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Abstract: This study explores the transformative potential of TinyML in unmanned aerial vehicles 
(UAVs) to address key inefficiencies in traditional search and rescue (SAR) operations, especially in the 
context of increasingly severe climate-related disasters. By analyzing peer-reviewed studies in major 
technical databases via the PRISMA guidelines, this work highlights advancements in edge computing, 
swarm intelligence, and multisensory integration, with a focus on fundamental contributions in 
embedded AI and autonomous navigation. UAVs supported by TinyML can achieve low-latency and 
energy-efficient real-time processing, thereby enhancing the efficiency of disaster relief operations in 
harsh environments. This study emphasizes the need to create synthetic datasets for underrepresented 
scenarios, conduct robustness tests under extreme conditions, and adopt privacy-focused decentralized 
learning. It connects technological progress with ethical issues such as monitoring risks and equitable 
access to disaster technologies. Future research directions can overcome current limitations, including 
insufficient validation in practical applications, fragmented policies, and high costs in resource-poor 
regions, through interdisciplinary collaboration, transforming theoretical advancements into scalable 
and socially responsible TinyML-UAV system solutions. 

Keywords: Artificial Intelligence, Disaster Rescue, Edge Artificial Intelligence, Image Processing, Sustainable 
Infrastructure, TinyML, UAV. 

 
1. Introduction  

Currently, climate-driven disasters such as wildfires and floods occur frequently worldwide, 
highlighting the significant limitations of traditional search and rescue (SAR) operations in resource-
poor areas with vulnerable populations [1]. Traditional methods rely on manual operation and 
simulation tools, often leading to delayed responses and increased risks for rescue workers [2]. The 
combination of unmanned aerial vehicles (UAVs) and TinyML has transformative potential, offering 
real-time, energy-efficient edge computing for disaster management [3]. Innovations like lightweight 
neural networks and sensor fusion significantly improve the detection of survivors in low-visibility 
environments [4], whereas federated learning frameworks enhance the adaptability of distributed UAV 
networks [5], these developments highlight the potential of TinyML-UAV systems in addressing 
increasing climate-related emergencies [6] such as scenarios requiring rapid assessment of 
infrastructure damage [6] or mixed vertical take-off and landing (VTOL) operations [7]. 

Although drone technology development in search and rescue operations has been rapid, several 
challenges remain. The literature on drone research often overlooks natural disasters in remote areas 
[8], lacks relevant training data, and does not focus sufficiently on government drone regulatory 
policies [9]. In addition, there are trust issues such as the lack of transparency in AI-driven systems 
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[10]. These challenges highlight the urgent need for inclusive drone search and rescue technology 
solutions that balance innovation with social and economic equity in modern society [11, 12]. 

This paper summarizes the progress of tiny ML-UAV systems, tracing their evolution from the 
limitations of past disaster rescue technologies to future innovations. By analyzing peer-reviewed 
research, we evaluate innovative approaches such as cluster coordination for scalable disaster coverage, 
emphasizing ongoing advancements in the field [13] and biodegradable UAV design to reduce 
environmental impact [14]. For example, the use of generative AI to generate synthetic data can 
simulate underrepresented scenarios to mitigate geographical bias [15], whereas federated learning 
frameworks ensure privacy-sensitive model training. Transparent AI modules, such as explainable 
decision systems, address accountability issues, facilitate global regulatory coordination, and simplify 
cross-border tasks [16]. These methods aim to transform TinyML-UAV systems into resilient, fair 
tools capable of protecting vulnerable groups in various disaster environments. They can also be 
extended to applications like forest ecological monitoring [17] and underground infrastructure 
maintenance. 
 

2. Evolution of Disaster Rescue Technologies from Past Limitations to Future 
Innovations 

Historically, disaster rescue operations have faced significant challenges due to reliance on manual 
labor, fragmented communication systems, and delayed response times. Early approaches, such as 19th-
century fire brigades and 20th-century motorized units, primarily used handheld tools and analogue 
technologies, often resulting in prolonged victim recovery efforts and high responder fatality rates 
[18]. For example, during the 1985 Mexico City earthquake, rescue teams manually sifted through 
debris for days, leading to preventable casualties caused by insufficient situational awareness [19]. 
Similarly, the 2004 Indian Ocean tsunami revealed critical deficiencies in real-time data collection, as 
responders relied on disjointed ground reports and static maps, significantly delaying life-saving 
interventions [20]. These limitations highlight the urgent need for technologies capable of functioning 
effectively in dynamic, high-risk environments while reducing human exposure [21]. 

The emergence of unmanned aerial vehicles (UAVs) in the 2010s marked a significant 
advancement. Initial deployments, such as during the 2010 Haiti earthquake, demonstrated UAVs' 
potential for aerial damage assessment, though they faced high costs and computational limitations. The 
late 2010s saw the integration of tiny machine learning (TinyML), which addressed these issues by 
enabling edge-based intelligence for real-time processing [22]. Advances in hardware, including ARM 
Cortex-M processors and TensorFlow Lite for microcontrollers, have progressed [23] and facilitated 
the execution of lightweight object detection models with minimal power consumption [7]. Advances in 
sensor fusion have further improved capabilities; hybrid systems combining LiDAR, thermal imaging, 
and acoustic sensors enhanced detection accuracy in obscured environments, as demonstrated during 
the 2023 Türkiye–Syria earthquakes. 

Currently, the application of drones in disaster relief aligns more with Figure 1. Modern and future 
drone innovations emphasize scalability and adaptability. The federated learning framework enables 
distributed drone networks to collaboratively train models and optimize task allocation in multi-agent 
systems, thereby achieving large-scale coverage. Solar-powered designs and modular drones extend 
operational time while reducing costs, which is crucial for resource-scarce regions [24]. However, 
challenges remain: geographical bias in training data limits the model's generalizability in rural 
disasters such as landslides [6], and the fragmented regulation of beyond-visual-line-of-sight drone 
flight policies hinders cross-border deployment. Future development will focus on generating synthetic 
data via generative AI and adversarial training to enhance robustness under extreme conditions [25], 
ensuring that these technologies evolve from experimental tools to fair and life-saving solutions [26]. 

This shift from human-dependent, slow-response rescue methods to proactive, AI-driven 
ecosystems highlights the transformative potential of micromachine learning-drone systems. By 
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addressing historical inefficiencies in speed, cost, and adaptability [27], they redefined disaster response 
models, enhancing resilience for the affected global population. 
 

 
Figure 1. 
Flowchart Overview. 

 

3. Methodology 
This study examines the application of TinyML in UAVs for disaster search operations, focusing on 

technical constraints and system optimization [28]. To ensure methodological rigor, the scope was 
intentionally limited to challenges specific to TinyML-UAV systems, excluding broader robotics or 
non-edge AI solutions. 

The systematic literature search targeted peer-reviewed publications from 2020 to 2025 across four 
databases: ScienceDirect, Springer, Scopus, and IEEE Xplore [29]. These platforms were chosen for 
their comprehensive coverage of computer science and UAV research, including critical domains such as 
sensor fusion and swarm coordination [30] and edge computing. 

This initial pool of 4,161 articles from databases such as IEEE Xplore, Springer, ScienceDirect, and 
Scopus, published between 2020 and 2025, was refined through a systematic selection process for 
TinyML drones. The PRISMA diagram in Figure 2 illustrates this methodology. Citation tracking of 
included papers identified additional studies, including 6G-enabled FANET architectures [31] and 
blockchain-secured edge computing, enhancing the review's comprehensiveness. 
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Figure 2. 
PRISMA diagram. 

 
The literature search strategy systematically integrated specific domain keywords related to three 

pioneering researchers in TinyML-UAV disaster response: Vijay Janapa Reddy (TinyML optimization), 
Daniela Rus (swarm robotics), and Roland Siegwart (autonomous navigation), as shown in the 
innovative framework in Figure 3.  
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Figure 3. 
UAV Research and Innovations in Disaster Scenarios. 

 
"TinyML drones reflect Reddi's MLPerf Tiny benchmarks [32], focusing on energy-efficient edge 

AI for wildfire tracking and victim detection. This term highlights his NASA-collaborated work on 
standardized performance metrics for resource-constrained UAVs. "UAV disaster rescue" includes Rus's 
decentralized swarm algorithms [33], emphasizing self-healing networks for radiation mapping in 
Fukushima-like scenarios. The term highlights her research on ad hoc communication resilience in 
connectivity-limited zones. "TinyML automatic search" combines Reddi's edge computing frameworks 
with Siegwart's LiDAR-based 3D semantic mapping [34], targeting subcontinent precision in 
structural damage assessment during earthquakes. "Autonomous UAV search" integrates Siegwart's 
Airborne Disaster Assessment System (ADAS) [35] with Rus's dynamic path planning models, focusing 
on obstacle avoidance in urban debris fields. Citation chaining of pivotal works further identified 
advancements in ethical swarm governance [36] and modular UAV designs. This methodology ensures 
technical coherence while addressing scalability gaps, bridging hardware optimizations with real-world 
deployment challenges.  
 

4. Literature Review Analysis: Current Approaches in UAV-Based Disaster Search and 
Rescue 

A systematic analysis of publications from 2020 to 2025 revealed rapid evolution in the application 
of TinyML to UAV-based disaster search and rescue (SAR), characterized by conceptual breakthroughs, 
technical advancements, and ongoing challenges. Table 1 summarizes annual progress, emerging 
trends, and limitations in UAV-based disaster SAR technologies identified in the literature. 
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Table 1.  
A Comprehensive Survey of Modern and Contemporary Representative Literature on the Development of Unmanned Aerial 
Vehicle (UAV) Disaster Relief Technology 

 
Recent advancements in UAV technologies for disaster search and rescue (SAR) focus on improving 

autonomy, sensor integration, and operational scalability. The literature highlights three main 
methodologies: autonomous navigation with edge AI, multi-UAV swarm coordination, and multimodal 
sensor fusion, each providing unique benefits while facing ongoing limitations. 

 
4.1. Autonomous Navigation and Real-Time Edge Processing 

One of the core directions in current research is deploying lightweight artificial intelligence models 
on unmanned aerial vehicle (UAV) platforms to support real-time decision-making in dynamic 
environments. Studies have shown that autonomous navigation systems based on TinyML architectures 
can achieve low-latency, adaptive path planning, and obstacle avoidance in complex disaster scenarios 
[3, 35]. For instance, such systems have been successfully applied in maritime search and rescue 
missions, where a variant of the YOLOv7 model, compressed to run on processors consuming less than 
1 watt, has enabled the automatic detection of individuals in water [43], significantly enhancing 
emergency response efficiency. Edge computing reduces power consumption and communication 
dependency. However, in visually challenging environments like heavy smoke or rain, the performance 
of these models can still decline considerably, despite their benefits. Literature [44, 45] indicates that 
detection accuracy may decrease by 15% to 30%. Additionally, due to the computational limitations of 

  Core Concept Key Advantages Limitations 
Aamer, et al. [3] Autonomous 

navigation via hybrid 
neural networks 

Adaptive path planning with top-
down attention mechanisms 

High computational load in dynamic 
environments 

Yamamoto, et al. 
[4] 

Multi-sensor fusion for 
night-time SAR 

LiDAR + thermal imaging for 
low-light victim detection 

High power consumption and sensor 
cost 

Akhyar, et al. [8] AI for disaster 
prediction & response 

Predictive analytics for multi-
hazard scenarios 

Urban-centric training data biases 

Chandran and 
Vipin [9] 

FANET-based multi-
UAV monitoring 

Scalable coverage in connectivity-
limited zones 

Ad-hoc network latency (50-200ms) 

Alnoman, et al. 
[11] 

6G-enabled emergency 
localization 

Sub-meter positioning accuracy Requires 6G infrastructure (limited 
deployment) 

Wang, et al. [20] Deep learning obstacle 
avoidance 

Real-time collision detection 
(YOLOv7) 

GPU dependency (≥15W power 
draw) 

Janapa Reddi, et 
al. [22] 

TinyML frameworks 
for edge UAVs 

<1W power consumption with 
ARM Cortex-M processors 

15-30% accuracy loss after model 
compression 

Lim, et al. [25] Autonomous UAV for 
avalanche monitoring 

Large-scale terrain mapping (5cm 
resolution) 

-20°C battery capacity drops by 40% 

Banbury, et al. 
[32] 

MLPerf Tiny 
benchmarks 

Standardized edge AI performance 
metrics 

Trade-off: model size vs. inference 
speed 

Talwandi, et al. 
[35] 

Automated drone 
navigation systems 

Cross-scenario compatibility Limited real-time adaptability in 
debris fields 

Rakshit, et al. 
[37] 

Edge resource 
optimization 
(Righteous) 

Dynamic model scaling for energy 
efficiency 

Latency spikes under fluctuating task 
loads 

Guo, et al. [38] Task allocation via 
discrete PSO 

89% coverage efficiency in 
simulated disasters 

Scalability limits (>50 drones) 

Talebkhah, et al. 
[39] 

Edge-IoV task 
offloading 

Federated learning for privacy 
preservation 

Bandwidth constraints in rural areas 

Heiss, et al. [40] Thermal-motion 
fusion detection 

92% accuracy in smoke/fog 
environments 

Limited swarm coordination 
capability 

Rohr, et al. [41] Hybrid UAV dynamic 
control 

GPS-denied precision landing 
(±5cm error) 

Integration complexity with legacy 
systems 

Zhang, et al. [42] Multi-objective path 
planning 

Warehouse inventory optimization 
(30% faster) 

High compute demand for real-time 
replanning 
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embedded hardware, deploying high-resolution models directly is challenging, necessitating a trade-off 
between detection accuracy and energy efficiency in system design. These issues underscore the urgent 
need for lightweight neural network architectures that are both efficient and robust to environmental 
variations. 

 
4.2. Swarm Intelligence and Distributed Task Allocation 

In large-scale disaster response, multi-UAV systems based on swarm intelligence have become a 
research focus. The ability of these algorithms to achieve efficient collaborative operations through 
bioinspired methods has attracted widespread attention. Studies have shown that using bioinspired 
techniques such as discrete particle swarm optimization (PSO) and integration with the flight ad hoc 
network (FANET) architecture [9, 46] can effectively coordinate UAV swarms, achieving up to 89% 
area coverage efficiency in simulated disaster scenarios. This significantly surpasses the operational 
capabilities of single-UAV systems. Such systems improve search efficiency and response speed by 
dynamically allocating tasks, such as thermal imaging reconnaissance and communication relay, among 
networked UAVs. However, as the swarm size increases, the system's scalability faces severe challenges: 
communication delays in FANETs typically range from 50 to 200 milliseconds, and the risk of 
synchronization failure increases, especially in environments where GPS signals are absent [47]. 
Additionally, to ensure real-time control performance, most swarm architectures must reduce 
environmental mapping resolution, compromising perception accuracy. Future research should focus on 
developing more reliable low-latency communication protocols and robust decentralized control 
mechanisms to achieve high-precision, stable, large-scale UAV collaboration. 

 
4.3. Multimodal Sensor Fusion for Environmental Adaptability 

The integration of heterogeneous sensors, such as lidar, thermal imaging cameras, and acoustic 
detectors, has become a key technical approach to overcoming the limitations of single-sensor 
perception and enhancing adaptability in complex environments [48]. Research indicates that such 
fusion frameworks significantly improve target detection capabilities under low-visibility conditions, 
especially in scenarios with obstructed views, such as night search and rescue or post-earthquake debris. 
For example, unmanned aerial vehicle (UAV) systems that combine thermal imaging and motion 
sensing data can more effectively identify survivors in smoke-filled wildfire areas, demonstrating their 
practical value in extreme disaster response. However, the collaboration of multiple sensors also results 
in a substantial energy burden. The increased sensor load directly leads to higher power consumption, 
reducing flight endurance and limiting continuous deployment in long-duration missions. Additionally, 
in harsh conditions such as heavy rainfall, electromagnetic interference, or extremely cold environments 
(e.g., subzero temperatures), sensor performance is susceptible to interference, decreasing reliability. 
These challenges underscore the urgent need to develop high-efficiency fusion algorithms and more 
environmentally robust sensor hardware to achieve stable and sustainable multimodal perception 
capabilities. 

 
4.4. Ethical and Regulatory Considerations 

Although technological innovation dominates the literature, recent studies have increasingly 
emphasized unresolved ethical and operational obstacles [49]. AI-driven triage systems exhibit 
significant geographical bias because their training data are overly concentrated in urban environments 
[8], limiting their applicability in rural or underrepresented areas. Models trained on limited datasets in 
specific disaster scenarios may incorrectly prioritize rescue resources, leading to imbalanced responses 
[49]. Additionally, the "black box" nature of such systems undermines trust between rescue personnel 
and affected communities, increasing deployment resistance [50]. The regulatory aspect also faces 
significant challenges: inconsistencies in beyond-visual-line-of-sight (BVLOS) policies across different 
jurisdictions seriously impede the coordination and implementation of cross-border search and rescue 
missions, even when technical conditions are mature [9]. These issues indicate that relying solely on 
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technological progress is insufficient to achieve fair and efficient disaster response; it is necessary to 
combine technological innovation with explainable AI design, data-inclusive governance, and cross-
national regulatory coordination to build a truly reliable and intelligent rescue system. 

 
4.5. Gaps and Future Directions 

The integration of TinyML into UAV systems has revolutionized disaster search and rescue (SAR) 
operations, enabling real-time edge processing with minimal energy consumption [37]. Studies 
demonstrate that optimized AI models achieve low-latency victim detection while maintaining energy 
efficiency [51]. A critical advancement for time-sensitive missions involves autonomous navigation 
systems that reduce human intervention through adaptive path planning, as observed in disaster 
scenarios with complex debris fields [52]. However, these systems face trade-offs: model compression 
improves energy efficiency but compromises accuracy in visually challenging environments like smoke-
filled zones or heavy rainfall [45]. Similarly, multi-UAV swarm architectures leverage bioinspired 
algorithms (e.g., discrete particle swarm optimization [38]) to improve coverage efficiency; however, 
scalability remains hindered by communication delays and synchronization issues in GPS-denied 
regions. 

A critical limitation lies in the geographic and ethical biases embedded in current AI-driven 
systems. Training datasets skewed toward urban environments result in poor generalization for rural or 
underrepresented disaster contexts, as evidenced by misprioritized rescue efforts in specific regional 
disasters [50]. Regulatory fragmentation further complicates cross-border deployments, delaying 
missions despite their technical readiness. Trust deficits arise from opaque AI decision-making, 
particularly in high-stakes scenarios lacking transparent justification. 

Future research must address these gaps through interdisciplinary solutions. Synthetic data 
generation via generative AI can simulate region-specific disasters to mitigate data scarcity and bias. 
Federated learning frameworks enable collaborative training while preserving data privacy, enhancing 
adaptability to local conditions [39]. Robustness in extreme environments may be improved through 
adversarial training [40], while dynamic sensor optimization algorithms could enhance adaptability to 
real-time conditions. Explainable AI modules, such as attention-based visualization tools, are essential 
for building trust among responders. 

Sustainable deployment requires cost-effective designs and regulatory harmonization. Modular 
UAVs with renewable energy components [53] and energy-harvesting materials could extend 
operational endurance in resource-limited regions. Global standards for UAV interoperability and 
integrated satellite networks [31] would streamline cross-border missions and ensure connectivity in 
infrastructure-damaged zones. 

In summary, while TinyML-UAV systems represent a paradigm shift toward proactive disaster 
response, realizing their full potential requires balancing technical innovation, ethical governance, and 
equitable access. Prioritizing adaptive, transparent, and low-cost solutions will bridge the gap between 
theoretical advancements and real-world impact [54], safeguarding vulnerable populations in 
increasingly challenging environments [41]. 
 

5. Conclusions 
Embedding TinyML into unmanned aerial vehicle (UAV) systems has significantly advanced 

technological innovation in search and rescue missions, enabling devices to perform low-power, high-
efficiency real-time intelligent processing at the edge. With the aid of lightweight AI models, 
multisource sensor fusion, and swarm collaboration mechanisms, the response capabilities and 
environmental adaptability of UAVs in complex disaster scenarios have been notably enhanced. 
However, the large-scale application of this technology is still constrained by multiple factors, including 
the uneven geographical distribution of training samples, the lack of unified regulatory standards across 
countries, and ethical issues arising from the lack of transparency in algorithmic decision-making. These 
factors collectively affect its wide and fair deployment. The findings of this study are highly consistent 
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with existing research results, both highlighting the structural bias of artificial intelligence toward 
urban areas in emergency response and warning of the risks associated with the application of UAVs in 
the absence of regulations. To address these challenges further, this paper proposes several technical 
countermeasures: generating diverse training samples through generative AI to alleviate data bias, 
adopting federated learning models to protect sensitive information, and establishing explainable AI 
architectures to increase system credibility. The coordinated application of these methods not only 
responds positively to the academic initiative of building "context-aware rescue systems" but also 
involves conducting an in-depth examination of the feasibility of directly replicating and promoting the 
technology in underdeveloped regions. By integrating modular hardware design, adversarial training 
strategies, and cross-national policy coordination mechanisms, this study systematically analyzes the 
path for the sustainable and responsible expansion of edge intelligence. This systematic review not only 
validates the critical role of TinyML-enabled UAVs in saving lives during climate disasters but also 
establishes a core direction for future research: only by optimizing computational efficiency while fully 
considering the social equity dimension in the technology implementation process can the lives and 
basic dignity of vulnerable populations worldwide be effectively safeguarded. 
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