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Abstract: This study explores the transformative potential of TinyML in unmanned aerial vehicles
(UAVs) to address key inefficiencies in traditional search and rescue (SAR) operations, especially in the
context of increasingly severe climate-related disasters. By analyzing peer-reviewed studies in major
technical databases via the PRISMA guidelines, this work highlights advancements in edge computing,
swarm intelligence, and multisensory integration, with a focus on fundamental contributions in
embedded Al and autonomous navigation. UAVs supported by TinyML can achieve low-latency and
energy-efficient real-time processing, thereby enhancing the efficiency of disaster relief operations in
harsh environments. This study emphasizes the need to create synthetic datasets for underrepresented
scenarios, conduct robustness tests under extreme conditions, and adopt privacy-focused decentralized
learning. It connects technological progress with ethical issues such as monitoring risks and equitable
access to disaster technologies. Future research directions can overcome current limitations, including
insufficient validation in practical applications, fragmented policies, and high costs in resource-poor
regions, through interdisciplinary collaboration, transforming theoretical advancements into scalable
and socially responsible TinyML-UAYV system solutions.

Keywords: Artificial Intelligence, Disaster Rescue, Edge Artificial Intelligence, Image Processing, Sustainable
Infrastructure, TinyML, UAV.

1. Introduction

Currently, climate-driven disasters such as wildfires and floods occur frequently worldwide,
highlighting the significant limitations of traditional search and rescue (SAR) operations in resource-
poor areas with vulnerable populations [17]. Traditional methods rely on manual operation and
simulation tools, often leading to delayed responses and increased risks for rescue workers [27]. The
combination of unmanned aerial vehicles (UAVs) and TinyML has transformative potential, offering
real-time, energy-efficient edge computing for disaster management [ 37]. Innovations like lightweight
neural networks and sensor fusion significantly improve the detection of survivors in low-visibility
environments [47], whereas federated learning frameworks enhance the adaptability of distributed UAV
networks [57, these developments highlight the potential of TinyML-UAV systems in addressing
increasing climate-related emergencies [67] such as scenarios requiring rapid assessment of
infrastructure damage 6] or mixed vertical take-off and landing (VIT'OL) operations [7].

Although drone technology development in search and rescue operations has been rapid, several
challenges remain. The literature on drone research often overlooks natural disasters in remote areas
[87, lacks relevant training data, and does not focus sufficiently on government drone regulatory
policies [97]. In addition, there are trust issues such as the lack of transparency in Al-driven systems
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[10]. These challenges highlight the urgent need for inclusive drone search and rescue technology
solutions that balance innovation with social and economic equity in modern society [11, 127].

This paper summarizes the progress of tiny ML-UAV systems, tracing their evolution from the
limitations of past disaster rescue technologies to future innovations. By analyzing peer-reviewed
research, we evaluate innovative approaches such as cluster coordination for scalable disaster coverage,
emphasizing ongoing advancements in the field [137] and biodegradable UAV design to reduce
environmental impact [14]. For example, the use of generative Al to generate synthetic data can
simulate underrepresented scenarios to mitigate geographical bias [157], whereas federated learning
frameworks ensure privacy-sensitive model training. Transparent AI modules, such as explainable
decision systems, address accountability issues, facilitate global regulatory coordination, and simplify
cross-border tasks [167]. These methods aim to transform TinyML-UAV systems into resilient, fair
tools capable of protecting vulnerable groups in various disaster environments. They can also be
extended to applications like forest ecological monitoring [17] and underground infrastructure
maintenance.

2. Evolution of Disaster Rescue Technologies from Past Limitations to Future
Innovations

Historically, disaster rescue operations have faced significant challenges due to reliance on manual
labor, fragmented communication systems, and delayed response times. Early approaches, such as 19th-
century fire brigades and 20th-century motorized units, primarily used handheld tools and analogue
technologies, often resulting in prolonged victim recovery efforts and high responder fatality rates
[187. For example, during the 1985 Mexico City earthquake, rescue teams manually sifted through
debris for days, leading to preventable casualties caused by insufficient situational awareness [197.
Similarly, the 2004 Indian Ocean tsunami revealed critical deficiencies in real-time data collection, as
responders relied on disjointed ground reports and static maps, significantly delaying life-saving
interventions [207]. These limitations highlight the urgent need for technologies capable of functioning
effectively in dynamic, high-risk environments while reducing human exposure [217].

The emergence of unmanned aerial vehicles (UAVs) in the 2010s marked a significant
advancement. Initial deployments, such as during the 2010 Haiti earthquake, demonstrated UAVs'
potential for aerial damage assessment, though they faced high costs and computational limitations. The
late 2010s saw the integration of tiny machine learning (TinyML), which addressed these issues by
enabling edge-based intelligence for real-time processing [227. Advances in hardware, including ARM
Cortex-M processors and TensorFlow Lite for microcontrollers, have progressed [237 and facilitated
the execution of lightweight object detection models with minimal power consumption [77]. Advances in
sensor fusion have further improved capabilities; hybrid systems combining LiDAR, thermal imaging,
and acoustic sensors enhanced detection accuracy in obscured environments, as demonstrated during
the 2023 Tturkiye—Syria earthquakes.

Currently, the application of drones in disaster relief aligns more with Figure 1. Modern and future
drone innovations emphasize scalability and adaptability. The federated learning framework enables
distributed drone networks to collaboratively train models and optimize task allocation in multi-agent
systems, thereby achieving large-scale coverage. Solar-powered designs and modular drones extend
operational time while reducing costs, which is crucial for resource-scarce regions [247]. However,
challenges remain: geographical bias in training data limits the model's generalizability in rural
disasters such as landslides [67, and the fragmented regulation of beyond-visual-line-of-sight drone
flight policies hinders cross-border deployment. Future development will focus on generating synthetic
data via generative Al and adversarial training to enhance robustness under extreme conditions [25],
ensuring that these technologies evolve from experimental tools to fair and life-saving solutions [267].

This shift from human-dependent, slow-response rescue methods to proactive, Al-driven
ecosystems highlights the transformative potential of micromachine learning-drone systems. By
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addressing historical inefficiencies in speed, cost, and adaptability [277], they redefined disaster response
models, enhancing resilience for the affected global population.

Al quel Human
Tfa'”'”g Intervention with
Al Guidance

Disaster Rescue Learning
Environment

Traditional Disaster Response -

Autonomous Drone
Deployment

Figure 1.
Flowchart Overview.

3. Methodology

This study examines the application of TinyML in UAVs for disaster search operations, focusing on
technical constraints and system optimization [287. To ensure methodological rigor, the scope was
intentionally limited to challenges specific to TinyML-UAV systems, excluding broader robotics or
non-edge Al solutions.

The systematic literature search targeted peer-reviewed publications from 2020 to 2025 across four
databases: ScienceDirect, Springer, Scopus, and IEEE Xplore [297. These platforms were chosen for
their comprehensive coverage of computer science and UAV research, including critical domains such as
sensor fusion and swarm coordination (807 and edge computing.

This initial pool of 4,161 articles from databases such as IEEE Xplore, Springer, ScienceDirect, and
Scopus, published between 2020 and 2025, was refined through a systematic selection process for
TinyML drones. The PRISMA diagram in Figure 2 illustrates this methodology. Citation tracking of
included papers identified additional studies, including 6G-enabled FANET architectures [317] and
blockchain-secured edge computing, enhancing the review's comprehensiveness.
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Figure 2.

PRISMA diagram.

The literature search strategy systematically integrated specific domain keywords related to three
pioneering researchers in TinyML-UAYV disaster response: Vijay Janapa Reddy (TinyML optimization),
Daniela Rus (swarm robotics), and Roland Siegwart (autonomous navigation), as shown in the
innovative framework in Figure 3.
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Figure 3.

UAYV Research and Innovations in Disaster Scenarios.

oy radioviy Pgciy

"TinyML drones reflect Reddi's MLPerf Tiny benchmarks [327, focusing on energy-efficient edge
Al for wildfire tracking and victim detection. This term highlights his NASA-collaborated work on
standardized performance metrics for resource-constrained UAVs. "UAV disaster rescue" includes Rus's
decentralized swarm algorithms [337, emphasizing self-healing networks for radiation mapping in
Fukushima-like scenarios. The term highlights her research on ad hoc communication resilience in
connectivity-limited zones. "TinyML automatic search" combines Reddi's edge computing frameworks
with Siegwart's LiDAR-based 3D semantic mapping [347], targeting subcontinent precision in
structural damage assessment during earthquakes. "Autonomous UAYV search" integrates Siegwart's
Airborne Disaster Assessment System (ADAS) [357] with Rus's dynamic path planning models, focusing
on obstacle avoidance in urban debris fields. Citation chaining of pivotal works further identified
advancements in ethical swarm governance [36_] and modular UAV designs. This methodology ensures
technical coherence while addressing scalability gaps, bridging hardware optimizations with real-world
deployment challenges.

4. Literature Review Analysis: Current Approaches in UAV-Based Disaster Search and
Rescue

A systematic analysis of publications from 2020 to 2025 revealed rapid evolution in the application
of TinyML to UAV-based disaster search and rescue (SAR), characterized by conceptual breakthroughs,
technical advancements, and ongoing challenges. Table 1 summarizes annual progress, emerging
trends, and limitations in UAV-based disaster SAR technologies identified in the literature.
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A Comprehensive Survey of Modern and Contemporary Representative Literature on the Development of Unmanned Aerial
Vehicle (UAV) Disaster Relief Technology

Core Concept

Key Advantages

Limitations

Aamer, et al. [3]

Autonomous
navigation via hybrid
neural networks

Adaptive path planning with top-
down attention mechanisms

High computational load in dynamic
environments

Yamamoto, et al.

4]

Multi-sensor fusion for
night-time SAR

LiDAR + thermal imaging for
low-light victim detection

High power consumption and sensor
cost

Akhyar, et al. [87]

Al for disaster
prediction & response

Predictive analytics for multi-

hazard scenarios

Urban-centric training data biases

Chandran and | FANET-based multi- | Scalable coverage in connectivity- | Ad-hoc network latency (50-200ms)
Vipin [97] UAV monitoring limited zones

Alnoman, et al. | 6G-enabled emergency | Sub-meter positioning accuracy Requires 6G infrastructure (limited
[11] localization deployment)

Wang, et al. [20] | Deep learning obstacle | Real-time  collision  detection | GPU dependency (=15W power
avoidance (YOLOvT) draw)

Janapa Reddi, et | TinyML frameworks | <1W power consumption with | 15-80% accuracy loss after model

al. [227] for edge UAVs ARM Cortex-M processors compression

Lim, et al. [257]

Autonomous UAV for
avalanche monitoring

Large-scale terrain mapping (5cm
resolution)

-20°C battery capacity drops by 40%

Banbury, et al. | MLPerf Tiny | Standardized edge Al performance | Trade-off: model size vs. inference
[32] benchmarks metrics speed
Talwandi, et al. | Automated drone | Cross-scenario compatibility Limited real-time adaptability in
[35] navigation systems debris fields
Rakshit, et al. | Edge resource | Dynamic model scaling for energy | Latency spikes under fluctuating task
[37] optimization efficiency loads
(Righteous)
Guo, et al. [38] Task allocation via | 89%  coverage efficiency in | Scalability limits (>50 drones)
discrete PSO simulated disasters
Talebkhah, et al. | Edge-IoV task | Federated learning for privacy | Bandwidth constraints in rural areas
[39] offloading preservation

Heiss, et al. [407] | Thermal-motion 92% accuracy in  smoke/fog | Limited swarm coordination
fusion detection environments capability
Rohr, et al. [417] Hybrid UAV dynamic | GPS-denied precision landing | Integration complexity with legacy

control

(£5cm error)

systems

Zhang, et al. [42]

Multi-objective
planning

path

Warehouse inventory optimization
(30% faster)

High compute demand for real-time
replanning

Recent advancements in UAV technologies for disaster search and rescue (SAR) focus on improving
autonomy, sensor integration, and operational scalability. The literature highlights three main
methodologies: autonomous navigation with edge Al, multi-UAV swarm coordination, and multimodal
sensor fusion, each providing unique benefits while facing ongoing limitations.

4.1. Autonomous Navigation and Real-Time Edge Processing

One of the core directions in current research is deploying lightweight artificial intelligence models
on unmanned aerial vehicle (UAV) platforms to support real-time decision-making in dynamic
environments. Studies have shown that autonomous navigation systems based on TinyML architectures
can achieve low-latency, adaptive path planning, and obstacle avoidance in complex disaster scenarios
[8, 35]. For instance, such systems have been successfully applied in maritime search and rescue
missions, where a variant of the YOLOv7 model, compressed to run on processors consuming less than
1 watt, has enabled the automatic detection of individuals in water [437, significantly enhancing
emergency response efficiency. Edge computing reduces power consumption and communication
dependency. However, in visually challenging environments like heavy smoke or rain, the performance
of these models can still decline considerably, despite their benefits. Literature [44, 457 indicates that
detection accuracy may decrease by 15% to 30%. Additionally, due to the computational limitations of
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embedded hardware, deploying high-resolution models directly is challenging, necessitating a trade-oft
between detection accuracy and energy efficiency in system design. These issues underscore the urgent
need for lightweight neural network architectures that are both efficient and robust to environmental
variations.

4.2. Swarm Intelligence and Distributed Task Allocation

In large-scale disaster response, multi-UAV systems based on swarm intelligence have become a
research focus. The ability of these algorithms to achieve efficient collaborative operations through
bioinspired methods has attracted widespread attention. Studies have shown that using bioinspired
techniques such as discrete particle swarm optimization (PSO) and integration with the flight ad hoc
network (FANET) architecture [9, 467 can effectively coordinate UAV swarms, achieving up to 89%
area coverage efficiency in simulated disaster scenarios. This significantly surpasses the operational
capabilities of single-UAV systems. Such systems improve search efficiency and response speed by
dynamically allocating tasks, such as thermal imaging reconnaissance and communication relay, among
networked UAVs. However, as the swarm size increases, the system's scalability faces severe challenges:
communication delays in FANETSs typically range from 50 to 200 milliseconds, and the risk of
synchronization failure increases, especially in environments where GPS signals are absent [477].
Additionally, to ensure real-time control performance, most swarm architectures must reduce
environmental mapping resolution, compromising perception accuracy. Future research should focus on
developing more reliable low-latency communication protocols and robust decentralized control
mechanisms to achieve high-precision, stable, large-scale UAV collaboration.

4.3. Multimodal Sensor Fusion for Environmental Adaptability

The integration of heterogeneous sensors, such as lidar, thermal imaging cameras, and acoustic
detectors, has become a key technical approach to overcoming the limitations of single-sensor
perception and enhancing adaptability in complex environments [487]. Research indicates that such
fusion frameworks significantly improve target detection capabilities under low-visibility conditions,
especially in scenarios with obstructed views, such as night search and rescue or post-earthquake debris.
For example, unmanned aerial vehicle (UAV) systems that combine thermal imaging and motion
sensing data can more eftectively identify survivors in smoke-filled wildfire areas, demonstrating their
practical value in extreme disaster response. However, the collaboration of multiple sensors also results
in a substantial energy burden. The increased sensor load directly leads to higher power consumption,
reducing flight endurance and limiting continuous deployment in long-duration missions. Additionally,
in harsh conditions such as heavy rainfall, electromagnetic interference, or extremely cold environments
(e.g., subzero temperatures), sensor performance is susceptible to interference, decreasing reliability.
These challenges underscore the urgent need to develop high-efficiency fusion algorithms and more
environmentally robust sensor hardware to achieve stable and sustainable multimodal perception
capabilities.

4.4. Ethical and Regulatory Considerations

Although technological innovation dominates the literature, recent studies have increasingly
emphasized unresolved ethical and operational obstacles [497. Al-driven triage systems exhibit
significant geographical bias because their training data are overly concentrated in urban environments
[87, limiting their applicability in rural or underrepresented areas. Models trained on limited datasets in
specific disaster scenarios may incorrectly prioritize rescue resources, leading to imbalanced responses
[497. Additionally, the "black box" nature of such systems undermines trust between rescue personnel
and affected communities, increasing deployment resistance [50]. The regulatory aspect also faces
significant challenges: inconsistencies in beyond-visual-line-of-sight (BVLOS) policies across different
jurisdictions seriously impede the coordination and implementation of cross-border search and rescue
missions, even when technical conditions are mature [97. These issues indicate that relying solely on
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technological progress is insufficient to achieve fair and efficient disaster response; it is necessary to
combine technological innovation with explainable Al design, data-inclusive governance, and cross-
national regulatory coordination to build a truly reliable and intelligent rescue system.

4.5. Gaps and Future Directions

The integration of TinyML into UAV systems has revolutionized disaster search and rescue (SAR)
operations, enabling real-time edge processing with minimal energy consumption [877]. Studies
demonstrate that optimized Al models achieve low-latency victim detection while maintaining energy
efficiency [517]. A critical advancement for time-sensitive missions involves autonomous navigation
systems that reduce human intervention through adaptive path planning, as observed in disaster
scenarios with complex debris fields [527]. However, these systems face trade-offs: model compression
improves energy efficiency but compromises accuracy in visually challenging environments like smoke-
filled zones or heavy rainfall [457. Similarly, multi-UAV swarm architectures leverage bioinspired
algorithms (e.g., discrete particle swarm optimization [387) to improve coverage efficiency; however,
scalability remains hindered by communication delays and synchronization issues in GPS-denied
regions.

A critical limitation lies in the geographic and ethical biases embedded in current Al-driven
systems. Training datasets skewed toward urban environments result in poor generalization for rural or
underrepresented disaster contexts, as evidenced by misprioritized rescue efforts in specific regional
disasters [507. Regulatory fragmentation further complicates cross-border deployments, delaying
missions despite their technical readiness. Trust deficits arise from opaque Al decision-making,
particularly in high-stakes scenarios lacking transparent justification.

Future research must address these gaps through interdisciplinary solutions. Synthetic data
generation via generative Al can simulate region-specific disasters to mitigate data scarcity and bias.
Federated learning frameworks enable collaborative training while preserving data privacy, enhancing
adaptability to local conditions [397. Robustness in extreme environments may be improved through
adversarial training [407, while dynamic sensor optimization algorithms could enhance adaptability to
real-time conditions. Explainable Al modules, such as attention-based visualization tools, are essential
for building trust among responders.

Sustainable deployment requires cost-effective designs and regulatory harmonization. Modular
UAVs with renewable energy components [537] and energy-harvesting materials could extend
operational endurance in resource-limited regions. Global standards for UAV interoperability and
integrated satellite networks (817 would streamline cross-border missions and ensure connectivity in
infrastructure-damaged zones.

In summary, while TinyML-UAV systems represent a paradigm shift toward proactive disaster
response, realizing their full potential requires balancing technical innovation, ethical governance, and
equitable access. Prioritizing adaptive, transparent, and low-cost solutions will bridge the gap between
theoretical advancements and real-world impact [547, safeguarding vulnerable populations in
increasingly challenging environments [417].

5. Conclusions

Embedding TinyML into unmanned aerial vehicle (UAV) systems has significantly advanced
technological innovation in search and rescue missions, enabling devices to perform low-power, high-
efficiency real-time intelligent processing at the edge. With the aid of lightweight AI models,
multisource sensor fusion, and swarm collaboration mechanisms, the response capabilities and
environmental adaptability of UAVs in complex disaster scenarios have been notably enhanced.
However, the large-scale application of this technology is still constrained by multiple factors, including
the uneven geographical distribution of training samples, the lack of unified regulatory standards across
countries, and ethical issues arising from the lack of transparency in algorithmic decision-making. These
factors collectively affect its wide and fair deployment. The findings of this study are highly consistent
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with existing research results, both highlighting the structural bias of artificial intelligence toward
urban areas in emergency response and warning of the risks associated with the application of UAVs in
the absence of regulations. To address these challenges further, this paper proposes several technical
countermeasures: generating diverse training samples through generative Al to alleviate data bias,
adopting federated learning models to protect sensitive information, and establishing explainable Al
architectures to increase system credibility. The coordinated application of these methods not only
responds positively to the academic initiative of building "context-aware rescue systems" but also
involves conducting an in-depth examination of the feasibility of directly replicating and promoting the
technology in underdeveloped regions. By integrating modular hardware design, adversarial training
strategies, and cross-national policy coordination mechanisms, this study systematically analyzes the
path for the sustainable and responsible expansion of edge intelligence. This systematic review not only
validates the critical role of TinyML-enabled UAVs in saving lives during climate disasters but also
establishes a core direction for future research: only by optimizing computational efficiency while fully
considering the social equity dimension in the technology implementation process can the lives and
basic dignity of vulnerable populations worldwide be effectively sateguarded.
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