 
relevant studies and existing approaches related to activity recognition, highlighting their 
methodologies and limitations. Section 3 introduces the main machine learning classifiers employed in 
this work, outlining their theoretical foundations and comparative characteristics. Section 4 describes 
the proposed methodology, including dataset description, preprocessing steps, and evaluation measures. 
Section 5 reports and analyzes the experimental results obtained from both individual and ensemble 
classifiers, supported by performance metrics and confusion matrix visualizations. Finally, Section 6 
concludes the study by summarizing key findings and discussing potential directions for future research. 
 

2. Related Work  
Hassan et al. [2] introduced a robust human action analysis framework utilizing deep learning and 

smartphone sensors. The method involved extracting efficient features from raw data, including 
autoregressive coefficients, median, and mean. These features were processed using kernel principal 
component analysis (KPCA) and linear discriminant analysis (LDA) to enhance robustness. 
Subsequently, a Deep Belief Network (DBN) was trained for effective action recognition. The approach 
was tested on twelve different physical actions, achieving a mean recognition rate of 89.61% and an 
overall accuracy of 95.85% [2]. 

Chin et al. [9] investigated Daily Actions analysis on the human actions primitives recognition 
dataset. They studied human action data captured through classification by a wrist-worn accelerometer. 
The classification was based on various daily activities performed by a normal person. A wrist-worn tri-
axial accelerometer was used to collect acceleration data along the X, Y, and Z axes during each test. 
Nine statistical parameters, combined with energy spectral density and the relationships between 
accelerometer interpretations, were used to extract sixty-three features from the raw data. For the 
classification process, Ranker, Tabu Search, and Particle Swarm Optimization were employed to test 
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and select the most relevant features. Classification algorithms such as Random Forest, Support Vector 
Machine, and k-Nearest Neighbors were implemented. The results showed that SVM with a radial basis 
function kernel achieved the highest accuracy, with a correct classification rate of 91.5% [9]. 

Padmaja et al. [10] introduced a random split point procedure using the Extra Trees method for 
human activity recognition. It generates K random split points from all dataset features and selects the 
best based on the maximum information gain score. The approach was tested on two datasets: HAR and 
HAPT, containing six and twelve activities, respectively. The HAR dataset includes smartphone sensor 
signals for three static and dynamic daily activities, while the HAPT dataset features six postural 
transitions from these activities. The proposed method achieved an accuracy of 92.63% on HAPT and 
94.16% on HAR datasets, demonstrating its effectiveness in activity recognition tasks [10]. 

Bukht et al. [11] introduced a framework based on a decision tree for human activity recognition 
using feature fusion. The study emphasizes feature fusion and optimal feature reduction. The proposed 
method involves four main steps: first, frame preprocessing to enhance video contrast and remove noise; 
second, applying a statistical method for silhouette extraction; third, feature extraction and fusion using 
SIFT and ORB; and fourth, feature reduction with t-distributed stochastic neighbor embedding (t-SNE). 
The final step is action recognition via a decision tree. Experiments conducted on UT Interaction data 
achieved a recognition rate of 95% [11]. 

Khan et al. [12] developed a human action recognition model utilizing the Human Action 
Recognition Trondheim (HARTH) dataset. The model aims to identify various daily human activities in 
free-living environments, which are challenging due to unplanned actions. While controlled data can 
yield optimal results, real-world applications often face difficulties. The framework employs machine 
learning classifiers with time-domain features extracted from sensor data. Specifically, the multilayer 
perceptron (MLP) classifier achieved an accuracy of 92.92% [12]. 

Khan et al. [13] applied human action recognition in the wild, which involved selecting an in-the-
wild, extra-sensory dataset comprising six activities: bicycling, walking, running, standing, sitting, and 
lying down. Three machine learning classifiers, decision trees, random forest, and k-nearest neighbors, 
were used for time domain feature extraction and human action recognition. The proposed system 
achieved an accuracy of 89.98% with the random forest classifier [13]. 

Zhu et al. [14] proposed applying the Extra-Trees classifier for human action recognition (HAR) 
using a wearable sensor device carried by the experimenter to collect motion data. The experiment 
compared three classifiers: decision tree, KNN, and extra-trees. The accuracy results were 87.75%, 
90.77%, and 93.25%, respectively, with the extra-trees classifier achieving the highest accuracy [14]. 

Nematallah and Rajan [15] introduced a study that conducted a quantitative analysis of mother 
wavelet function selection for wearable sensors used in human action analysis. It employed a method 
combining wavelet packet transform with the energy-to-Shannon-entropy ratio, utilizing two 
classification algorithms: decision tree (DT) and support vector machines (SVM). The researchers 
examined six different mother wavelet families with varying numbers of vanishing points. Experiments 
were performed on eight datasets: HAR70+, REALDISP, PAMAP2, DaLiAc, HARsense, HARTH, 
WISDM Activity Prediction, and MHEALTH. The balanced accuracy achieved with decision tree (DT) 
and support vector machines (SVM) was 74.62% and 76.53%, respectively, using the Coif14-based 
wavelet packet transform [15]. 

Table 1 summarizes the related work representing the study, the dataset used, the applied method, 
and its performance measures. 
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Table 1. 
Related work summary. 

Study  Dataset Method Advantages Disadvantages Application Accuracy 

Hassan, et al. 
[2]  

Smartphone 
Dataset 

DBN Robust feature 
extraction using 
KPCA and DBN 
enables better 
activity distinction 

Complex feature-
engineering and training 
increase system 
difficulty 

Fitness and 
Lifestyle Apps 

95.85% 

Chin, et al. 
[9]  

Human 
Motion 
Primitives 
Detection 
Dataset 

SVM Utilizes a diverse age 
group (19–91 years) 
and multiple daily 
activities for broader 
relevance 

Potential for reduced 
accuracy with specific 
activities due to wrist 
sensor placement 

Wearable 
Activity 
Trackers 

91.5% 

Padmaja, et al. 
[10]  

HAR  
HAPT  

ETC Reduced 
computational time 
and faster model 
building due to 
randomized split 
selection 

Still requires a sizable 
dataset and careful 
parameter selection for 
optimal performance 

Elderly Care 92.63% 
94.16% 

Bukht, et al. 
[11]  

UT 
interaction 
data 

DT The method is 
simple, interpretable, 
and efficient using a 
decision tree. 

Only one classifier (DT) 
is used, without 
comparison to more 
advanced models. 

Surveillance 
systems 

95% 

Khan, et al. 
[12]  

HARTH MLP Focuses on free-
living environments, 
making the model 
more realistic than 
scripted setups. 

Limited generalization 
since performance may 
differ across varied real-
life conditions. 

rehabilitation 92.92% 

Khan, et al. 
[13]  

in-the-wild 
extra-
sensory 
dataset 

RF Evaluated on an 
extra-sensory dataset, 
enhancing real-world 
applicability. 

Limited to only six 
predefined activities, 
restricting 
generalizability. 

patient activity 
tracking 

89.98% 

Zhu, et al. 
[14]  

HAR ETC Uses wearable sensor 
data, which is reliable 
and widely applicable. 

Focuses only on 
traditional ML classifiers 

motion-based 
interaction 

93.25% 

Nematallah 
and Rajan 
[15]  

HARsense DT 
SVM 

Proposes an optimal 
mother wavelet 
selection method, 
improving HAR 
performance. 

The computational 
complexity of the 
wavelet packet transform 
may hinder real-time 
applications. 

activity-aware 
automation 

74.62% 
76.53% 

 

3. Preliminaries 
This section offers an overview of the machine learning classifiers used in this study. Each classifier 

has unique characteristics, assumptions, and learning strategies that affect its performance across 
different data domains. The classifiers include traditional statistical models, distance-based algorithms, 
tree-based ensembles, and neural architectures. Their theoretical foundations, advantages, and 
limitations are briefly summarized to provide context for their selection and comparative analysis within 
the proposed framework. 

i. Naive Bayes Classifier (NB) 
Naive Bayes classifiers are a family of linear probabilistic classifiers assuming features are 
tentatively independent given the target class. The strength of this assumption is what gives 
the classifier its name. These classifiers are among the simplest Bayesian network models [16].  

ii. Support Vector Machine (SVM) Classifier 
Support vector machines (SVMs) are supervised max-margin models with associated learning 
algorithms that analyze data for classification and regression analysis. SVMs can efficiently 
perform non-linear classification using the kernel trick [17].  

iii. Decision Tree Classifier 
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A Decision Tree Classifier is a supervised machine learning algorithm that uses a tree-like 
model to classify data. It is a popular and widely used algorithm because of its effectiveness, 
interpretability, and simplicity. Decision Trees can handle missing values by using surrogate 
splits. They are robust to noisy data, as the tree structure can absorb some noise levels. 
However, Decision Trees may suffer from overfitting, especially when the tree is deep or the 
sample size is small. Additionally, training Decision Trees can be computationally expensive, 
particularly for large datasets [18].  

iv. K-Nearest Neighbors (KNN) Classifier 
The K-Nearest Neighbors (KNN) classifier is a supervised machine learning algorithm that 
classifies new data points based on the majority vote of their k-nearest neighbors. KNN is easy 
to implement and understand. It can manage non-linear relationships between features and is 
robust to noisy data. However, KNN can be computationally expensive for large datasets. 
Finding the optimal value of k can be challenging, and KNN is sensitive to feature scaling [19].  

v. Neural Network Architecture 
A neural network architecture is a type of machine learning model inspired by the structure and 
function of the human brain. It consists of interconnected nodes (neurons) arranged in layers 
that transform and process inputs to produce outputs. Neural networks can approximate any 
continuous function and handle noisy or missing data. They can also be parallelized for efficient 
computation. However, they require significant computational resources and may overfit 
training data if not properly regularized. Additionally, complex neural network models can be 
difficult to interpret [20].  

vi. Xgboost Classifier 
XGBoost (Extreme Gradient Boosting) is an open-source, supervised machine learning 
algorithm that uses gradient boosting to classify data. It is widely employed for classification 
and regression tasks due to its high performance, scalability, and interpretability. XGBoost is 
known for its accuracy and speed. It provides feature importance scores, facilitating result 
interpretation. Additionally, XGBoost can handle missing values without imputation and 
manage large datasets efficiently. However, it requires careful hyperparameter tuning to 
prevent overfitting and demands significant computational resources for large datasets [21].  

vii. Random Forest (RF) Classifier 
A Random Forest (RF) classifier is an ensemble learning algorithm that uses multiple decision 
trees for data classification. It is popular and widely used in machine learning due to its 
simplicity, interpretability, and effectiveness. RF often achieves high accuracy because of its 
ensemble approach. It can handle noisy data and outliers effectively. RF provides feature 
importance scores, making results easier to interpret. Additionally, RF can manage high-
dimensional data with many features. However, RF can be computationally expensive for large 
datasets and may overfit if the number of decision trees is too high [22].  

viii.      Extra Trees Classifier (ETC). 
The Extra Trees Classifier (ETC) is an ensemble learning method that uses multiple decision 
trees to classify data. It is similar to the Random Forest Classifier but with key differences. ETC 
trains faster than Random Forest because it does not use bootstrap sampling. It can handle 
noisy data and outliers effectively. ETC provides feature importance scores, which facilitate 
result interpretation. It is capable of managing high-dimensional data with many features. 
However, ETC may have lower accuracy than Random Forest due to the lack of bootstrap 
sampling. Additionally, ETC can overfit if the number of decision trees becomes too large [23].  

To facilitate a clearer understanding, Table 2 presents a comparative summary of the main 
properties, advantages, and limitations of the discussed machine learning classifiers. 
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Table 2. 
ML Classifiers Comparison. 

Classifier Advantages Disadvantages Common Applications 

NB - Fast and Simple  
- Works with less data  
- handle high dimensions 

- "Naive" Assumption of feature 
independence  
- Often less accurate than complex 
models 

- Text Classification  
- Sentiment Analysis  
- Real-time Prediction 

SVM - Effective in high dimensions  
- Versatile with different kernels 

- Slow on large datasets  
- Not great with noisy or 
overlapping data 

- Image Classification  
- Bioinformatics  
- Handwriting Recognition 

Decision Tree - Easy to interpret  
- Handles both numerical and 
categorical data  
- Non-parametric 

- Prone to overfitting  
- Unstable; small data changes can 
alter the tree 

- Credit Scoring  
- Customer Segmentation  

KNN - Simple and intuitive  
- No training phase  
- Adapts easily to new data 

- Slow prediction time on large 
datasets  
- Performance degrades with many 
features  

- Recommender Systems  
- Image Recognition  
- Anomaly Detection 

Neural 
Network 

- Learns complex, non-linear 
patterns  
- Can automatically learn features 

- "Black box" nature makes it hard 
to interpret - Requires large 
amounts of data  
- Computationally expensive to 
train 

- Image and Speech 
Recognition  
- Natural Language 
Processing (NLP)  
- Autonomous Driving 

XGBoost - high performance  
- Built-in regularization to prevent 
overfitting  
- Natively handles missing values 

- Complex and more difficult to 
tune  
- Can be sensitive to 
hyperparameters 

- Sales Forecasting  
- Fraud Detection 

RF - High accuracy and robust to 
overfitting  
- Handles large datasets efficiently  
- Provides feature importance scores 

- Less interpretable than a single 
decision tree  
- Can be slow to make predictions if 
it has many trees 

- Banking (credit risk)  
- Stock Market Prediction  

ETC - Very fast to train  
- Added randomness can reduce 
variance  

- Increased randomness might 
slightly increase bias  

- Feature Selection  

 

4. Methodology 
The proposed methodology for human activity recognition is organized into five main stages, as 

shown in Figure 3. The process begins with data acquisition, where motion signals are collected using 
smartphone sensors such as the accelerometer and gyroscope. The collected data then undergoes 
preprocessing, which includes cleaning and label encoding to ensure consistency and noise removal. 
During the model training phase, the processed dataset is split into training and testing subsets, and the 
Extra Trees Classifier is used to learn activity patterns. The trained model is subsequently evaluated in 
the model evaluation stage using key performance metrics such as accuracy, precision, recall, and F1-
score. Finally, the activity recognition stage interprets the model outputs to identify various human 
activities. This structured workflow provides a systematic and reproducible approach for accurate 
activity classification.  
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Figure 1. 
Methodology. 

 
This section outlines the methodological framework employed in this study, encompassing data 

acquisition, preprocessing, and model evaluation. It begins with a detailed description of the dataset 
used, including its structure, sources, and relevant attributes. The subsequent subsection discusses the 
preprocessing techniques applied to prepare the data for model training, such as cleaning, normalization, 
and encoding. Finally, the evaluation measures used to assess the performance and reliability of the 
proposed models are presented. Together, these components establish a systematic approach that 
ensures the robustness and validity of the experimental results. 
 
4.1. Data Set Description  

The experiments were based on the HARSense dataset, which contains subject-wise daily living 
activity data collected from smartphone gyroscope and accelerometer sensors. The smartphone was 
fixed on users’ front and waist pockets. Running was performed on a football playground, while all other 
activities took place in a laboratory. The dataset comprises 17 columns and 94,198 rows. The activities 
include walking, standing, upstairs, downstairs, running, sleeping, and sitting. The column descriptors 
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are: RV (Rotational Vector in x, y, and z axes), RR (Rotational Rate in x, y, and z axes), Gravity 
(Gravity in x, y, and z axes), Acc (Linear Acceleration in x, y, and z axes), and AG (Acceleration due to 
Gravity in x, y, and z axes) [24]. Table 3 provides detailed descriptions of the dataset features. 
 
Table 3. 
HARSense Data Features Description. 

Column  Description Sensor/Origin 
AG-X, AG-Y, AG-Z Angular Gyroscope. These values represent the rate of rotation (angular 

velocity) of the device around its X, Y, and Z axes. 
Gyroscope 

Acc-X, Acc-Y, Acc-Z Total Acceleration. This is the raw acceleration measured along the X, Y, and Z 
axes. It includes both the force of gravity and the linear acceleration caused by 
the user's motion.  

Accelerometer 

Gravity-X, Gravity-
Y, Gravity-Z 

Gravity Vector. This is the isolated gravity component of the total acceleration. 
It indicates the direction of "down" relative to the device's coordinate system.  

Sensor Fusion 

RR-X, RR-Y, RR-Z Rotation Rate. It measures the speed of rotation around the X, Y, and Z axes. Gyroscope 

RV-X, RV-Y, RV-Z Rotation Vector. This is a composite value representing the device's orientation 
in space. It is derived by fusing data from the accelerometer and gyroscope. The 
three values are components of a vector, with the direction indicating the axis of 
rotation and the magnitude indicating the angle of rotation. 

Sensor Fusion 

Cos Cosine of an Angle. the cosine of the angle between the device's main axis and 
the vertical (gravity) vector. 

Calculated 
Feature 

Activity Activity Label. This is the target variable you are trying to predict. It is a 
categorical label describing the physical activity being performed at that moment 
(e.g., 'walking', 'sitting', 'running'). 

Ground Truth 

 
Figure 2 illustrates the distribution of data samples across seven activity classes in the dataset. The 

most common activities are 'Walking' (25,371 samples) and 'Sitting' (19,784 samples), forming the 
majority. Conversely, activities like 'downstairs' (8,487 samples) and especially 'Sleeping' (2,377 samples) 
are significantly underrepresented. 
 

 
Figure 2. 
Activity Target Distribution. 
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4.2. Data Preprocessing 
To ensure the integrity and suitability of the HAR Sense dataset for machine learning applications, 

comprehensive data preprocessing steps were implemented to enhance data quality and model 
performance. 

During the data preprocessing stage, the dataset was examined for missing and incomplete values. 
The “Acc-Y” column contained several missing values. To maintain data consistency and prevent errors 
during model training, these missing values were imputed with zeros using the command. This 
approach assumes that the absence of sensor readings corresponds to a neutral state (no acceleration) 
along the Y-axis, which is reasonable for inertial sensor data. 

An exploratory data analysis was conducted to understand the characteristics of the sensor features, 
with the resulting distributions visualized in Figure 3. The gyroscopic measurements (AG- and RR- 
prefixes) exhibit sharp, leptokurtic distributions centered at zero, indicating that the device was 
predominantly static, with high-velocity movements appearing as outliers. In contrast, the total 
acceleration (Acc-) features show a wider variance, characteristic of dynamic human motion. The gravity 
vector components reveal a primary device orientation, with Gravity-Y heavily skewed toward 9.8 m/s2. 
The multimodal distributions of the Rotation Vector (RV-) components and the cos feature confirm that 
a diverse range of device orientations and user postures were captured. This variety is essential for 
training a robust and generalizable activity recognition model. 

 

 
Figure 3. 
Features Distribution. 

 
First, non-informative columns were removed to reduce dimensionality and noise, aligning with 

data cleaning best practices. Missing values in the dataset were imputed with zeros to prevent adverse 
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effects on model training. Outlier analysis was conducted using statistical methods to identify 
anomalous data points that could skew model learning. These steps aimed to improve data quality and 
model performance by systematically addressing irrelevant features, missing data, and outliers. 

Next, the encoding of categorical variables was performed. Activity labels, being categorical, were 
converted into a numerical format using label encoding techniques. This step is essential for machine 
learning algorithms to process categorical data effectively. Each activity was assigned a numeric value 
(Table 4). 
 
Table 4. 
Numeric value association for each activity. 

Activity Numerical assignment 
Running 0 
Sitting 1 

Sleeping 2 

Standing 3 
Walking 4 

Downstairs 5 
Upstairs 6 

 
Following the cleaning and transformation steps, the dataset was structured to facilitate machine 

learning modeling. This involved organizing the data into a format suitable for algorithmic processing, 
ensuring that all features were appropriately scaled and encoded. 

Finally, to evaluate model performance, the dataset was divided into training and testing subsets, 
with 80% allocated for training and 20% for testing. 

 
4.3. Evaluation Measures 

The performance of the proposed models is evaluated using multiple measures, which are accuracy, 
precision, recall, and F1-score. These measures are briefly explained in the following paragraphs 

A) Accuracy is the ratio of correct predictions to total predictions, calculated as Accuracy = (TP + 
TN) / (TP + FP + FN + TN). It is useful when classes are balanced, but it can be misleading with 
imbalanced classes [25].  

B) Precision is the number of correct classes returned by the classification model, calculated as 
Precision = TP/(TP+FP). It is useful when the cost of false positives is high [25].  

C) Recall is the ability of a model to find all relevant cases within a dataset, and it is calculated as: 
Recall = TP/(TP+FN). Recall is useful when the cost of false negatives is high [25].  

D) F1-Score is the harmonic mean of precision and recall and can be determined as: F1 = 2 
*Precision * Recall/(Precision + Recall) or F1 = 2*TP/(2*TP + FP + FN). The F1-score 
provides a balanced measure of both precision and recall [25].  

 

5. Experiment Results 
All experiments were conducted using Google Colaboratory (Colab), a cloud-based platform that 

provides a flexible and efficient environment for developing and testing machine learning models. The 
Colab environment was configured to run on Ubuntu 22.04.4 LTS (64-bit) with Python 3.10. The 
computational setup included an Intel(R) Xeon(R) CPU @ 2.20 GHz, 12 GB of RAM, and an optional 
NVIDIA Tesla T4 GPU with 16 GB VRAM, which was utilized to accelerate training processes where 
applicable. 

Multiple experiments have been conducted to examine the performance of individual classifiers, 
such as Neural Network architecture, Naïve Bayes, decision trees, SVM, and KNN classifiers. The 
results of these classifiers were compared with those obtained from ensemble learning techniques, 
including random forest, extra trees, and XGB.  
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In these experiments, the dataset was divided into 80% for training and 20% for testing. The results 
of the classical individual classifiers are listed in Table 5, and Figure 4 shows their accuracy. The results 
of the ensemble classifiers are in Table 6, with Figure 5 illustrating their accuracy. Precision, recall, and 
F1-score were calculated for each activity, followed by overall accuracy. Both macro-average and 
weighted-average metrics were computed; the macro-average treats all activities equally, while the 
weighted-average assigns weights based on the ratio of samples per activity.  

In addition to the quantitative performance metrics, the confusion matrices for both the individual 
and ensemble classifiers are presented in Figures 4 and 5, respectively. These matrices offer a detailed 
visualization of each model’s classification performance across different activity categories, highlighting 
correctly and incorrectly predicted instances. 
 
Table 5. 
Classical individual classifiers' results for all activities. 

  Activity no. 0 1 2 3 4 5 6 macro avg. weighted avg. 

k
n

n
 

Precision     0.95 0.99 0.99 0.98 0.9 0.88 0.86 0.94 0.93 
Recall   0.9 1 1 0.99 0.96 0.78 0.84 0.93 0.93 

F1-score    0.92 1 0.99 0.99 0.93 0.83 0.85 0.93 0.93 
Accuracy 0.9341 

sv
m

 

Precision     0.92 0.96 0.99 0.85 0.71 0.83 0.82 0.87 0.85 
Recall   0.88 1 1 0.96 0.93 0.43 0.39 0.8 0.84 

F1-score    0.9 0.98 0.99 0.9 0.8 0.57 0.53 0.81 0.82 
Accuracy 0.8358 

D
ec

is
io

n
 t

re
e Precision     0.9 0.99 1 0.99 0.91 0.8 0.78 0.91 0.91 

Recall   0.88 1 1 0.99 0.91 0.8 0.8 0.91 0.91 
F1-score    0.89 1 1 0.99 0.91 0.8 0.79 0.91 0.91 

Accuracy 0.9132 

N
ai

v
e 

B
ay

es
 Precision     0.83 0.95 1 0.77 0.57 0.49 0.46 0.72 0.71 

Recall   0.66 0.86 0.98 0.9 0.89 0.15 0.22 0.67 0.71 

F1-score    0.74 0.91 0.99 0.83 0.69 0.23 0.3 0.67 0.68 

Accuracy 
0.7074 

N
eu

ra
l 

n
et

w
o
rk

 Precision     0.94 1 1 0.99 0.93 0.85 0.87 0.94 0.94 

Recall   0.93 1 1 0.99 0.95 0.83 0.83 0.93 0.94 
F1-score    0.94 1 1 0.99 0.94 0.84 0.85 0.94 0.94 

Accuracy 0.9406 
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Figure 4. 
Confusion matrices of classical machine learning algorithms. 
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Table 6. 
Ensemble classifiers' results for all activities. 

  Activity No. 0 1 2 3 4 5 6 macro avg. weighted avg. 
X

G
 B

o
o
st

 

precision     0.96 1 1 1 0.94 0.92 0.89 0.96 0.96 
recall   0.96 1 1 1 0.96 0.87 0.88 0.95 0.95 

f1-score    0.96 1 1 1 0.95 0.9 0.89 0.96 0.96 
accuracy 0.958 

R
an

d
o
m

 F
o
re

st
  

precision     0.94 1 1 1 0.95 0.97 0.91 0.96 0.97 
recall   0.96 1 1 1 0.97 0.85 0.91 0.96 0.96 

f1-score    0.95 1 1 1 0.96 0.91 0.91 0.96 0.96 

accuracy 0.9625 

E
x

tr
a_

tr
ee

s 

precision     0.96 1 1 1 0.96 0.97 0.93 0.97 0.97 

recall   0.97 1 1 1 0.98 0.89 0.92 0.96 0.97 

f1-score    0.97 1 1 1 0.97 0.93 0.93 0.97 0.97 

accuracy 0.9712 

 
It can be observed from the results of the experiments conducted using individual classifiers that the 

KNN classifier achieved a high accuracy of 93.41%. The F1-scores for all activities exceed 0.90, although 
activity 5 has an F1-score of 0.83, possibly due to overlapping features with other activities. Among all 
classifiers, Naive Bayes had the lowest accuracy at 70.74%, indicating difficulties in modeling complex 
activity patterns. Conversely, the neural network achieved the highest accuracy of 94.06%, owing to its 
capacity to model complex feature relationships. However, neural networks require proper tuning to 
prevent overfitting. 

The results of the conducted experiments show that ensemble learning methods significantly 
outperform individual classifiers. Two classifiers, KNN and Neural Networks, achieved high accuracies 
of 93.41% and 94.06%, respectively. Conversely, Naive Bayes and SVM had the lowest accuracies of 
70.74% and 83.58%, respectively, with difficulties in identifying Activities 5 and 6. The decision tree 
classifier achieved a moderate accuracy of 91.32%. 

Ensemble learning classifiers, including XGBoost, Random Forest, and Extra Trees, achieved 
superior accuracies of 95.81%, 96.25%, and 97.12%, respectively. These models outperformed individual 
classifiers. Extra Trees yielded the highest accuracy, macro average F1-score, and weighted average F1-
score at 97.12%, 97%, and 97%, respectively. Most classifiers accurately recognized Activities 1, 2, and 
3, but faced difficulties with Activities 5 and 6, particularly Naive Bayes. These findings confirm that 
ensemble models outperform individual classifiers in HAR recognition by combining multiple models to 
enhance prediction robustness. 
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Figure 5. 
Confusion matrices of ensemble machine learning algorithms. 

 
Table 7 summarizes the results from all classifiers regarding our experiment based on the 

HARSense dataset, presenting accuracy, macro average, and weighted average for precision, recall, and 
F1-score. Figures 6 and 8 illustrate the accuracy, macro, and weighted averages for precision, recall, and 
F1-score, respectively, from all applied classifiers.  

Our accuracy results are compared against those from Nematallah and Rajan [15], who used 
decision tree (DT) and support vector machines (SVM), achieving 74.62% and 76.53%, respectively, 
with the coif14-based wavelet packet transform for the HARSense dataset. Our findings indicate that 
the most effective machine learning technique for human activity analysis is the extra trees classifier, 
with an accuracy of 97.12%.  
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Table 7. 
Summary results for the proposed methods. 

Classifier Accuracy 
Precision Recall F1-Score 

Macro   
Avg 

Weighted 
Avg 

Macro   
Avg 

Weighted 
Avg 

Macro   
Avg 

Weighted 
Avg 

Naive_bayes 0.7074 0.72 0.71 0.67 0.71 0.67 0.68 

svm 0.8358 0.87 0.87 0.80 0.84 0.81 0.82 
Decision_tree 0.9132 0.91 0.91 0.91 0.91 0.91 0.91 

knn 0.9341 0.94 0.93 0.93 0.93 0.93 0.93 

Neural network architecture keras 0.9406 0.94 0.94 0.93 0.94 0.94 0.94 

XGBoost 0.9580 0.96 0.96 0.95 0.96 0.96 0.96 
Random_forest 0.9625 0.97 0.96 0.96 0.96 0.96 0.96 

Extra_trees 0.9712 0.97 0.97 0.97 0.97 0.97 0.97 

 

 
Figure 6. 
Accuracy results from all applied classifiers. 
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Figure 1. 
Precision macro and weighted average results from all applied classifiers. 

 

 
Figure 8. 
Recall macro and weighted average results from all applied classifiers 
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Figure 9. 
f1-Score macro and weighted average results from all applied classifiers. 

 

6. Conclusion  
The HARSense dataset provides an up-to-date resource for researchers in this domain. We 

conducted experiments using various machine learning techniques, including the Naive Bayes classifier, 
SVM classifier, decision tree classifier, KNN classifier, neural network architecture, XGB classifier, 
random forest classifier, and extra trees classifier. We achieved promising results with the extra trees 
classifier. In future work, we plan to explore other deep learning techniques on the HARSense dataset 
and compare their performance. The most effective machine learning method evaluated for human 
activity analysis was the Extra Trees classifier, with an accuracy of 97.12%.  
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Data that support the findings of this study are available at the following link: 
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