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Abstract: In contemporary research, Artificial Intelligence (AI) and Machine Learning (ML) are vital for 
predicting pregnancy-related issues by analyzing extensive datasets to create synthetic patterns for 
personalized assessments. This study focuses on maternal health during pregnancy utilizing a deep 
learning model, particularly a type of ML that employs multi-layered Artificial Neural Networks (ANN) 
to discern patterns in data. Two robust linear sequential models based on dense networks were developed 
using Python, tested with datasets from open-source repositories. The models utilized fifteen variables, 
including fourteen inputs and one output, with birth weight as the outcome variable. The foundational 
model consists of five dense layers, while the advanced model includes two additional layers, totaling 
seven. Model performance was assessed through precision, accuracy, F1-score, and recall rate, with data 
split into 80% for training and 20% for testing. The basic model trained over 100 epochs with a batch size 
of 16 recorded an F1-score of 86.22%. In contrast, the advanced Dense CNN linear Sequential Maternal-
Health (DCNN-SMH) model achieved a higher F1-score of 91.34% and an accuracy rate of 95% for both 
prediction and classification, outperforming the base model, which had an accuracy of 93%. The study 
concludes that advanced dense network models yield superior accuracy compared to base neural networks. 

Keywords: Dense neural network, Linear sequential model and maternal health, Multi-layer network, Sequential layers.  

 
1. Introduction  

Globally, maternal morbidity and mortality have become a matter of great concern. Predicting 
pregnancy-related risks is considered necessary for addressing issues early and for increasing the well-
being of both the mother and the unborn child. Preterm birth, gestational diabetes, and hypertension are 
some pregnancy conditions that demand close monitoring, as they can have major impacts if left 
unnoticed. Infants with low or high birth weight are likely to increase morbidity and mortality rates. In 
this context, deep learning is a potential technique to directly predict unborn babies’ weight. A deep belief 
network (DBN), one of the deep learning methods, has been used to predict fetal weight based on different 
ultrasound parameters. The results of Al Mashrafi, et al. [1] demonstrate that the proposed deep learning 
model can be considered a reliable tool for natal weight at fetal age between 15-40 weeks. Of late, the 
application of deep learning for pregnancy-related prediction has developed. The findings of analysis 
exhibited that Random Foresting is one of the best-performing algorithms for analyzing maternal risk 
level, with an increased accuracy level of 75.2%, followed by KNN [2].   

Deep learning has been employed in the medical field for various activities, particularly drug 
discovery, maintaining e-medical records, and medical imaging analysis. Deep learning algorithms 
contribute to making diagnosis easier by finding intricate relationships, aiming to reduce medical errors, 
and increasing the population's well-being. The proposed model in the study [3, 4] demonstrated that it 
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can assist medical experts in making more accurate birthweight predictions by using routinely gathered 
antenatal parameters, thereby facilitating appropriate medical decisions and treatments. 

Machine learning and deep learning are being used by medical field experts to improve their decision-
making in the context of treatment priorities and specific maternal health indicators [2]. These 
techniques make it possible for healthcare experts to identify and control risk factors in advance by 
facilitating early risk detection in prenatal care. Consequently, an interesting method to improve 
pregnancy risk screening is to incorporate machine learning models into healthcare systems [5]. As deep 
learning approaches deliver all the high-dimensional time series, ranging from low-level to higher-
dimensional medical information, it can be definitely employed for potential risk prediction throughout 
pregnancy. It is also possible with deep learning to address some of the challenges in medical data [6] 
and extensively contributes to boost such models to surpass human diagnostic capabilities [7]. The 
findings of Venkatasubramanian [8] emphasized that the integration of deep learning for continuous 
monitoring of maternal health features exhibits the potential resources of these techniques in ensuring 
stability and accuracy level [9] when considerable medical dataset is recorded.  

Machine learning techniques can address nonlinear issues, which largely take place in human 
physiology as a result of complex connections between social drivers of health, medical and biological 
components. The techniques do this by finding out rules and patterns in data to develop prediction models. 
The accuracy of machine learning models in predicting and analysing unfavourable pregnancy results 
before they take place has been examined by Sufriyana, et al. [10]. For example, sophisticated and 
intricate techniques, which could handle both organized and unstructured medical data, including 
diagnosis results, for example deep learning-based or hybrid models, largely deliver high prediction 
accuracy [11]. Machine learning and deep learning techniques are highly recommended for predicting 
medically relevant events, enhancing clinicians' awareness of high-risk cases, and supporting improved 
clinical decision-making processes. The findings of Vasudevan, et al. [12] emphasize a huge need to 
increase efforts to translate, execute, and assess the use of the machine learning models in medical practice. 

In general, pregnancy and childbirth mortality rates are increased by various factors, including time, 
distance, and the lack of physicians and nurses [13, 14]. Machine learning algorithms are being widely 
used to predict a pregnant woman's risk factors and a newborn’s condition to track and estimate their risk 
levels. The algorithms used in deep learning are trained to search through large datasets for patterns and 
characteristics, enabling them to reach conclusions and make predictions based on newly available data. 
The Gaussian Naive Bayes, XGBoost, Random Forest, SVM, and Decision Tree (DT) are five major 
machine learning algorithms that play an important role in predicting maternal health and the weight of 
newborn babies [15]. These algorithms together can generate the best and most effective outcomes.  
 
1.1. Problem Statement 

In the present day, reducing the maternal mortality ratio (MMR) has become an important objective 
in the global sustainable development goals (SDGs). To reduce mortality and morbidity, decision-makers 
and healthcare professionals are working hard to predict and identify high-risk groups throughout 
pregnancy. Pregnancy risk prediction techniques, which are scalable to real-time applications and 
understandable across populations, are considerably lacking from the existing literature, despite the fact 
that machine learning and deep learning have shown promise in maternal health prediction and fetal 
weight prediction. The need for an effective technique which combines various deep learning algorithms 
to improve accuracy and increase transparency was not adequately addressed by existing studies. Thus, 
the study is specifically carried out to analyze the role of deep learning in predicting maternal health, 
particularly birth weight of the baby and health of the fetus. Low birth weight can possibly lead to severe 
negative consequences on the mother’s health, such as neonatal mortality and a number of health concerns 
throughout their life. To address this problem, this research has been conducted using deep learning to 
uncover significant factors affecting birth weight and to identify the best predictive deep learning model. 
The study develops and tests deep learning models for predicting complications related to maternal 
morbidity and mortality effects. 
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2. Literature Review 
In Sharma, et al. [13] proposed a solution using machine learning to enhance the accuracy and 

prediction of birth weight and assist clinicians in recognizing major risks prior to birth. Regression 
models, including support vector machine, artificial neural network, elastic net regressor, logistic 
regression, k-nearest neighbors, ridge regressor, random forest, and lasso regressor, are adopted for 
predicting fetal birth weight based on gender, maternal age, gestational weeks, and ultrasound 
measurements such as femur length, abdominal circumference, and biparietal diameter. The most 
influential parameter in predicting fetal birth weight is abdominal circumference, while gender is the least 
influential. The elastic net regressor model was the best predictor for fetal weight at birth across 15 to 40 
weeks of gestation. 

Gao, et al. [16] developed a machine learning model for predicting birth weight during the third 
trimester of pregnancy, which could help minimize adverse fetal and maternal outcomes. In this research, 
neonatal delivery and maternal results, along with parental demographics, sonographic fetal biometry, 
and obstetric clinical data, were retrieved from electronic medical records. Machine learning algorithms 
such as multi-layer perceptron, extreme gradient boosting, random forest, support vector machine, and 
ridge regression were used to develop the prediction model. The proposed model showed the best 
performance for macrosomic fetuses and low birth weight infants. 

In Henry [17], it was mentioned that infants are measured by maternal experiences during 
pregnancy. These include the physical health of pregnant women, prior pregnancy experiences, social-
environmental health indicators, and emotion regulation. This research models machine learning for 
predicting markers of fetal development and growth, newborn head circumference, and birth weight. Head 
circumference was best forecasted with ridge regression (linear model). Infant gender, maternal body 
mass index, and number of kids predicted high head circumference, while maternal preeclampsia, ethnicity 
or race, and previous preterm history predicted smaller head circumference. Birth weight was forecasted 
with support vector machine. It was observed that occupational prestige forecasted higher newborn 
weight; ethnicity or maternal race forecasted lower newborn weight; challenges with emotional clarity, 
number of kids, and previous preterm history had nonlinear impacts. 

In Alabbad, et al. [18], research was conducted to improve infants' birth weight prediction using 
machine learning algorithms. Two datasets were analyzed with various algorithms, including AdaBoost, 
Light Gradient Boosting, Extremely Randomized Trees, and Decision Trees. Results indicated that the 
Extra Trees model achieved a 98 percent prediction accuracy on the King Fahd University Hospital 
dataset, while the Random Forest model reached 96 percent accuracy on the IEEE dataset. The study 
suggested that machine learning systems could provide consistent and reliable predictions. 

In Keerthana and Suvanam [19] predicts newborn weight using models in machine learning. Various 
regression models using support vector machine, linear, ensemble (extreme gradient boosting + gradient 
boosting) models, ElasticNet, extreme gradient boosting, and ridge were analyzed. It was observed that 
the ensemble model had a high prediction rate of 90 percent with accuracy, whereas other models like 
ridge, extreme gradient boosting, ElasticNet, linear, and support vector machine achieved less than 80 
percent accuracy in prediction. The ElasticNet model achieved 34 percent accuracy, extreme gradient 
boosting 77.7 percent, support vector machine 42.9 percent, and linear models 39 percent. The findings 
indicate that ensemble models, such as combining extreme gradient boosting and gradient boosting, 
showed better performance with higher accuracy. 

In Ranjbar, et al. [20] developed a model for machine learning to predict low birth weight. Predictive 
models were developed using various algorithms, including permutation feature importance with k-NN 
(k-nearest neighbors), support vector machine, decision tree classifier, light gradient boosting, deep 
learning feedforward, random forest classifier, extreme gradient boosting, and logistic regression. 
Extreme gradient boosting was the best machine learning model for predicting low birth weight, with a 
recall of 0.69, accuracy of 0.79, F1 score of 0.77, and precision of 0.87. Ranking the features revealed that 
gestational age and previous low birth weight history were the main predictors. 
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In Mursil, et al. [21] introduced a new technique using deep neural network for predicting neonatal 
birthweight with the history in early gestation. Newborn weight is the main predictor of neonatal health, 
with low newborn weight increasing risks of mortality and morbidity. The role of ultrasonography to 
monitor fetal health, its restrictions in accessibility and accuracy, needs more effective predictive systems. 
This research adopts both the TabNet model and a deep learning model. The TabNet model shows the 
best capabilities in prediction, achieving an accuracy of 96 percent and an AUC of 0.96. Folate status and 
maternal vitamin B12 are the main predictors of birth weight, representing key nutritional factors 
impacting neonatal health issues. It was observed that combining multimodal maternal factors offers 
significant advantages in predicting neonatal birth weight. 

Factors that affect fetal and maternal health during early to mid-pregnancy could impact fetal 
development. This research developed a machine learning model by incorporating artificial intelligence. 
Various machine learning classifiers were deployed. In this research, stacked ensemble models such as 
Anchor, LIME (local interpretable model-agnostic explanations), and SHAP (Shapley additive 
explanations) were developed. When estimating the machine learning classifiers, the AdaBoost model 
obtained high performance with a maximum F1 score of 72 percent, accuracy of 77 percent, recall of 77 
percent, and precision of 73 percent. Furthermore, it was noted that the stacked model showed an accuracy 
of 75 percent, indicating its potential in clinical applications. The developed model identified some main 
attributes influencing newborn weight, such as parity, maternal height, crown-rump length, hypertensive 
disorders during gestation, glycated hemoglobin, nuchal translucency thickness, and plasma protein 
during pregnancy [22, 23]. 

In Reza and Salma [24] carried investigation using data to identify the main aspects of low newborn 
weight using different approaches in machine learning and for determining the best predictive machine 
learning model and feature selection technique. Logistic regressions were used as a conventional method, 
along with a few classifiers in machine learning, including naïve Bayes, adaptive boosting, decision tree, 
random forest, extreme gradient boosting, and support vector machine, to determine the best model for 
predicting low newborn weight. It was found that machine learning methods perform better than 
conventional methods, with RF (random forest) being the best model for predicting low newborn weight.  
 

3. Materials and Methods 
The architecture of the deep learning (DL) model for predicting maternal health has been described 

in the following section. 
 
3.1. Proposed Design 

The design and flow diagram of the research are represented in Figure 1. 
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Figure 1. 
Research design-flow. 
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Based on the research flow, it is apparent that the deep learning model developed here uses sequential 
linear layers. 

 
3.2. Proposed Architecture 

The research adopts a sequential deep learning (DL) model with four layers. The first layer is a linear 
layer with a kernel size of 1x14 for input and 1x64 for output. It is followed by a ReLU activation layer 
and a dropout layer, each with kernel sizes of 1x64 for input and output. The fourth and final layer is a 
linear layer with 1x64 input and 1x2 output. Building on this base model, the research developed an 
improved linear-sequential DL model with seven layers, adding three layers to the original. The 
additional layers include a ReLU layer as the fifth layer with a kernel size of 1x32, a dropout layer as the 
sixth with the same kernel size, and a linear layer as the seventh with a kernel size of 1x32 for input and 
1x2 for output. The architecture of the proposed DL model, as shown in figure 3.2, comprises a total of 
seven sequential layers. 
 

 
Figure 2. 
Proposed DL models’ linear-sequential architecture layers. 
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The above figure 2 shows the differences in the sequential layers of the base model and advanced 
improvised DL model. Major reasons behind fine-tuning machine learning models’ performances are: 
improving performance, data efficiency, accessibility, personalization, and providing leverage in 
knowledge via transfer learning. The current research focuses on fine-tuning the parameter learning rate 
to increase the model’s performance. 
3.3. Dataset 

This section explains how the data are acquired, cleansed, and balanced. Similarly, the parameters, 
targeted respondents, and samples used are also briefly explained. 
 
3.3.1. Parameter 

The data acquired here is obtained from Kaggle, collected in Ziya [25], with the fifteen parameters 
as the main variables. They are illustrated in Table 1. 

 
Table 1.  
Parameters used and data type. 

S. 
No 

Feature Description Data 
type 

1. Age Mother’s age (in years) Integer 

2. Pre_pregnancy_bmi Body-Mass-Index of the mother pre-pregnancy Integer 
3. Gestational_age_weeks Gestational-age of fetus at birth (in weeks) Integer 

4. Blood_pressure_systolic Systolic blood-pressure (in mmHg) Integer 

5. Blood_pressure_diastolic Diastolic blood-pressure (in mmHg) Integer 
6. Hemoglobin_level Concentration level of the Haemoglobin (in g/dL) Integer 

7. Number_of_prenatal_visits Total prenatal visits to the healthcare Integer 
8. Has_diabetes Mother’s diabetes information (0=No and 1 = Yes) Integer 

9. Has_hypertension Mother’s hypertension information (0=No and 1 = Yes) Integer 
10. Smoking_status Mother’s smoking habit while pregnancy information (0=No and 1 = Yes) Integer 

11. Alcohol_consumption Mother’s alcohol habit while pregnancy information (0=No and 1 = Yes) Integer 
12. Education_level Mother’s educational level (None, Primary, Secondary and Higher) String 

13. Household_income Monthly income (in local currency) Integer 

14. Iron_supplementation Mother’s iron supplementary information (0=No and 1 = Yes) Integer 
15. Birth_weight_category Target variable: Normal and Low, classification String 

 

3.3.2. Target and Sample 
The sample adopted here is the entire dataset, that is 200 samples (i.e., n=200).  

 
3.3.3. Data Split 

The training and testing ratio (data split) adopted is 80:20; where the testing is split into 10 for 
validation and the other 10 for testing. 
 
3.3.4. Model Improvisation 

The improvised model’s learning rate is set at 0.001 with a random state of 42. Initially, the training 
of the model is carried out with 100 epochs; after improvisation, the epoch runs are increased to 300 for 
better performance. Overfitting and underfitting issues are addressed with the early stopping technique. 
 
3.3.5. Inclusion and Exclusion Criteria 

Here, focus on the “pregnant” for inclusion and “not pregnant” as exclusion data, respectively. Based 
on the acquired results, the outputs are classified into pre-defined respective classes (Normal: 1 and Low: 
0) to predict birth discrepancies via maternal health. 
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4. Implementation and Results 
This section delves into the tools used, methods adopted, and how the prediction models in detail, 

along with the results from the models developed (base and improvised). 
4.1. Implementation 

The models developed to predict maternal health of respondents are created using the Python 
environment as the application. The software and hardware requirements for the models adopted here are 
as follows (refer to Table 2). 

 
Table 2. 
Requirements of the machine learning models developed. 

Hardware: 
CPU Intel i7 

GPU NVIDIA GPU – RTX 3060 (12 GB) 
RAM 16 GB 

Storage  SSD with 1 TB capacity 
Network speed 1 Gbps 

Software: 
OS Linux - Ubuntu  

Language Python version 3.5 
Frameworks Pandas, numpy, torch, keras in tensor flow and sklearn (Scikit-Learn) and matplotlib 

 
The deep learning (DL) models (base and improvised) developed use dense CNN (dense convolutional 

neural networking) based linear-sequential layers. The base, as explained, has four layers, whereas the 
improvised has seven layers for better performance. The developed advanced dense CNN linear-sequential 
model (refer to Figure 3) focuses on improving prediction and classification accuracy more than the base 
model. 

 

 
Figure 3. 
Dense CNN Linear-Sequential Maternal-Health prediction model (DCNN-SMH model). 
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The developed model obtains the input (numeric value) in textual (alpha-numeric) form and not as 
images in this research. Hence, by adopting the linear sequential layers, the analysis is carried out in the 
dense CNN architecture. Once the data area is examined via the feature extraction method, they are passed 
through pooling layers to reduce spatial dimensions and then later passed to ReLU function layers for 
classification purposes. The final outcome is the result/output, which is categorized into pre-defined 
classes “Normal” and “Low” under maternal health, respectively. Once the models are executed, the 
performances are compared via accuracy, loss, and F1 scores of both models to identify the best model. 
The loss, accuracy, and F1 scores are obtained for the base model with 100 epoch runs, and for the 
advanced DCNN-SMH model, the same metrics are evaluated using 300 epoch runs. Simultaneously, by 
fine-tuning the learning rate parameter, the DCNN-SMH model is trained to stop early for better 
performance, to avoid overfitting issues, and to acquire the best accuracy from training and validation. 

Thus, the pseudo-code for the dense CNN with linear-sequential layers-based networking models 
used here is represented as: 

Pseudo-code: Dense neural network Algorithm 
Step 1: Initiate; 
Step 2: Load the datasets acquired for maternal healthcare prediction in Python with fifteen 

parameters (14 input and one output: Target); 
Step 3: Pre-process the data by transforming string values to numeric values. Split the data into 80:20 

for training and testing; 
Step 4: Define the neural network models (Dense and Fully Connected: ReLU function) with drop out 

layer; 
Step 5: Compile the models with Optimizer (Adam optimization), Metrics (precision, recall, accuracy 

and f1-score), and Loss (categorical cross-entropy); 
Step 6: Training: Define epochs, random state, batch size and the parameter to adjust (i.e., learning 

rate (lr) for fine-tuning), and lastly validate the epochs on testing datasets; 
Step 7: Evaluation: Using test data, predict the outcomes, convert them into class labels (Normal and 

Low); 
Step 8: Compare the actual and predicted labels to generate classification reports (f1-score, recall, 

accuracy and precision); 
Step 9: Produce graphs and confusion matrices for the loss, accuracy and pre-defined classes. 

 
4.2. Results and Discussions 

The results of the models are represented as graphs (loss and accuracy) and confusion matrices for 
each DL model, respectively. Lastly, the comparison of the models and performance metrics of the models 
are also represented as a bar diagram, individually. 
 
4.2.1. Base Model 

As mentioned earlier, the training and validation of the base model are carried out with 100 epoch 
runs, where the random state is set at 42 with batch size of 16. The class imbalance issue here has been 
handled by not generating any synthetic data. Thus, the 100 values (loss, accuracy, and F1-scores) are 
obtained for the base model. Few sample values from the actual data gained are depicted in Table 3. 
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Table 3. 
Epoch values for base model. 

Epochs Train_Loss Train_Acc Train_F1 score Val_Loss Val_Acc Val_F1 score 

1 0.6320 0.7188 0.5324 0.6067 0.7750 0.4366 
2 0.5688 0.7875 0.4406 0.5537 0.8000 0.4444 

3 0.5117 0.8063 0.4464 0.5175 0.8000 0.4444 
4 0.4896 0.8125 0.4792 0.4893 0.8000 0.4444 

5 0.4659 0.8063 0.4464 0.4653 0.8000 0.4444 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
96 0.0318 0.9938 0.9901 0.3515 0.9250 0.8622 

97 0.0271 1.0000 1.0000 0.3517 0.9000 0.8039 

98 0.0261 1.0000 1.0000 0.3540 0.9000 0.8039 
99 0.0211 1.0000 1.0000 0.3533 0.9250 0.8622 

100 0.0384 0.9812 0.9704 0.3571 0.9250 0.8622 

 
From the above Table 3, it is evident that the initial accuracy value gained was 77.5% with loss and 

60.67% and 43.66% as validation F1-scores. The improvement rapidly increased at the 2nd epoch and 
reached 80%. At the 14th epoch, the accuracy increased to 90%, and at the 18th epoch, the model achieved 
92.50% accuracy. The accuracy fluctuated from 90% to 92.50% until the last epoch runs and remained at 
92.50% at the 99th and 100th epochs, respectively. Thus, it is inferred that the validation F1-score at the 
100th epoch was 86.22%, with an accuracy of 92.50% and loss at 35.71% (refer to figure 4 and figure 5). 
 

 
Figure 4. 
Base model – Accuracy analysis. 
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Figure 5. 
Base model – Loss analysis. 

 
From figures 4 and 5, it is interpreted that the accuracy increased rapidly with a decrease in the loss 

value from 0.6 to 0.3. However, the model shows overfitting with a higher F1-score during training 
(97.04%) and less during validation (86.22%). To address this, in the DCNN-SMH model, early stopping 
with fine-tuning of the learning rate (lr) is implemented. 

 

 
Figure 6. 

Confusion matrix – Base model. 
 
The confusion matrix for the classification (Normal: 1 and Low: 0) in the above figure (refer to Figure 

6) shows that the performance metrics obtained are: precision is 100%, recall rate is 62.5%, F1-score is 
76.92%, with an accuracy of 92.50% (refer to Table 4). 
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Table 4. 
Classification report of Base model. 

 Precision Recall F1-Score Support 

0 1.00 0.62 0.77 8 
1 0.91 1.00 0.96 32 

accuracy   0.93 40 
macro avg 0.96 0.81 0.86 40 

weighted avg 0.93 0.93 0.92 40 

 
Thus, the base model acquired the classification accuracy of 93% with a higher precision rate for class 

‘0’ and a recall rate for class ‘1’, respectively. 
 

4.2.2. DCNN-SMH Model 
The training and validation of the advanced DCNN-SMH prediction model are carried out with 300 

epoch runs, where the random state is set at 42. The batch size is kept at 16. To overcome the overfitting 
issue as the epoch runs increase, early-stopping technique is adopted to gain the best accuracy of the DL 
model. Similarly, ADASYN is added post-data splitting in training and validation sets for class imbalance. 
Here, the training shuffle is set to “True,” while validation shuffle is set to “False.” Few sample values 
from the actual data gained are given in Table 5. 

 
Table 5. 
Epoch values for DCNN-SMH model. 

Epochs Train_Loss Train_Acc Train_F1 score Val_Loss Val_Acc Val_F1 score 
1 0.6616 0.6786 0.6782 0.6440 0.8500 0.7849 
2 0.6254 0.7976 0.7967 0.5870 0.8500 0.7403 

3 0.5686 0.8373 0.8364 0.5402 0.8000 0.6875 

4 0.4924 0.8611 0.8611 0.4909 0.7750 0.6639 
5 0.4151 0.8690 0.8690 0.4297 0.8000 0.6875 

. 

. 
116 
. 
. 

. 

. 
0.0087 

. 

. 

. 

. 
1.0000 

. 

. 

. 

. 
1.0000 

. 

. 

. 

. 
0.7131 

. 

. 

. 

. 
0.9500 

. 

. 

. 

. 
0.9134 

. 

. 
96 0.0017 1.0000 1.0000 1.6794 0.8750 0.7365 
97 0.0099 0.9960 0.9960 1.7487 0.8750 0.7365 

98 0.0006 1.0000 1.0000 1.7699 0.8750 0.7365 

99 0.0005 1.0000 1.0000 1.7599 0.8750 0.7365 
100 0.0091 0.9960 0.9960 1.6216 0.8750 0.7365 

 
From Table 5, it is evident that the initial accuracy value gained was 85.00% with a loss of 0.64 and 

64.40% and 78.49% as validation F1-scores. The accuracy fluctuated between 85% and 87.50% until the 
last epoch runs. It is inferred that the validation F1-score at the 100th epoch achieved 73.65%, with 
accuracy of 87.50% and loss at 1.6216%. The loss increased from 0.64 to 1.05 at the 129th epoch (refer to 
figures 7 and 8). The loss kept increasing up to 1.62; likewise, the accuracy and F1-scores kept fluctuating 
and decreasing as the epoch runs increased. Hence, the best accuracy and validation F1-scores are 
considered the best output. 
 



440 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 2: 428-445, 2026 
DOI: 10.55214/2576-8484.v10i2.12111 
© 2026 by the authors; licensee Learning Gate 

 

 
Figure 7. 
Advanced DCNN-SMH model – Accuracy analysis. 

 

 
Figure 8. 
Advanced DCNN-SMH model – Loss analysis. 

 
From Figures 7 and 8, it is understood that the accuracy increased and the loss decreased rapidly in 

the advanced DCNN-SMH prediction model compared to the base model. The best accuracy obtained 
from the DCNN-SMH model was at the 116th epoch, with an accuracy of 95.00% and an F1-score of 
91.34%. 
 



441 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 2: 428-445, 2026 
DOI: 10.55214/2576-8484.v10i2.12111 
© 2026 by the authors; licensee Learning Gate 

 

 
Figure 9. 
Confusion matrix – DCNN-SMH prediction model. 

 
The confusion matrix (refer to figure 9) shows that the difference in the prediction of the DCNN-

SMH model from the base model improved accuracy, as depicted in Table 6. 
 
Table 6. 
Classification report of DCNN-SMH model. 

 Precision Recall F1-Score Support 
0 1.00 0.75 0.86 8 
1 0.94 1.00 0.97 32 

accuracy   0.95 40 
macro avg 0.97 0.88 0.91 40 

weighted avg 0.95 0.95 0.95 40 

 
The classification accuracy of the DCNN-SMH prediction model is 95%, with a higher precision rate 

for class ‘0’ and a higher recall rate for class ‘1’. Although the classification outcomes of both models are 
similar, the advanced dense-net model (DCNN-SMH) achieved 2% higher accuracy than the base model, 
indicating that the developed linear-sequential model with seven layers is more accurate. 
 
4.2.3. Comparison of Models Via Performance Metric Evaluation 

This section compares a few existing research studies that used deep learning models in machine 
learning. The performance of the developed models is compared by evaluating the metric values obtained 
for classification from both DL models, as depicted in table 7, to identify the best model. 

 
Table 7. 
Performance analysis of both DL models. 

 Class Precision F1-score Recall Accuracy 

Base model 0 100 62 77 93 

1 91 100 96 

Advanced DCNN-SMH model 0 100 86 75 95 

1 94 97 100 

 
Interpretation: The precision for class ‘0’ is higher in both models, whereas the F1-score is highest in 

the base model, and the recall rate is highest in the advanced model. 
The accuracy rates of the deep learning prediction models are compared to identify the best prediction 

model (refer to figure 10). 
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Figure10. 
Comparative analysis of maternal health prediction models. 
Source: Pi, et al. [26]; Agbeyangi and Lukose [27]; Pavagada and Vemuri [28]; Al Mashrafi, et al. [1] and Togunwa, et al. [29]. 

 
From Figure 10, it is visible that the proposed model gained higher accuracy (95%), followed by the 

ANN model with 94.88%, which is nearer to the current research outcome. Other deep learning models 
gained less accuracy in predicting risks in maternal health. It is also to be noted from the figure that the 
lack of DL models in maternal health predictions paves the way for the current research, which also makes 
it complicated to compare with more similar purpose research. Thus, the proposed research will provide 
insight and knowledge for using deep learning-based maternal health prediction models. 

The proposed research explores maternal health using the dataset with parameters age, 
blood_pressure_systolic, blood_pressure_diastolic, haemoglobin_level, pre_pregnancy_bmi, 
gestational_age_weeks, number_of_prenatal_visits, has_hypertension, has_diabetes, smoking_status, 
education_level, alcohol_consumption, iron_supplementation, household_income, and 
birth_weight_category (target: output). The risks during pregnancy vary, including hypertension 
(eclampsia and pre-eclampsia), diabetes, infections (after childbirth), severe bleeding (post-delivery or 
during pregnancy), and other serious complications that can lead to obstructed labor [30, 31]. Poor 
mental health, along with prolonged physical health issues, also leads to maternal health risks resulting 
in stillbirth. Risking both mother’s and child’s health and life can be prevented using prediction models 
[32]. The machine models predict risks using parameters that prevent mortality and morbidity rates 
[33]. 

Existing studies Asad, et al. [34]; Khadidos, et al. [35]; Li, et al. [36] and Koivu and Sairanen [37] 
on maternal health prediction used decision trees, random forest, Gaussian models, logistic regressors, 
kNN, SVM (support vector machines), Naïve Bayes (NB), gradient boosting machines, ANN, CNN, and 
RNN. However, the networking layers used in the models differ according to the datasets and the purpose 
proposed. 
 

5. Conclusions 
In this research, a multilayer neural network with dense layers has been adopted. A basic deep neural 

network (dNN) in multilayer form has three connected layers, where the input layer along with one or 
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more hidden layers are used. The base prediction model employing the dense network has one input layer 
with four dense-sequential layers and one output layer, totaling five layers. When tested using datasets 
(Training: Testing = 80:20), this model achieved an 86.22% F1-score rate with a 92.50% accuracy rate. 
Simultaneously, the research developed an advanced dense network model with seven layers, including 
three additional layers of ReLU, linear, and dropout layers. To improve prediction accuracy, the learning 
rate was fine-tuned to 0.001, and Adam optimization was adopted. Additionally, to address overfitting 
issues as epochs increased (from 100 to 300), the model was trained with early stopping to capture the 
best accuracy and F1-score. The advanced dense network achieved a higher accuracy of 95% and an F1-
score of 91.34%. The outputs were classified into pre-defined labels: “Normal” and “Low,” for classifying 
the child's birth weight (target). By examining maternal health, risks at birth can be mitigated through 
prior medical precautions. The classification accuracy of the base model was recorded at 93%, whereas the 
advanced multi-layer dense network model (DCNN-SMH) achieved 95%. From these results, it is 
concluded that when machine learning, deep learning, ensemble, and hybrid models are fine-tuned, they 
produce more accurate outcomes than DCNN, RNN, and ANN models. In this study, the base model 
predicted less accurately than the advanced dense neural network model. The classification accuracy was 
also higher in the DCNN-SMH model compared to the base model. 
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