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Abstract: Agentic artificial intelligence (AI) systems that act as autonomous agents are rapidly evolving 
due to the explosion of large language models (LLMs) [1]. This paper presents a comprehensive 
analysis of major approaches in the field of Agentic AI, including the large visual language model 
(LVLM), the React and Plan-and-Execute agent architectures, the smolagents library with a “coding-
first” orientation, tool invocation techniques that extend the capabilities of LLMs, the visual Agentic AI 
model with multi-agent coordination capabilities, as well as scientific agent systems such as AI Scientist 
and the AgentRxiv collaboration platform. We analyze the characteristics of each approach, including 
representation models, advantages, limitations, and integration capabilities, for building intelligent 
agent systems that aim for AGI. The paper proposes an integrated scheme that leverages achievements 
from multimodal capabilities, multistep reasoning and planning, multi-agent coordination, and research 
automation, laying the foundation for a new generation of autonomous AI agents. Finally, we discuss 
the potential applications of Agentic AI in the context of Vietnam, especially in education, scientific 
research, and technology development, and provide recommendations for domestic developers and 
researchers. 

Keywords: AI agents, Artificial general, Education, Large language models, Large vision-language models, Multi-agent, 
LLM tools, Plan-and-execute, ReAct. 

 
1. Introduction  

The advent of LLMs such as GPT-3/4 has revolutionized natural language processing, providing 
superior text understanding and generation capabilities [2]. However, to effectively apply LLMs to 
complex real-world tasks, we need more than a simple response model. The concept of Agentic AI is 
proposed to refer to AI systems that act as autonomous agents (AI agents), that is, they can 
automatically receive tasks, plan their steps, interact with the environment (e.g., search for information, 
call external tools, analyze data), and adjust their actions to complete the set goals [3]. 

Since the beginning of 2023, the AI community has witnessed the emergence of prominent projects, 
such as AutoGPT, BabyAGI, and AgentGPT, demonstrating the potential of LLMs when they are 
“empowered” to act continuously without human intervention [4]. These AI agents are expected to 
undertake complex, multi-step processes – such as automating information retrieval and summarization, 
programming, or even supporting scientific research. In Vietnam, interest in LLM and Agentic AI has 
also increased sharply after the launch of ChatGPT. Many domestic organizations and research groups 
have quickly adapted to the trend, developed Vietnamese language models, and organized in-depth 
courses (for example, the AI Vietnam AI Course 2024 series) to equip participants with the knowledge 
needed to build AI agents. This context presents an essential premise for the Vietnamese scientific and 
educational community to grasp and contribute to the global wave of Agentic AI. 
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In this paper, we review the typical technological directions shaping the Agentic AI ecosystem. Part 
2 introduces (i) LVLMs, a multi-modal model combining vision and language; (ii) the ReAct agent 
architecture and its Plan-and-Execute variant, enabling LLMs to reason and act in multiple steps; (iii) 
the SmolAgents lightweight library with a "code-first" philosophy in agent design; (iv) the tool calling 
method, a bridge allowing LLMs to call external tools; (v) the Visual Agentic AI model, which uses a 
multi-agent supervisor architecture to coordinate multiple specialized agents; (vi) the AI Scientist 
automated scientific research agent framework; and (vii) the AgentRxiv platform that supports agents in 
collaborating on knowledge sharing. Section 3 analyzes the main advantages and limitations of each 
approach and proposes an integration scheme that enables these technologies to converge, building 
increasingly comprehensive AI agents that move closer to the goal of AGI [5]. Section 4 discusses 
prospects for applying Agentic AI in education, research, and industry in Vietnam. Finally, Section 5 
summarizes future trends and offers recommendations for domestic developers and researchers to catch 
up and contribute to this potential field. 
 

2. Primary Approaches in Agentic AI 
2.1. LVLM Models 

LVLMs are deep learning models designed to process and understand both visual and natural 
language data simultaneously [6]. Instead of separating the two fields of computer vision and natural 
language processing, LVLMs combine them into a single system. By leveraging the representational 
power of LLMs on language, LVLM models can annotate images, answer questions about visual 
content, and perform many other multimodal tasks flexibly [7]. 

 

 
Figure 1.  
LVLM's multitasking capabilities. 

 
Figure 1 illustrates the multitasking capabilities of LVLMs: the model can locate objects in images, 

perform image segmentation without prior training, and answer questions about images, for example, 
identifying the breed of a cat without being specifically trained for that task [8]. This ability to 
"understand" both the visual and textual worlds opens up rich AI applications and lays the foundation 
for moving toward building AGIs that can perform any human-like intellectual task [9]. However, 
LVLMs still face several challenges. On one hand, large-scale models require substantial computational 
resources and training data, which are difficult for resource-constrained research teams [6]. On the 
other hand, the accuracy of LVLMs can degrade significantly when faced with data or questions outside 
the original training data distribution [10]. For example, an LVLM trained primarily in natural images 
may struggle when asked to analyze specialized medical images. To overcome this, supervised fine-
tuning on the target task is being pursued to fine-tune LVLMs for specific tasks [11]. However, overall, 
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LVLMs are still considered an important step toward future multi-modal AGI systems, where an AI 
agent can both “see” the world, “understand,” and “act” through language. 
 
2.2. ReAct and Plan-and-Execute Architectures 

A significant challenge in building LLM-based AI agents is enabling the model to reason in multiple 
steps and act sequentially to achieve complex goals. Two typical agent architectures addressing this are 
ReAct and Plan-and-Execute, which currently attract much attention in the community [12]. Both 
belong to the class of reasoning agents, agents capable of reasoning and making decisions in sequence, 
but their approaches differ slightly. ReAct is a method that allows LLMs to repeat the “Think -> Act -> 
Observe” cycle until a result is achieved [13]. Specifically, the ReAct agent operates in a loop: the model 
analyzes the request and generates a stream of thoughts in the form of an internal reasoning chain, from 
which it decides to perform a specific action [14] (e.g., call a tool, perform a calculation, query 
information); after the action, the model receives observations about the results of that action (e.g., the 
content returned from the tool), updates its state, and continues the loop [15]. This process repeats N 
steps until the task is completed, and the model gives a final answer. Figure 2 illustrates the ReAct 
cycle: the agent starts with a user request, generates thoughts to plan, then executes the corresponding 
action through a tool, receives the observation results, and continues to think for the next step – this 
process is repeated many times dynamically until the task is completed [16]. The advantage of ReAct is 
its adaptability and flexibility: the model can adjust its strategy based on new information gained after 
each action, much like humans do when testing and refining their reasoning while solving a problem 
[17]. As a result, ReAct is effective in situations where it is not possible to have a fixed plan at the 
beginning or where it is necessary to react flexibly to the environment. 
 

 
Figure 2.  
ReAct agent cycle. 

 
In contrast to the adaptive iteration of ReAct, the Plan-and-Execute architecture emphasizes 

sequential planning in an organized manner [18]. As the name suggests, this approach separates the 
task-solving process into two distinct phases: planning and execution [19]. Specifically, in the first 
phase, the LLM agent will carefully analyze the requirements and develop a detailed, overall plan of the 
steps to be taken to achieve the goal [20]. This plan is like a pre-drawn action scenario. Then, in the 
second phase, the agent will sequentially execute each step according to the proposed plan until the task 
is completed. The primary advantage of Plan-and-Execute is that the agent has a comprehensive view of 
the entire task from the outset, which helps prevent missing important steps and ensures the logical 
structure of the solution [21]. This method is beneficial for complex problems that require deep and 
systematic reasoning, where considering the whole in advance is more effective than working on small, 
undirected steps. 

However, Plan-and-Execute also has limitations compared to ReAct. Since the entire plan is created 
before the action, the model may encounter difficulties if the environment changes or new information is 
unexpectedly introduced, in which case the original plan may no longer be optimal. ReAct, on the other 
hand, does not have a fixed plan from the beginning, so it is highly flexible in adjusting to the actual 
situation [22]. In short, ReAct is an adaptive, reflexive approach, while Plan-and-Execute is a 
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structured, sequential approach. The choice of architecture depends on the nature of the task: simple 
tasks or dynamic environments may be suitable for ReAct, while complex tasks, where the main steps 
can be predicted in advance, benefit from Plan-and-Execute [23]. Some systems attempt to combine 
both advantages – for example, by building agents that start with framework planning but still allow for 
flexible adjustments during execution or by coordinating multiple agents where one agent plans and 
another executes [24]. 

In the AI community, ReAct and Plan-and-Execute are implemented through various tools and 
libraries. A typical example is the use of LangChain/LangGraph to model the inference cycle of an 
agent. The LangGraph library (based on LangChain) enables representing the task flow of LLMs as a 
looped state graph, which is well-suited to realizing both ReAct and Plan-and-Execute architectures. 
Specifically, LangGraph provides components such as ToolNode that allow the agent to invoke tools or 
StateGraph to manage the state through steps [25]. Figure 3 below illustrates how a ReAct agent can 
be configured using LangGraph: each Inference–Act–Observe loop is represented as a journey through 
state nodes. LangGraph helps to track and repeat this cycle in a controlled manner. 
 
2.3. Smolagents: Code-first Agent Design 

While architectures like ReAct focus on inference logic, another practical aspect of building AI 
agents is the programming and deployment tooling. Most libraries, such as LangChain, provide 
multiple layers of abstraction and integration; however, they can sometimes be quite complex and 
cumbersome for simple applications [26]. Responding to the need for a more lightweight and intuitive 
solution, the Hugging Face team released Collagens, a small Python library for building AI agents. As 
the name suggests, the philosophy of smolAgents is to keep things as simple as possible. The library 
implements the agent logic in approximately 1,000 lines of Python code, making the code easy to read, 
understand, and debug, thereby avoiding unnecessary layers of abstraction. 

The unique feature of smolagents is the “code-first” approach: instead of having LLM generate 
actions in text or JSON and then execute them, smolagents allows the agent to write programming code 
(Python) directly to call the tool and perform the action [27]. In other words, the agent’s thinking is 
expressed directly in code, just like the agent itself programs the steps to solve its problem. This 
approach has the advantage of being clear and transparent and, at the same time, makes the most of the 
code generation capabilities of the large language model [28]. Smolagents supports two main types of 
agents: CodeAgent and ToolCallingAgent. Depending on the problem, the developer can choose to 
represent the action in code or JSON accordingly. Internally, smolagents implement the agent operation 
mechanism based on the React framework mentioned above. Each agent inherits from the 
MultiStepAgent class and performs a “reason-act-observe” loop through multiple steps, functioning as a 
state machine. At each step, the smolagents agent will: (i) Think, call the LLM to generate a plan/action 
in code; (ii) Act, execute that code, which may include calling tools or calculations; (iii) Observe, get the 
return result (function result or tool output) and pass it back to the LLM in the next thinking step. This 
process repeats until the final answer is received or the number of steps is reached. Thanks to being 
built on Hugging Face Hub, smolagents can also easily integrate existing models and share tools 
through the Gradio Spaces interface. 

To better visualize this, let us consider a simple example: building an automated news 
summarization agent. With smolagents, the programmer can define a set of “tools,” such as (1) a search 
tool to search for news via API, (2) a scrape tool to get article content, and (3) a summarize tool to 
summarize the text. Then, using the CodeAgent class, we let the agent write Python code to call these 
tools in turn: first, use search_tool to find the latest AI news headlines, then scrape_tool to retrieve the 
content of each news article, and finally, summarize_tool to create a concise summary. All of this logic is 
automatically generated and executed by the agent in sequence. The detailed process is recorded by 
smolagents, making it easy for users to track and debug [29]. 

Overall, smolagents provide a flexible and powerful solution for building complete AI agents from 
simple tasks such as querying and synthesizing information to more complex problems requiring multi-
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step interactions. The focus on code helps reduce system complexity while leveraging the automatic 
programming capabilities of LLMs. In Vietnam, small agents can be helpful in rapidly developing 
specialized virtual assistants when programmers can easily customize the agent logic through 
lightweight source code instead of having to train the model from scratch. Of course, the downside of 
the “code-first” approach is that it requires LLMs to be truly reliable in generating code; this depends on 
the quality of the model and thorough testing. However, with the progress of LLMs today, smolagents 
are proof that building AI agents does not have to be complicated but can be “lightweight and efficient.” 
 
2.4. Extending LLM Capabilities with External Tools 

An inherent limitation of pure LLM models is that they cannot directly interact with the outside 
world or access new information after training [30]. LLMs are trained on static datasets, so they are 
unaware of events that occurred after the training data point, nor can they look up or perform precise 
calculations on their own, relying solely on statistical memory. To overcome this, researchers and 
developers have developed a solution called Tool Calling, which enables LLM models to call external 
tools or functions as part of the response process [31]. Simply put, when encountering a question that 
exceeds its internal knowledge or skills, LLM can “request” a suitable tool, then take the results 
returned by the tool to synthesize into the final answer. 

The tool-calling mechanism is often integrated as an interactive loop between the LLM and the 
environment, similar to the ReAct architecture presented by Gim et al. [32]. Figure 4 illustrates the 
process: when a user asks a question, instead of answering immediately, the model first determines 
whether to utilize an external tool [33]. If necessary, it will stop generating the answer and switch to 
calling an AI agent that acts as an intermediary to execute the tool [34]. The tool is run and returns 
the result. The LLM then takes that result, incorporates it into the context, and generates a final 

response to the user. The entire system works in a cycle: Think (determine what tool is needed) → 

Invoke tool → Observe result → Respond. This significantly expands the capabilities of the LLM, 
transforming it from a “read and speak” agent to a genuine agent that can interact with reality [35]. 

A concrete example: suppose a user asks the chatbot, "What is the weather like in Paris today?" A 
regular LLM would struggle to answer correctly if it did not have access to the actual weather data. 
However, with tool calling, the model can recognize that this is a weather question and decide to call a 
weather API. It will make a function call, such as get_weather, which is sent to the tool agent. This tool, 
which can be pre-programmed or coded by the LLM, will execute by querying a weather service and 
return a result, for example: "Temperature 18°C, light rain." The LLM receives this information and 
finally replies to the user: "It is light rain in Paris today, around 18 degrees C." Thanks to tool calling, 
the chatbot has provided an up-to-date and accurate answer, something that the language model itself 
could not do if it relied only on old data. Tool calling has been integrated into large systems, typically 
ChatGPT (GPT-4), with Plugins and a function calling API. Technically, there are two common ways 
to implement it: (1) Direct instruction, LLM is provided with special "prompts" to output the tool 
calling format if needed, then a dispatcher reads that JSON and executes the corresponding function; (2) 
Code generation, like smolagents or GitHub Copilot, the model generates code to call the tool and then 
runs that code. Either way, the common point is that LLM plays a central role in determining what to 
do, while external tools handle specialized tasks. 
Why is tool calling important? Because it overcomes the limitations of LLM in many ways: 

• First, the model can access the latest information instead of being limited to static training 
knowledge [36]. 

• Second, the model can perform precise computational tasks by calling computers or code instead 
of relying on fallible inference. 

• Third, the model can interact with other systems, paving the way for many automation 
applications. 
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In Vietnam, the ability to combine LLM with domestic tools will create versatile AI assistants that 
serve users better. For example, an educational virtual assistant can look up learning materials from an 
electronic library, solve math problems by calling the CAS system, or support multilingual translation 
by integrating a machine translation model. Although implementing tool calling requires safety 
considerations, with appropriate guidelines and sandboxes, this is undoubtedly an indispensable 
component of modern agentic AI systems. It can be said that tool calling is the bridge that transforms a 
text-generation model into a knowledgeable agent that can observe and influence the world rather than 
just "sitting and talking." 
 
2.5. Visual Agentic AI and Supervisor Architecture 

Another limitation of deploying a single AI agent system is the risk of overloading it by requiring it 
to take on a wide range of tasks and skills. In reality, no single agent can excel at strategic planning, 
insight searching, digital data analysis, image recognition, and other tasks simultaneously [37]. 
Furthermore, when integrating multiple tools, a single model must select the right tool from dozens of 
options, which increases complexity and the risk of errors [38]. To overcome this, multi-agent 
architectures have been proposed as a possible solution: instead of a single, all-powerful agent, the 
system is divided into independent agents, each specialized in a specific task, which can communicate 
with one another or be coordinated by a supervisory agent [39]. There are many structures for 
organizing agents in multi-agent systems. Figure 3 below summarizes six common agent architectures, 
ranging from simple to complex. 

 

 
Figure 3.  
Common agent architecture. 

 

• Single Agent: Only one central LLM agent integrates all necessary tools. This structure is simple 
but leads to overload if there are too many tools or diverse tasks. 

• Network: Many unstructured, connected agents, each of which can send information to other 
agents according to its logic [40]. Suitable for systems that require flexible coordination. 
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• Supervisor: A Supervisor agent plays a management role, receiving tasks from users and then 
dividing them among specialized sub-agents before synthesizing the results to provide the final 
response [41]. This structure simplifies coordination and makes it easy to track the flow of tasks 
because the interaction flow is primarily centered around one focal point. 

• Supervisor-as-tools: turns each specialized agent into a separate “tool” that a main LLM can call 
[12]. This method is similar to the function calling mechanism but at a higher level: each “tool” is 
essentially a complex agent with its logic. The benefit is to take advantage of the available LLM 
pipelines. 

• Hierarchical: Agents are organized in a tree structure; the parent agent assigns tasks to child 
agents, and children can create “grandchild” agents, etc [42]. Suitable for problems with a clear 
decomposition structure. The advantage is that it is straightforward to control; the disadvantage 
is that it lacks flexibility if the task changes unexpectedly. 

• Custom: a mixed architecture designed according to the specific requirements of the system, 
which can combine elements of the above models [43]. Applicable to large-scale AI products that 
need to optimize performance, cost, and reliability, such as a business assistant that integrates 
multiple components, each being a separate agent. 

Among the above structures, the Supervisor model is gaining attention because of its efficiency and 
ease of implementation. The main idea is to have a central agent that acts as a “coordinator,” while the 
sub-agents are “experts” in different fields [44]. This architecture partly reflects the organizational 
model in real society: the supervisor agent is like a manager, assigning tasks to employees’ sub-agents. 
Each “employee” specializes in one area, such as searching for information, analyzing data, or 
programming. The benefit is to take advantage of specialization, and the supervisor will take on the 
responsibility of deciding on the overall strategy. In the Visual Agentic AI approach proposed by Pati 
[45], the authors combined the multi-agent supervisor architecture with image processing capabilities, 
thereby creating a multimodal agent system that can think and see [46]. Specifically, their system 
consists of a Supervisor Agent as the “brain,” coordinating two sub-agents: a Research Agent 
specializing in searching and synthesizing textual information and a Vision Agent specializing in 
processing visual requests [47]. When receiving a complex request from a user, the Supervisor will 
analyze it. If textual information is needed, it will be assigned to the Research Agent for processing. If 
image analysis is required, the Vision Agent will be contacted. The results from the sub-agents are sent 
back to the Supervisor to synthesize into the final response. Figure 5 illustrates this architecture: The 
Supervisor receives the user request, assigns the Research Agent and Vision Agent to perform in 
parallel, and then merges the results to give the final response [48]. This enables the system to respond 
to complex queries that require both linguistic knowledge and image analysis, a task that a single agent 
would struggle to accomplish effectively. 

 



80 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 2: 73-90, 2026 
DOI: 10.55214/2576-8484.v10i2.11983 
© 2026 by the authors; licensee Learning Gate 

 

 
Figure 4.  
Multi-model agent architecture with Supervisor. 

 
The multi-agent architecture described above offers many advantages: reducing the load on each 

model, enabling specialization (for example, the Vision Agent can use a separate LVLM or vision model 
optimized for image tasks), and facilitating system extension by adding new agents without retraining 
the entire model. The proof of this is in the Visual Agentic AI system, where additional capabilities can 
be integrated by attaching an Audio Agent with audio processing tools. The Supervisor then 
coordinates similarly to the Vision and Research Agents. However, the challenge of multi-agent systems 
lies in coordinating agents smoothly and communicating effectively. Poor design can lead to issues such 
as deadlock, inconsistent information sharing, or increased computational costs due to many nested 
components [49]. To support this, frameworks like LangGraph provide a multi-agent supervisor 
architectural pattern, allowing programmers to model complex task flows as stateful graphs and easily 
coordinate specialized agents [50]. For example, LangGraph has a create_supervisor function that 
creates a supervisor agent node, which interacts with multiple child agent nodes within the same logical 
graph. 

More generally, multi-agent systems are at the cutting edge of research because they open up the 
possibility of building large, complex AI systems that resemble social systems consisting of many 
cooperating or competing AI individuals [41]. In the context of AGI, many experts believe that rather 
than a single giant model, AGI could emerge from a combination of many specialized intelligent agents 
that can assign tasks, share knowledge, and learn from each other. Examples such as the AgentVerse 
platform or, more recently, AgentArena, suggest a “universe of agents” that coexist and interact. The 
multi-agent supervisor architecture is just one of many possible structures. However, it shows that we 
can build modular, flexible, and extensible AI systems, a practical approach on the path to artificial 
intelligence that is more complex than single-agent intelligence. 
 
2.6. AI Scientist: Autonomous Scientific Research Agents 

One of the most ambitious goals of Agentic AI is to create agents that can perform complex tasks at 
the expert level, such as independent scientific research. Lu et al. [51] work “The AI Scientist: Towards 
Fully Automated Open-Ended Scientific Discovery” marks the first step toward realizing this goal [52]. 
They introduce a comprehensive AI agent framework, dubbed AI Scientist, capable of autonomously 
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performing most steps in the open scientific research process, from proposing ideas to publishing results 
[51]. Specifically, the AI Scientist system enables the integration of multiple AI modules to assume 
different roles in research. The AI Scientist workflow is designed to mimic the human research process 
[53]: (1) gather background knowledge from the literature, (2) propose new hypotheses or research 
ideas, (3) design experimental methods, (4) execute experiments (e.g., run simulations or train models) 
to collect data, (5) analyze and visualize results, (6) interpret findings and write scientific reports, and 
(7) perform a peer-review process. An AI Scientist uses advanced LLMs as their “brain,” combined with 
code generation capabilities and access to external tools to perform experiments and analysis. 

Lu et al. [51] say their system can generate new research ideas, write code to perform experiments, 
graph the results, write a complete scientific paper, and then act as a peer reviewer to evaluate the paper 
itself. All of these steps are done with little to no human intervention. The process can be iterative, and 
when the evaluation results suggest improved ideas, the system will automatically adjust the hypothesis 
or experiment and continue the research cycle [54]. In principle, the new knowledge gained after each 
iteration will be stored in a standard knowledge base to serve as a foundation for subsequent research 
cycles, simulating the way the human scientific community accumulates knowledge through successive 
works [55]. 

The AI Scientist framework has been tested in several areas of AI, including diffusion models, 
language models, and learning dynamics, with impressive results. With a computational cost of only 
about $15 per experiment, the system generated drafts of papers containing novel ideas and competing 
results [53]. To assess quality, the authors also developed an automated reviewer module to critique 
papers written by AI Scientists. The results showed that this AI reviewer achieved nearly human-level 
performance in grading papers, and more importantly, papers produced by AI Scientists exceeded the 
acceptance threshold of a leading conference on machine learning when evaluated by automated 
reviewers [53]. This suggests that the system can make meaningful scientific contributions, at least 
according to the initial evaluation criteria. 

While it is still early to say that AI scientists can replace scientists, this research opens a promising 
new direction. On the one hand, it democratizes research as the cost of each intellectual experiment is 
significantly reduced. Imagine a day when any individual can “deploy” an AI agent to explore science on 
their behalf, accelerating the pace of knowledge creation [56]. On the other hand, AI scientist 
demonstrates the potential to combine all the capabilities of agentic AI, including LLM for reasoning, 
multi-agent systems for role assignment, and tool calling for running code and collecting data. This is a 
typical example of a complex agent system on the path to AGI, where AI is not only an assistant to the 
scientist but also gradually becomes a subject participating in the process of scientific creation. In the 
context of Vietnam, although the application of AI science is still in its early stages, its components, 
such as experimental code generation support, scientific writing assistants, and automatic review 
systems, can be integrated into research and training activities. For example, an AI assistant for 
researchers can suggest reference materials, design simulation experiments, or preliminarily check for 
logical errors in manuscripts, freeing people from tedious tasks to focus more on core ideas. This will be 
an exciting direction for the country to increase scientific productivity. 
 
2.7. AgentRxiv: Collaborative AI Agent Research Platform 

Suppose an AI Scientist is the vision of a single agent conducting research. In that case, AgentRxiv 
takes the idea a step further: multiple AI agents collaborate on research together, just as human 
scientists do in communities [57]. According to Schmidgall and Moor [57], scientific progress rarely 
comes from a single “Eureka” moment. However, it is often the result of hundreds of researchers 
working together and building on each other’s work. Current agent processes often operate in isolation, 
with each agent conducting its research without sharing information with other agents [3]. This wastes 
the opportunity for “mutual learning” between agents. To address this issue, Schmidgall & Moor 
developed AgentRxiv – a framework that establishes a shared preprint server for agent labs to upload 
and retrieve each other’s research papers, thereby facilitating collaboration, sharing of findings, and 
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incremental building upon the results of AI peers [57]. The name “AgentRxiv” is inspired by arXiv – 
the open preprint repository for the scientific community. In this system, each “agent lab” can be 
understood as an agent or a group of agents working together according to a specific research strategy. 
When an agent completes a result, it posts the report to AgentRxiv, allowing other agents to read and 
leverage the information [58]. At the same time, the agent can also access the AgentRxiv repository to 
learn from the work of other agents, thereby avoiding repetition and instead focusing on building upon 
previous achievements [53]. 

Initial experiments indicate that collaborating via AgentRxiv enables agents to improve more 
rapidly than working alone. Specifically, the authors found that agents with access to their previous 
research results performed significantly better than agents starting from scratch each time [57]. 
Furthermore, the best strategy they found generalized to other domains, with an average 3.3% 
improvement in performance [59]. When multiple agent labs share research via AgentRxiv, they can 
collectively improve faster and achieve higher accuracy [60]. Figuratively speaking, if each agent is an 
“AI researcher” working in one place, then AgentRxiv is like an “online conference” where they publish 
and update results, thereby allowing the entire community to move forward faster than any individual. 
The illustration in the paper envisions a globally distributed network of AI labs connected via 
AgentRxiv, pursuing a common research goal, say, improving the performance of Math. Humans can 
provide initial guidance, and then autonomous AI agents can conduct research and publish reports to 
AgentRxiv, allowing other “AI peers” to access the new findings and adjust their strategies 
immediately. The result is a group of agents that converge faster and collectively achieve better results 
than any individual agent could. 

AgentRxiv suggests an interesting direction for Agentic AI: building a community of AI agents like 
a human community. This can be seen as a form of decentralized, collaborative multi-agent system, 
differing from the supervisor architecture in that no single agent commands all; instead, each agent 
contributes to the common knowledge. In the future, we can envision AI agents in various settings 
contributing to an open AgentRxiv for a specific field, for example, “MathAgentRxiv” for mathematics 
and “ChemAgentRxiv” for chemistry. This not only helps AI agents improve their performance but also 
serves as a powerful tool for human scientists, as they can utilize AgentRxiv to explore ideas proposed 
by AI or assign AI tasks to solve time-consuming tasks and synthesize the results. 
 

3. Discussion 
Advantages, limitations, and convergence of approaches: Through the above overview, each 

approach in Agentic AI aims to solve a specific aspect of the problem of building intelligent agents. The 
table below summarizes some of the main features, advantages, and limitations of each approach. 

• LVLMs: The outstanding advantage is the ability to understand and process visual and textual 
information simultaneously, enabling AI agents to adopt a multimodal view like humans [27]. 
This lays the foundation for AGI because AGI needs to interact with a diverse real world (vision, 
sound, language...). The disadvantages of LVLMs are that they require substantial resources, are 
complex to train, and can degrade performance when encountering data outside their distribution 
[6]. Fine-tuning for each specific task is also expensive and complicated. 

• ReAct agent: The main advantage is its flexibility and high adaptability; the agent can handle 
unexpected situations, adjusting strategies based on newly acquired information [61]. React is 
simple to implement and suitable for interactive tasks. The limitation is that it may lack an overall 
vision, easily fall into loops if not controlled, and may be ineffective for very complex problems 
that require pre-planning. - Plan-and-Execute agent: The strength lies in its clear structure, 
which has a global plan, and, therefore, often solves complex problems well with a precise step 
sequence [62]. It is also easy to analyze and test because the plan is presented in advance. 
However, the disadvantage is that it lacks flexibility, and a rigid plan can fail if a new, unexpected 
situation arises. Implementing plan execution is also more complex because it requires separating 
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the two phases and ensuring that the model knows when to switch from planning to execution 
[18]. 

• Smolagents: The advantage is that it is lightweight and straightforward, allowing developers to 
easily customize and understand the agent's operations [15]. The code-first approach effectively 
leverages the code generation capabilities of LLMs and can reduce ambiguity compared to natural 
language output. The disadvantage is that it heavily relies on the model's reliability; when 
generating code, incorrect code can lead to errors or unintended consequences. Additionally, 
smolagents currently mainly support Python, so it is limited if the task requires a different specific 
environment. 

• Tool Calling: The obvious advantage is that it extends the capabilities of LLM almost indefinitely; 
it can access new information, make precise calculations, interact with the real world, etc. [63]. 
This is the key component that turns the model into a real agent. The drawbacks include 
increased system complexity and security issues. It is necessary to design a reasonable sandbox 
and limit each tool. 

• Visual Agentic: The main advantage is easy specialization and extension - it can combine many 
agents who are good at different areas, reducing the load on each agent and improving overall 
efficiency [64]. Supervisor architecture ensures orderly coordination and precise results. The 
drawbacks include the complexity of inter-agent communication and the need for compelling 
coordination logic to prevent conflicts or bottlenecks. Moreover, having many agents means that 
the computational cost can increase. 

• AI Scientist: A significant strength is the ability to automate almost the entire scientific research 
process, integrating many skills (reading, reasoning, planning, writing, experimenting) into a 
single system [65]. This directly serves the goal of AGI. The disadvantage is that the system is 
highly complex, requires coordination of many AI components, and cannot operate completely 
independently. Additionally, AI science is currently applied only in a narrow field (ML research) 
and assumes a simulation environment; further research is needed to generalize it to other fields. 

• AgentRxiv: The advantage lies in creating a mechanism for cooperation and knowledge sharing 
among agents, thereby enhancing performance and accelerating progress [66]. This represents a 
novel approach, transitioning agent development from a standalone to a collaborative 
environment. Limitations may include the risk of sharing incorrect or unverified information (if 
one agent learns from another agent’s incorrect report), like the problem of unverified information 
on arXiv. A mechanism for assessing the quality of reports is needed to ensure the reliability of 
shared knowledge. 

In general, the above approaches are more complementary than competitive. Many Agentic AI 
systems today have begun to combine multiple techniques simultaneously to leverage each other's 
strengths and compensate for their weaknesses. For example, a complete AI assistant may utilize an 
LLM integrated with tool calling, internally running on the ReAct architecture for flexible inference 
but occasionally inserting a Plan-and-Execute phase when encountering large tasks that require 
planning. This agent may include an LVLM as a component to understand both images and text from 
the user. If the task is too complex, it can activate multi-agent mode, create specialized sub-agents, and 
act as their supervisor. During operation, these agents can record reports in a shared system for future 
runs, allowing them to gain experience or for other agents to learn from them. No single solution will 
meet all AGI's requirements, but clever combinations will get us closer to that goal. 
 
3.1. Convergence Scheme Towards AGI 

Based on the above analysis, we propose a convergence architecture scheme that integrates Agentic 
AI approaches, aiming to build a general intelligent agent in the future. 

- At the foundational level, the system will have one or several core LLMs/LVLMs, serving as the 
central brain responsible for language understanding and background knowledge. LVLM plays the role 
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of processing multi-modal knowledge to help the agent "feel" the visual world, while traditional LLMs 
ensure language skills and logical reasoning. 

• The system operates according to the extended ReAct mechanism, meaning that LLMs will 
interact in a loop with the environment, including users and external tools. At each step, LLMs 
can decide to Plan or Act immediately. This decision is based on the complexity of the problem; if 
the LLM finds the task complex, it switches to Plan-and-Execute mode to ensure a general 
strategy; if the task is simple or the situation is uncertain, it uses the ReAct reflex mode to 
respond flexibly. 

• The system integrates a rich set of tools and has an automatic tool-calling mechanism. When the 
central LLM encounters a request that exceeds its capacity, it generates a request to call the 
corresponding tool. These tools include knowledge query APIs, databases, scientific calculations, 
and specialized modules such as image, video, and audio processing. The process of calling tools 
and receiving results is fully automated and closed in the agent's inference loop. 

• Regarding the multi-agent architecture, the system will adhere to a multi-agent hierarchical 
model. At the top layer is the "Master" agent, which is responsible for analyzing the overall task 
and breaking it down into sub-tasks. The master agent will then create or activate specialized sub-
agents to solve each sub-task. These sub-agents are essentially small LLMs or AI modules 
designed and trained for a specific task. The master agent will play a coordinating role, arranging 
the order of tasks, collecting results from sub-agents, and checking and synthesizing them into 
the result. 

• Each agent operates according to the principle of the lower layer agent: that is, it can also utilize 
ReAct and call tools. For example, the "image analysis" sub-agent can internally call a vision 
model to recognize objects and then write its report. The "coding" child agent can utilize small 
agents, which means it contains an LLM loop that generates and executes code. This nested 
design enables the overall system to be multi-layered, versatile, and highly flexible in mobilizing 
the right capabilities needed for each task. 

• All intermediate results and new knowledge generated during the agent's work will be pushed 
into a common knowledge repository of the system. This repository stores the implemented plans, 
tools, and results, along with the conclusions drawn. For each new task, the host agent can query 
this repository to determine if a similar task has been solved in the past, thereby leveraging 
available results instead of starting from scratch. If the old results are not satisfactory, the system 
will recognize the need to avoid that approach and try a new solution. 

• In principle, this unified Agentic AI system can be deployed at the scale of a large agent running 
on a single machine or many small agents communicating over a network. The multi-small agent 
model is suitable when resources are distributed or when you want to leverage the "power of the 
crowd" of agents. In such an environment, a standard protocol is necessary for agents to exchange 
reports and requests with each other coherently. 

• Finally, to move toward AGI, the system must be able to learn: that is, after each completed task, 
it does not forget but continuously updates the model parameters so that it can perform better 
next time. For example, if a child agent writes code that contains an error, the agent will avoid 
making the same mistake next time. If the governing agent finds that task allocation type A is 
more efficient than type B over several trials, it will gradually favor type A. This feedback and 
adjustment mechanism can be implemented through reinforcement learning or by simply having a 
rule evaluation and editing module. 

The above scheme, therefore, combines the most quintessential components: a powerful 
LLM/LVLM brain, multi-step inference skills, offline capabilities, team organization, deep automation, 
and knowledge collaboration. This is the shape of a great AI agent that we hope to develop to undertake 
complex, long-term goals in diverse real-world environments, with performance far exceeding that of 
individual modules. Of course, this is only a vision at the moment, and there are many challenges to be 
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addressed, including ensuring reliability, efficiency, and, exceptionally, the ability of humans to control 
such a complex and intelligent system. However, the first pieces have gradually appeared, and each 
research on Agentic AI is a part of the overall picture. The task of the AI community is to assemble 
them correctly and fill in the missing pieces on the road to conquering AGI. 
 
3.2. Potential Applications of  Agentic AI in Vietnam 

Agentic AI technology offers numerous application opportunities in education, research, and 
industry, especially when tailored to Vietnam's specific context and needs. Below, we review some 
promising application directions. 

In education, AI agents can act as intelligent teaching assistants or virtual tutors to support 
personalized learning. For example, a system combining LLM and LVLM can help students solve math 
problems by providing step-by-step instructions, accompanied by illustrations or videos as needed. This 
agent knows how to use the CAS tool to check results, call the Wikipedia API to look up additional 
information, and self-adjust explanations to suit the learner's level. In Vietnam, where the demand for 
online learning and self-study is increasing, an "AI tutor" fluent in Vietnamese and understanding the 
Vietnamese education program will be a valuable tool to improve the quality of learning. Moreover, AI 
agents can operate 24/7 and are cost-effective, allowing them to bring knowledge to areas lacking 
qualified teachers. 

Another application is to support teachers in preparing lesson plans and digital content. AI agents 
can search for reference materials, draft lecture outlines, create multiple-choice questions, and even 
generate lecture slides. These time-consuming tasks can be automated, allowing teachers to focus more 
on their creative expertise and pedagogical interactions. In particular, with the help of AgentRxiv or 
sharing communities, an agent can update the latest scientific materials (for example, modern STEM 
teaching methods from international conferences) and suggest them for Vietnamese teachers to apply. 
In scientific research, systems such as AI Scientist and AgentRxiv can effectively support researchers. In 
Vietnam, where research resources are limited, leveraging AI agents can create a significant leap in 
productivity. For example, a small research team can utilize an AI agent to scan thousands of papers on 
arXiv each month, summarize relevant results, and suggest new ideas, tasks that are challenging for 
humans to accomplish in the era of “information explosion.” Domestic AI labs can also connect their 
agents to global knowledge-sharing platforms, enabling them to participate in the international 
scientific community at unprecedented speed. 

In the field of basic science, AI agents can help simulate chemical experiments and analyze 
biological data, as well as aid in physics. Instead of having to test many cases manually, researchers can 
assign AI agents to set up and run mass simulations and then synthesize the outstanding results. For 
example, in pharmacology, an AI agent could automatically try to “synthesize” chemical compounds and 
screen which ones have the potential to become drugs, saving lab effort and narrowing the search space 
for scientists. 

In the technology and industry sectors, Agentic AI promises to create highly flexible virtual 
assistants for businesses. A close example is the intelligent office assistant: an AI agent can manage 
emails, schedules, and reminders, and automatically schedule meetings. If integrated with a multi-agent 
system, it can handle multiple tasks: one agent is responsible for scheduling, another agent reads and 
summarizes important emails every morning, and another agent monitors market news related to the 
business. With tool-calling capabilities, this assistant can connect to APIs of many services to execute 
work seamlessly. In manufacturing and operations, AI agents can act as assistants to factory operations, 
monitoring data from IoT devices, detecting abnormalities, and proactively suggesting adjustments. 
For example, a power plant could have an AI agent monitor the electricity flow. If it detects a spike in 
consumption, it could automatically investigate the cause and then recommend increasing capacity or 
issuing maintenance alerts. Decisions that previously required engineers to make can now be assisted or 
partially implemented by an AI agent. 



86 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 2: 73-90, 2026 
DOI: 10.55214/2576-8484.v10i2.11983 
© 2026 by the authors; licensee Learning Gate 

 

In the field of customer service, Agentic AI agents are superior to conventional chatbots in that they 
can proactively solve problems for customers rather than respond. For example, when a customer 
inquires about the status of an order, the agent not only responds but also proactively checks the system 
and sends a request email if a delay is detected. Does the customer need technical support? The agent 
can guide users through various operations and even control some, if authorized, all automatically and 
quickly. 

For the government and public services, Agentic AI can help build electronic citizen assistance. 
Citizens can ask an AI assistant about administrative procedures. The assistant will play the role of a 
"virtual civil servant" to guide them through filling out the application, checking for errors, and looking 
up the application's progress through the public service portal, thereby reducing the burden on the 
administrative apparatus. In Vietnam, where the government is pushing for digital transformation, AI 
agents well-versed in local laws and procedures will undoubtedly be a key component of future service 
portals. 

Implementation notes: Despite its great potential, the application of Agentic AI also presents 
specific challenges in Vietnam. First of all, the issue of language and data: Most current models and 
systems are developed in English, so it is necessary to make efforts to develop Vietnamese models and 
integrate local knowledge so that AI agents can operate in the proper context. Second, it is necessary to 
focus on evaluating and testing the system before applying it to sensitive areas; this requires 
coordination between technical experts and industry experts to ensure that AI gives the right advice, 
avoiding mistakes that cause consequences. Third, the issue of ethics and privacy: AI agents can act, so 
the risk of abuse is also higher. There needs to be a legal framework to manage this, for example, by 
regulating what AI is allowed to do automatically and what requires human consent. Vietnam can learn 
from international standards on AI while also developing its own standards that are consistent with 
Vietnamese cultural values and laws. 
 

4. Conclusion 
The rise of Agentic AI marks a significant shift from passive AI models to active, autonomous AI 

systems capable of multidimensional interactions with their environments. This paper has presented an 
overview of the main approaches shaping the new generation of AI agents – from multimodal LVLM, 
reasoning agent architectures such as ReAct and Plan-and-Execute, “small but powerful” smolagents 
libraries, tool calling techniques that extend LLM intelligence, to complex multi-agent systems and 
autonomous research agents such as AI Scientist and AgentRxiv. Each approach contributes a piece to 
the overall puzzle toward AGI: models provide knowledge and representation, methodologies organize 
thinking and action, and systems coordinate and learn over time. 

• The takeaway is that no single solution is enough to achieve AGI, but rather intelligent 
combinations of solutions will get us closer to the goal. Converging trends have already begun to 
emerge: new LLM models (like GPT-4) already support function calling; platforms like 
HuggingFace Transformers also integrate tool use and memory modules to support agent 
construction; many open-source projects are experimenting with combining multi-agent with 
LLM, etc. Soon, we can expect unified frameworks where programmers can “build mini-AGI” by 
assembling components, such as language models, toolkits, child agents, and long-term memory 
mechanisms, without having to reinvent the wheel. For AI scientists and developers in Vietnam to 
catch up with the Agentic AI trend, we would like to propose some recommendations as follows: 

• Research and develop a large Vietnamese language model: Initial steps have been taken, but it is 
necessary to continue expanding the scale and quality. The domestic model will help deploy 
agents to better understand Vietnamese people. At the same time, it is necessary to build 
Vietnamese multi-modal datasets to train and evaluate LVLM in Vietnam. 

• Build an open-source Agentic AI library: Take advantage of international frameworks and develop 
more modules suitable for the Vietnamese environment. This library should be contributed to by 
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the community, both to accelerate domestic R&D and to establish connections with the 
international community through sharing tools and agents. 

• Human resource training: Introduce content about Agentic AI in undergraduate and postgraduate 
training programs in IT and artificial intelligence. Encourage students to participate in open-
source projects on agents, consider offering open short-term courses or conferences to update 
their knowledge for those working in the industry. A broad understanding will enable Vietnam to 
apply this technology effectively. 

• Pilot application in key areas: Select a few specific problems in Vietnam with high feasibility for 
agent application. For example, agents supporting farmers and agents supporting doctors in 
image diagnosis. Small pilot projects will demonstrate practical effectiveness and lessons learned 
before being replicated. 

• Focus on ethical and legal factors: From the R&D stage, a team of experts in AI ethics and law 
should be involved to develop guidelines for safe agent use and propose policy adjustments as 
necessary. For example, regulations on responsibility when AI agents cause errors, the privacy of 
user data in long-term memory agent systems, and human supervision mechanisms when agents 
operate in sensitive areas. 

Looking to the future, Agentic AI will likely be one of the main pillars of next-generation AI. If 
LLM is the brain, then Agentic AI is how that brain can have a “body” and “behavior” in the real world. 
Vietnam, with a large and determined young intellectual force, has all the conditions to welcome and 
contribute to this wave. Proactive research, learning, and early application will help us narrow the gap 
with leading countries while leveraging AI to address numerous national challenges. Hopefully, the 
overview in this article will be the first step in providing basic knowledge for Vietnamese scientists and 
educators, thereby promoting “Made in Vietnam” Agentic AI initiatives in the coming time. 
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