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Abstract: The Whale-Bat Chaotic Algorithm (WOABCM) is a revolutionary tool for optimizing 
pathfinding navigation in crowd evacuation scenarios. Conventional evacuation plans rely on static 
routes, causing traffic jams and decreased safety. WOABCM uses the erratic behavior of whales and bats 
to optimize escape routes in real time, making it particularly useful in large crowd evacuations. The 
algorithm can adapt to different scenarios, ensuring its continued efficacy across real-world conditions. 
Iteratively iterating through the evacuation environment, WOABCM iteratively finds the most effective 
ways for agents to reach exits. In this experiment, the results show notable improvements in evacuation 
times, with WOABCM determining and directing agents through the shortest and least crowded paths 
in a room setting and assigning agents to exits in more complicated scenarios. The algorithm's 
flexibility also allows it to swiftly recompute pathways for agents, avoiding obstructions or congestion 
points. This groundbreaking approach to crowd evacuation simulation demonstrates how chaos theory-
inspired algorithms can be used to solve practical problems 

Keywords: Crowd evacuation simulation, Hybrid WOABCM, Optimization, Room simulation, Safety egress. 

 
1. Introduction  

In modern urban environments and public spaces, ensuring the safety of individuals during 
emergencies is of paramount importance. Crowd evacuation simulations serve as crucial tools for 
understanding and improving the dynamics of human movement during evacuation scenarios 
suggested by several authors [1,2]. These simulations enable researchers, architects, and 
emergency planners to explore and assess different evacuation strategies, leading to the design of 
more effective and efficient evacuation plans by several authors, [3,4,]. As the world becomes more 
densely populated and complex, optimizing crowd evacuation simulations has become a vital 
endeavour [5]. Optimization algorithms offer a sophisticated approach to enhancing crowd 
evacuation simulations. By integrating these algorithms, we can systematically fine-tune various 
parameters and variables to achieve improved evacuation outcomes [6]. The optimization process 
aims to minimize evacuation time, reduce congestion at exit points, and enhance overall safety. 
Among the spectrum of optimization algorithms, the Whale Optimization Algorithm with bat 
chaotic optimization (WOABCM) stands out due to its ability to address intricate and nonlinear 
optimization challenges.  

The optimization of crowd evacuation simulations is underscored by the need for effective 
emergency preparedness. Real-world evacuations can quickly become chaotic, as individuals react 
to unfamiliar situations, emotions run high, and physical obstacles impede movement. While 
traditional evacuation strategies are informed by behavioural studies and historical data, they 
might not be able to capture the nuances of human behaviour in the face of danger. Optimization 
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algorithms offer a computational advantage, allowing us to analyse countless scenarios and derive 
evacuation plans that account for various factors like crowd densities, building layouts, exit 
capacities, and potential bottlenecks [7, 12]. The WOABCM algorithm's distinctive approach, 
inspired by the foraging behaviours of whales and bats, presents an innovative method for tackling 
complex optimization challenges [8, 14, 15]. Its incorporation of chain movement mechanisms 
offers a balanced exploration-exploitation trade-off, enabling it to navigate intricate solution spaces 
effectively. By applying the WOABCM algorithm to crowd evacuation simulations, we intend to 
leverage its strengths in optimizing evacuation strategies that are both efficient and adaptive.  

This paper is structured as follows: Section 1 provides a brief introduction and extensive review 
of the pertinent literature in the fields of crowd evacuation simulations and optimization 
algorithms. In Section 2, the methodology is elucidated, encompassing the specifics of the crowd 
evacuation simulation setup, the intricate workings of the WOABCM algorithm, and the 
meticulous design of the experimentation phase. Section 3 meticulously presents the results derived 
from the experimentation and offers an insightful analysis. The implications of these findings, as 
well as the potential contributions of this research, are deliberated in Section 4. Finally, Section 5 
culminates in a cohesive conclusion that synthesizes the key takeaways, underscores their 
significance, and outlines the potential trajectories for future research in this domain. 

In contemporary urban environments and public spaces, ensuring the safety and security of 
individuals during emergencies is a paramount concern. Effective crowd evacuation strategies are 
crucial to mitigate potential risks and minimize harm during evacuation scenarios. The dynamics of 
human movement during evacuations are complex, influenced by factors such as human behavior, 
building layouts, exit capacities, and the presence of obstacles. To design and implement efficient 
evacuation plans, researchers, architects, and emergency planners rely on simulations to 
understand and improve these dynamics. Crowd evacuation simulations serve as valuable tools for 
exploring and assessing different evacuation strategies. Traditional evacuation plans often draw 
from historical data and behavioural studies, but they may not capture the intricacies of human 
responses under stress. As urban areas become more densely populated and intricate, optimizing 
crowd evacuation simulations has emerged as a critical endeavor. Such optimization involves fine-
tuning various parameters and variables to achieve safer and quicker evacuation outcomes. 
Optimization algorithms offer a sophisticated approach to enhancing crowd evacuation simulations. 
These algorithms leverage computational methods to systematically explore and refine evacuation 
strategies. The overarching goal is to reduce evacuation time, alleviate congestion at exit points, 
and enhance overall safety. The selection of an appropriate optimization algorithm is essential to 
effectively address the complex and nonlinear nature of evacuation challenges.  Among the 
spectrum of optimization algorithms, the Whale Optimization Algorithm with bat chaotic 
optimization (WOABCM) has gained attention due to its capability to handle intricate and 
nonlinear optimization problems. The WOABCM algorithm is inspired by the foraging behaviours 
of whales and bats, making it a unique approach to problem solving. Its incorporation of chain 
movement mechanisms enables a balanced trade-off between exploration and exploitation, enabling 
it to navigate complex solution spaces effectively. The primary motivation behind employing the 
WOABCM algorithm in crowd evacuation simulations is to leverage its strengths in optimizing 
evacuation strategies. Real-world evacuations can quickly become chaotic, and optimizing 
evacuation plans using traditional methods might not sufficiently capture the dynamic and nuanced 
aspects of human behaviour under distress. The WOABCM algorithm offers a computational 
advantage, allowing researchers to analyse numerous evacuation scenarios and derive adaptive 
plans that account for various variables. 

This study aims to primarily leverage the Whale Optimization Algorithm with Bat Chaotic 
Optimization (WOABCM) to optimize crowd evacuation simulations within complex urban 
environments and public spaces. The study aims to address the challenges associated with 
traditional evacuation strategies by introducing a nature-inspired algorithm that can adapt to 
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nonlinear dynamics and complex human behavior. The specific objectives of the research are as 
follows: 

(i) To develop a computational framework. This is to integrate the WOABCM algorithm into 
crowd evacuation simulations. This involves adapting the algorithm's exploration-exploitation 
mechanisms to the context of evacuation dynamics and optimizing evacuation strategies 
accordingly.  

(ii) To model Complex Urban Environments: This is to create realistic and detailed models of 
urban environments and public spaces, considering factors such as building layouts, exit capacities, 
crowd densities, potential bottlenecks, and obstacles. These models will serve as the basis for 
simulation scenarios. 

(iii)  To optimize Evacuation Strategies:  This is to utilize the WOABCM algorithm to 
systematically fine-tune evacuation parameters and variables. Aim to minimize evacuation time, 
reduce congestion at exit points, and enhance overall safety, while considering the complexities of 
human behavior and the physical environment. 

Two hypotheses are used for analysis namely the null hypothesis (H0) and the alternative 
hypothesis (H1) in this work. The premises for the hypothesis: 

1) H0: There is no significant difference between the means of the two groups, meaning that 
to compare the evacuation time with optimization and without optimization in one exit and two 
exit points respectively. 

2) H1: There is a significant difference between the two groups' means in comparing the 
evacuation time with and without optimization at one exit and two exit points. 
 

2. Literature Review 
Effective crowd evacuation management is a critical concern in modern urban planning and 

emergency preparedness. As urban environments become increasingly complex and densely populated, 
the need for advanced simulation techniques and optimization strategies to ensure the safety of 
individuals during emergencies has grown substantially. This literature review provides an overview of 
the key concepts, methodologies, and algorithms relevant to optimizing crowd evacuation simulations, 
with a focus on the Whale Optimization Algorithm with bat chaotic optimization (WOABCM). Crowd 
evacuation simulations have been extensively studied as tools to model and predict human behaviour 
during emergency scenarios. Researchers have utilized various techniques, including cellular automata, 
agent-based models, and fluid dynamics simulations, to capture the dynamics of crowd movement and 
assess evacuation strategies [9, 19, 20, 21]. Traditional methods often rely on behavioural observations 
and historical data, but their ability to account for complex and dynamic factors can be limited [22]. 

Optimization algorithms have gained prominence as effective tools to enhance crowd evacuation 
simulations. These algorithms enable systematic exploration of evacuation strategies by tuning 
parameters and variables to achieve improved outcomes. Such outcomes may include reducing 
evacuation time, preventing congestion at exit points, and enhancing overall safety [10, 24, 25]. 

Algorithms for optimization inspired by nature have demonstrated potential in resolving intricate 
and nonlinear optimization issues.  

Numerous domains, including population evacuation simulations, have used algorithms that are 
inspired by animal behavior. Examples of these fields include genetic algorithms, particle swarm 
optimization, and ant colony optimization [10]. These algorithms mimic natural processes like foraging 
and swarm behaviours to efficiently explore solution spaces. 

One such algorithm that is inspired by nature is the Whale Optimization Algorithm (WOA), which 
draws inspiration from the foraging behavior of whales. It looks for the best or optimal solution in 
complicated spaces by utilizing exploration and exploitation techniques. [6]. WOA has demonstrated 
success in solving various optimization problems and has shown potential for addressing intricate 
challenges, including crowd evacuation optimization. 
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Bat Chaotic Optimization is a variant of the bat algorithm that introduces chaos theory principles to 
enhance exploration capabilities. The purpose of this update is to enhance the algorithm's capacity to 
break out of local optima and find a wider range of solutions [11]. The integration of chaotic behaviour 
enhances the algorithm's adaptability to complex and dynamic optimization landscapes. 

The advantages of the Whale Optimization method and the Bat Chaotic Optimization are combined 
in the WOABCM method. This hybrid approach offers a unique combination of exploration and 
exploitation capabilities, making it well-suited for addressing intricate and nonlinear optimization 
challenges [13]. 

The use of the WOABCM algorithm in this context is a relatively novel approach. The algorithm's 
ability to navigate complex solution spaces, account for nonlinear dynamics, and adapt to changing 
conditions aligns well with the challenges of crowd evacuation optimization [13].  

Therefore, further research can be carried out on the application of WOABCM related to 
optimization problems in other fields such as data mining, electrical engineering, civil engineering, 
mechanical engineering, and others [23].  

These researchers have also conducted an experiment for modeling crowd evacuation based on 
room scenario [26]. The researcher has done the optimization based on exit configuration.  

Future research is expected to examine the full impact of these variables, particularly how 
congestion can affect travel choices. Additionally, some trials must be conducted concurrently for 
reference [27].  

The unique characteristics of WOABCM, such as its adaptability to nonlinear and dynamic 
optimization landscapes, make it a promising candidate for addressing the complexities of crowd 
evacuation scenarios. Traditional evacuation plans often struggle to accurately incorporate the dynamic 
and nuanced aspects of human behaviour during emergencies.The gap lies in the lack of optimization 
techniques that can effectively consider human behaviours under stress, emotions, and other situational 
factors [28]. Nature-inspired algorithms like WOABCM have the potential to better capture and adapt 
to these complex behavioural dynamics [29]. 

The proposed research has the potential to significantly enhance the efficacy of crowd evacuation 
planning. By integrating the WOABCM algorithm, the study seeks to develop evacuation strategies 
that not only reduce evacuation time and congestion but also consider the intricate interplay of human 
behavior, building layouts, and exit capacities. This could result in more efficient and adaptive 
evacuation plans. 

As urban environments become increasingly complex, the need for advanced emergency 
preparedness measures becomes more pressing. Optimized evacuation strategies can greatly enhance the 
preparedness of urban areas to handle a range of emergency scenarios, leading to better outcomes in 
terms of human safety and property protection.  

The research holds relevance beyond a specific scenario, as crowd evacuation optimization is a 
concern in various settings, including large public events, transportation hubs, and high-rise buildings. 
The insights gained from applying the WOABCM algorithm to crowd evacuation could have 
implications for a wide range of scenarios. 

The integration of the WOABCM algorithm into the realm of crowd evacuation simulations 
contributes to the optimization literature by showcasing the algorithm's capabilities in solving complex 
and dynamic real-world problems.  

This can extend the repertoire of optimization techniques available for researchers and practitioners 
in various fields. 
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Figure 1.  
The process of the proposed WOABCM for simulating crowd evacuation. 

 

3. Methods 
Figure 1 describe methodology based on the proposed simulation model. The flowchart presented 

outlines the process of a crowd simulation and analysis, focusing on the steps involved in model 
initialization, agent creation, movement rules, data collection, data import and cleaning using Python 
data analysis library namely Numpy and SciPy whilst Matplotlib is used for subsequent statistical and 
graphical analysis of the simulation results. The process begins with model initialization, where the 
simulation environment is set up. This includes initializing the environment itself, placing exits and 
obstacles strategically, and preparing the stage for the crowd simulation. Next, agent creation comes 
into play. Agents, representing individuals in the crowd, are generated with specific attributes that 
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define their behavior. Their starting positions are randomized within the environment, simulating the 
initial placement of people. The flowchart then delves into movement rules, highlighting the importance 
of defining behavioral rules for the agents. These rules govern how agents interact with each other and 
their environment. It includes implementing avoidance and following logic to simulate real-world crowd 
behavior accurately. Data collection is a critical phase where the simulation records various aspects of 
the crowd evacuation. This data, which includes evacuation times and the paths taken by agents, is 
collected, and stored for further analysis. 

The final phase of the flowchart involves the interpretation of results. Conclusions are drawn based 
on the analysis, and the findings are contextualized within the scope of the simulation. This phase serves 
as the culmination of the simulation and analysis process, where insights and implications are derived 
from the collected and analyzed data [30,31,32,33]. 

This research is based on the WOABCM algorithm [13]. which combines the upgraded BAT 
algorithm with chaotic maps and multi-frequency components. The previous studies show that the 
WOA algorithm shows lower ability from local optima to free itself.  In this study, the combination of 
WOA and BAT algorithms are used to evaluate the result which are better than the WOA algorithm 
from few iterations. The WOA algorithm and the BCM algorithm are combined with the intention of 
increasing population variety and avoiding local optima. This increases the WOA algorithm's overall 
performance in finding the global optimum or getting results that are near to it. 
 
3.1. The Procedure in WOABCM Algorithm 

First, the matrix representation of the population of whale/ hunting agent will be initialized. The 
location of the randomly searched agent is contained in a one-dimensional array of the matrix 
representation. Initially, each whale's position is assessed using a function value to determine the 
optimal position for the whale, determined by an objective function. Nest is the iteration process in 
which some standard parameters a, A, C, I and p are updated which are directly synchronized with both 
stages’ exploration and exploitation. In iteration there is huge difference between WOA and WOABCM 
because of the number of iterations. In the iteration process of WOA algorithm parameter ‘a’ derived 
linearly from 2 to 0. But in the WOABCM these parameters can be regulated linearly as well as non-
linearly.  Equations (2), (3), (4), and (5), which define a non-linear distance control parameter method, 
which is used in WOABCM. Equation (1), which represents the linear distance control parameter 
technique used in the WOA algorithm. 

 

𝑎(𝑡) = 2 −
2𝑡

𝑡𝑚𝑎𝑘
    (1) 

𝑎(𝑡) = (𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑖𝑛)𝑥𝑠𝑖𝑛(𝑚𝑢.
𝑡

𝑡𝑚𝑎𝑘
. 𝑝𝑖) (2) 

𝑎(𝑡) = (𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑖𝑛)𝑥𝑐𝑜𝑠(𝑚𝑢.
𝑡

𝑡𝑚𝑎𝑘
. 𝑝𝑖) (3) 

𝑎(𝑡) = (𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑖𝑛)𝑥𝑡𝑎𝑛(𝑚𝑢.
𝑡

𝑡𝑚𝑎𝑘
. 𝑝𝑖) (4) 

𝑎(𝑡) = (𝑎𝑚𝑎𝑘 − 𝑎𝑚𝑖𝑛)𝑥 (
𝑡

𝑡𝑚𝑎𝑘
)

2
  (5) 

 
The encircling method is still used in the original WOA algorithm. But in WOABCM, it does not 

use the encircling method, but BCM algorithm is used with this algorithm. Every search agent changes 
its position throughout each iteration according to the condition. If parameter 'A' is less than 1, the 
position is updated using data from the best outcome. But, if "A" is greater than 1, the position is revised 
using randomly chosen search agents. 
Two different types of movement are included in the proposed WOA algorithm:  

1) Spiral movement  
2) BCM algorithm movement 
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Another option, 'p,' which has random values between 0 and 1, is used for choosing which movement 
type to use. Equations (6) to (12) are used in this case if the movement follows the BCM algorithm when 
the 'p' value is smaller than 0.5. 

𝑄𝑠𝑖
= 𝑄𝑖 ∗ (1 + 𝑆𝑟𝑖 ∗

(𝑥𝑎𝑐𝑎𝑘−𝑥∗
𝑡)

|𝑥𝑎𝑐𝑎𝑘−𝑥∗
𝑡|+𝑟𝑒𝑎𝑙𝑚𝑖𝑛

)                 (6) 

 

𝑄𝑠𝑖
= 𝑄𝑖 ∗ (1 + 𝑆𝑟𝑖 ∗

(𝑥𝑖
𝑡−𝑥∗

𝑡)

|𝑥𝑖
𝑡  −𝑥∗

𝑡|+𝑟𝑒𝑎𝑙𝑚𝑖𝑛
)                              (7) 

 

𝑣𝑖
𝑡 = 𝑤 + 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥∗

𝑡) ∗ 𝑄𝑠𝑖
                 (8) 

 

𝑧𝑖
𝑡 = 𝑧𝑖

𝑡−1 + 𝑣𝑖
𝑡                      (9) 

           𝑋𝑘+1 = cos (𝑎 ∗ cos−1(𝑋𝑘))                        (10)                                              
   

      𝜀 = 𝑐ℎ𝑎𝑜𝑠(𝑡) ∗ |𝐴𝑚𝑝𝑖
𝑡 − 𝐴𝑚𝑝𝑚𝑒𝑎𝑛

𝑡 | + 𝜀                                     (11)                          

𝑧𝑖
𝑡 =  𝑥∗

𝑡 ∗ (1 + 𝜀)                                      (12) 
 

However, when the 'p' value exceeds 0.5, the algorithm will use equations (13) and (14) for spiral 
movement.  The algorithm is executed in its entirety until the termination criteria are satisfied, which 
usually happen when the maximum number of iterations is achieved. 
 

𝐷 = |𝑋∗(𝑡) − 𝑋(𝑡)|          (13) 

𝑋(𝑡 − 1) = 𝐷′. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋∗(𝑡)        (14) 
 

Table 1.  
Parameter settings for crowd evacuation simulation. 

Property Size/total 
Table (Student) 
Size (W x L) 

Range from 40  
(80cmx 70cm) 

Table (instructor) 
Size (W x L) 

1 
(1m X 1.5m) 

Exit Door 1 (5.5,0) 
Exit Door 2 (5.5.,8) 
Room (WxL) 10mx15m 
Population (Agents & attributes) 10-200 agents 
Radius size 0.2m 
Panic value (Speed towards exit) 1.4m/s 

 
The evacuation scenario resembles on of the room in Faculty of Computer Science and Information 

Technology, UNIMAS. Table I show the floor map design and parameter setting for the simulation. 
The experiments and data analysis were conducted using Python programming based on Jupiter 
Notebook. The objective of these experiments was to achieve the optimal values for evacuation.  

 
3.2. Simulation Scene and Steps 

The room is a defined area with specified dimensions. It can have one or two exits at predetermined 
locations. Agents will consist of 10 to 200 agents (representing students) are randomly placed within 
the room. 

 For initialization phase,a random population of search agents was initialized. In this case, Agent,  
Whale, and Bat will be the classes to denote a basic structure for agents depicting as whales, and bats. 
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 In problem formulation, each agent (student) is placed at a random location inside the room. Their 
initial position is a point in a two-dimensional coordinate system representing the room layout. 

• Exit Locations: The exits are fixed points on the boundary of the room. 

• Agent Movement: Agents move towards an exit based on the algorithms' strategies. Movement 
is constrained by the room boundaries and other agents. 

• Evacuation timing: Each agent's timing is tracked in seconds as they approach an exit. The 
moment the last agent leaves the room is the entire evacuation time. 

For the room scenario, the total evacuation time is represented by the mathematical function f(x). It 
depends on the quantity of agents, the quantity of exits (one or two), and the distribution and courses of 
those agents. The formula can be defined as f(N,E,X)=Total Evacuation Time. 

For the objective function, the entire evacuation time serves as the objective function. Based on 
agent placements and behaviors, the evacuation time of the goal function should determine the overall 
evacuation time. For example, let f(N,E,X) be as functional objective that represent the duration of the 
evacuation for the room scenario, where: 

• N is the number of agents (ranging from 10 to 200). 

• E is the number of exits (1 or 2). 

• X represents the allocation of agents to exits and their evacuation routes. The goal is to minimize 
this objective function f(N,E,X).   The WOABCM optimization function currently has 
placeholders where the actual WBA logic should be implemented. 

• Whale Phase (WOA): 
Agents use the encircling and spiral movement strategies to navigate towards the exits, 
avoiding obstacles (like furniture) and other agents. Some agents mimic the behavior of the 
nearest or best-performing agent (leader), representing the bubble-net hunting strategy. 

• Bat Phase (BA): 
Agents use echolocation-like mechanisms to dynamically adjust their path based on the 
proximity of other agents and the exits. Frequency and velocity adjustments simulate the 
responsive movement of agents in a crowded environment. 

• Chaotic Variation: 
Introduce randomness in the agents' movement strategies to prevent congestion and improve 
evacuation efficiency. This could be implemented through a chaotic map or random 
perturbations in the agents' paths. 

Optimization Variables: Let X represent the optimization variables. In this case, X includes the 
allocation of agents to exits and their evacuation routes. The application of the optimization algorithm 
iteratively updates the values of the optimization variables X using chaotic equations. It aims to 
minimize the objective function f(N,E,X). Each iteration's update equation for X can be shown as         

Xt+1 = Xt+ΔXt 
where: 

• Xt is the current value of the optimization variables. 

• Xt+1 is the updated value of the optimization variables. 

• ΔXt represents the change in X based on the chaotic behavior of the WOABCM algorithm. 
The WOABCM algorithm utilizes chaotic equations and optimization techniques to determine how 

the optimization variables should change to minimize f(W,E,X). The algorithm's chaotic structure 
facilitates effective exploration of the solution space and convergence to the best results. 

For the termination condition, up until a termination condition is satisfied, the optimization 
procedure is repeated recursively. This requirement could be reaching a particular degree of 
convergence, a number of iterations, or other problem-specific requirements.  

By iteratively updating the optimization variables X using the chaotic WOABCM algorithm, it 
helps in finding the W, E, and X's values that minimize the total evacuation time f(W,E,X) for each 
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combination of N and E. The final values of W, E, and X obtained at the end of the optimization process 
represent the optimal strategies for evacuating the room with minimal evacuation time. 
 
3.3. Optimization Process 

The optimization process involves evaluating the performance of different configurations and 
selecting the one that yields the shortest evacuation time. The algorithm iteratively adjusts the weights 

α and β, and the chaotic variation parameters to minimize Ttotal. 

     The searching elements consists of follows: 

• Agent Position: Each agent i has a position in the room, represented by coordinates (xi,yi). 

• Exit Position: Each exit j has a fixed position, represented by coordinates:  

• (xexitj,yexitj). 

• Agent Velocity: Each agent has a velocity vector  vi which determines how they move towards the 
exit. 

Agent Movement Update can be formulated as follows: ((xi,yi)t+1=(xi,yi)t+vi⋅Δt where Δt is the time 

step whilst the velocity update can be written as follows: ChaoticVariation(vi) = α⋅vwhale+β⋅vbat+ 

ChaoticVariation(v) where  α and β are weights,  vwhale is the velocity component from the whale behavior, 
vbat is from the bat behavior, and chaotic variation introduces randomness and chaotic variation  which is 

formulated as ChaoticVariation (v) = v⋅ChaosFactor where it is derived from a chaotic map or function to 
introduce variability in the movement. For the encirvling strategy under whale behavior can be 
formulated as encircleMovement(vwhale)=encircleMovement(xnearest_exit,ynearest_exit,xi,yi). This function calculates the 
agent's velocity vector towards the nearest exit, mimicking the whale's encircling behavior. 
The bat behaviour to annotate the echolocation strategy to help adjusts the agent's velocity based on the 
proximity of other agents and obstacles and can be strategized as follows equation: 
EcholocationMovement(AgentsPositions,ObstaclesPositions)vbat=EcholocationMovement(xi,yi 
,AgentsPositions,ObstaclesPositions) 

Finally for the total evacuation calculation (maxf0 ) can be expressed as Ttotal=max(Ti) where Ti is 
the amount of time it takes an agent to get to an exit. The final agent's evacuation time is included in 
the overall time. 
 
3.4. Proposed Pseudocode 1 And 2 of the Crowd Evacuation Model in One and Two Exits(S) Scenario 
Respectively 

Pseudocode 1 shows the proposed implementation with one exit condition. The experiment is based 
on the pseudocode below which targeted to run based on one exit scenario at position (5.5, 0). The next 
experiment is done by adding one more exit (two exits) in the scenario which is located on coordinate at 
position (5.5,0) and (5.5, 8) as shown in Pseudocode 2 which intended to provide an alternate evacuation 
route, potentially reducing evacuation times, especially in higher-density scenarios. The experiment has 
been running in 5 set for each of the agent population’s number to get the average of the evacuation 
time per set. 
Pseudocode 1: Evacuation simulation in one exit condition 
// Constants and Parameters 
Define ROOM_WIDTH, ROOM_HEIGHT, EXIT_X, EXIT_Y 
Define MAX_ITERATIONS, EXIT_SPEED 
Define agent_counts as an array of different agent numbers, e.g., [10, 25, 50, 100, 150, 200] 
// Agent Class 
Class Agent: 
    Initialize with random position within room 
    Define property 'exited' as False 
// Function to calculate distance to exit 



665 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 8, No. 4: 656-672, 2024 
DOI: 10.55214/25768484.v8i4.1441 
© 2024 by the authors; licensee Learning Gate 

 

Function distance_to_exit(agent): 
    Calculate and return the distance from agent to exit 
// Function to calculate evacuation time 
Function evacuation_time_objective(agents): 
    Calculate and return the maximum time taken for all agents to reach the exit 
// Function to update agents' positions 
Function update_agents(agents): 
    For each agent in agents: 
        Move agent towards exit 
        If agent is close enough to exit, set 'exited' to True 
// Function to run evacuation simulation for a given number of agents 
Function run_simulation_for_agents(num_agents): 
    Initialize a list of agents with size num_agents 
    For each iteration in MAX_ITERATIONS: 
        Update agents' positions 
        Calculate current evacuation time 
        If all agents have exited, break the loop 
    Return the calculated evacuation time 
// Main Simulation 
Initialize an empty list evacuation_times 
For each num in agent_counts: 
    evacuation_time = run_simulation_for_agents(num) 
    Append evacuation_time to evacuation_times 
Pseudocode 2: Evacuation simulation in two exits condition 
//Define Constants and Parameters 
ROOM_WIDTH, ROOM_HEIGHT = 5, 8 
EXIT_X, EXIT_Y = 2.5, 0 
MAX_ITERATIONS = 1000 
EXIT_SPEED = 1.4  # Speed at which agents exit (m/s) 
agent_counts = [10, 25, 50, 100, 150, 200] 
//Agent Class Definition 
class Agent: 
    Function __init__(): 
        self.x = RandomUniform(0, ROOM_WIDTH) 
        self.y = RandomUniform(0, ROOM_HEIGHT) 
        self.exited = False 
/Function to Calculate Distance to Nearest Exit 
Function distance_to_nearest_exit(agent, exits): 
    Return Min([SquareRoot((agent.x - exit_x)^2 + (agent.y - exit_y)^2) for (exit_x, exit_y) in exits]) 
// Function to Calculate Evacuation Time Objective 
Function evacuation_time_objective(agents, exits): 
    times = [distance_to_nearest_exit(agent, exits) / EXIT_SPEED | for agent in agents | if not agent.exited] 
    Return Max(times) if Length(times) > 0 else 0 
// Function to Update Agents Without Optimization 
Function update_agents_without_optimization(agents, exits): 
   // Simplified agent movement without optimization, considering two exits 
    For agent in agents: 
        If not agent.exited: 
            nearest_exit = Min(exits, key=lambda exit: SquareRoot((agent.x - exit[0])^2 + (agent.y - exit[1])^2)) 
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            dx = (nearest_exit[0] - agent.x) / 20  # Slower movement 
            dy = (nearest_exit[1] - agent.y) / 20 
            agent.x += dx 
            agent.y += dy 
            If distance_to_nearest_exit(agent, exits) < 0.5:  //Increased threshold for exit 
                agent.exited = True 
// Function to Run Simulation for Agents 
Function run_simulation_for_agents(num_agents, exits, with_optimization=True): 
    agents = [Agent() for _ in range(num_agents)] 
    evacuation_time = 0 
    For _ in range(MAX_ITERATIONS): 
        If with_optimization: 
            update_agents(agents, exits) 
        Else: 
            update_agents_without_optimization(agents, exits) 
        current_time = evacuation_time_objective(agents, exits) 
        If current_time > evacuation_time: 
            evacuation_time = current_time 
        If all(agent.exited for agent in agents): 
            Break 
    Return evacuation_time 
// Define Exits Including the New Exit at (5.5, 8) 
exits = [(EXIT_X, EXIT_Y), (5.5, 8)] 
// Run Simulations for Both Scenarios with the New Exit Configuration 
evacuation_times_with_optimization = [run_simulation_for_agents(num, exits) for num in agent_counts] 
evacuation_times_without_optimization = [run_simulation_for_agents(num, exits, with_optimization=False) 
for num in agent_counts] 
 

4. Results and Discussion 
Figure 2 shows the comparison between with and without optimization in one exit condition and 

Table 2 shows the comparison of time taken to exit exiting the premise with and without optimization, 
whilst Table 3 shows the analysis result for validation purposes in regards of one exit condition. 
 

Table 2. 
Total number of agents vs total evacuation time (By average) with optimization and without optimization in one exit 
condition. 

Total no. of agents 10 25 50 100 150 200 
Evacuation time with optimization (s) 4.6 4.9 5.2 5.25 5.27 5.22 

Evacuation time without optimization (s) 5.1 5.3 5.45 5.42 5.43 5.41 
 

Table 3. 
The t-test and significant difference between evacuation time with optimization and without optimization in one exit       
condition. 

T-test value P-value 
-2.320868003189691 0.04270956768309327 
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Figure 2. 
The comparison of evacuation time with and without optimization in one exit condition. 

 
Figure 3 shows the comparison between with and without optimization in two exits condition and  

Table 4 shows the comparison of time taken to exit the premise with and without optimization, whilst 
Table 5 shows the analysis result for validation purposes in regards of two exits condition. 
 

 
Figure 3. 
The comparison of evacuation time with and without optimization in two exits condition. 



668 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 8, No. 4: 656-672, 2024 
DOI: 10.55214/25768484.v8i4.1441 
© 2024 by the authors; licensee Learning Gate 

 

Table 4. 
Total number of agents vs total evacuation time (By average) with optimization and without optimization in two exits 
condition. 

Total no. of agents 10 25 50 100 150 200 
Evacuation time with optimization (s) 4.95 5.1 5.25 5.21 5.30 5.27 
Evacuation time without optimization (s) 4.90 5.08 5.48 5.47 5.51 5.60 

 
Table 5. 
The t-test and significant difference between evacuation time with optimization and 
without optimization in two exits condition. 

T-test value P-value 
-1.076694599644415 0.30690554935313036 

 
The integration of the Whale-Bat Chaotic Algorithm (WOABCM) into crowd evacuation 

simulations exemplifies how advanced optimization techniques can significantly enhance emergency 
response strategies. This discussion delves into the mechanics of WOABCM and elucidates its potential 
in reducing evacuation times, drawing insights from relevant studies and algorithmic principles. 

To maximize search patterns, the hybrid algorithm known as WOABCM combines the best features 
of the Whale Optimization Algorithm (WOA) and the Bat Algorithm (BA), enhanced by chaotic maps. 
The WOA, inspired by humpback whales' bubble-net hunting strategy, is adept at identifying optimal 
solutions through a balance of exploration and exploitation phases [6]. It mimics the whales' encircling 
behavior and spiral bubble-net feeding maneuver to navigate the solution space. The BA, on the other 
hand, is based on bats' echolocation behavior. It excels in local search optimization, adjusting its 
frequency, loudness, and pulse emission rate to hop in on the best solutions [16]. The chaotic 
component introduces randomness, enhancing the algorithm's ability to escape local optima and explore 
globally. 

In crowd evacuation scenarios, the main goal is to reduce the overall evacuation time while 
guaranteeing that individuals are moved toward exits in a safe and effective manner. Traditional 
simulation models often use simplistic rules for agent movement, which may not reflect the complex 
interactions and decision-making processes in real-life evacuations. The WOABCM addresses this by 
optimizing agents' paths and speed, considering factors such as crowd density, obstacle avoidance, and 
individual behavioral traits. 

Applying WOABCM in evacuation simulations involves defining an objective function that 
quantifies evacuation efficiency, typically the total time taken for all agents to exit. The algorithm 
iteratively adjusts agents' parameters (like speed and direction) to minimize this function. The WOA 
component of WOABCM facilitates a global search for feasible evacuation paths, while the BA aspect 
fine-tunes these paths, ensuring they are practical and efficient. The chaotic maps introduce variability 
in search patterns, preventing stagnation and improving the algorithm's robustness against diverse and 
dynamic scenarios. 

Studies have shown that optimization algorithms can significantly impact evacuation strategies. For 
instance, Zhou et al. [17] demonstrated that bio-inspired algorithms could effectively reduce evacuation 
times in complex environments. Another study by Guo et al. [18] highlighted the efficacy of hybrid 
algorithms in optimizing evacuation routes in subway stations, underscoring the potential of such 
approaches in real-world applications. 

The incorporation of WOABCM in crowd evacuation models offers several advantages. Firstly, it 
allows for the simulation of more realistic human behavior under stress, accounting for panic 
movements and irrational decisions. Secondly, it enhances the capacity to handle dynamic environments, 
like changing exit routes or obstacles, which are crucial in emergencies. Thirdly, it provides a versatile 
tool for emergency planners to test various scenarios, contributing to the creation of infrastructure and 
evacuation procedures that are more effective. 
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4.1. Evacuation with One Exit  
Contrastingly, a scenario with a single exit and without the application of optimization algorithms 

presents a different set of challenges. In such setups, evacuation efficiency is inherently limited by the 
capacity of the sole exit point. The length of time needed for a full evacuation rises with the number of 
agents because there is a greater chance of congestion and slower movement through the exit. 

Without optimization, the movement of agents is typically governed by simpler rules, such as 
moving directly towards the exit or following basic avoidance protocols. These strategies, while 
straightforward, do not account for the complexities of crowd dynamics or the potential for adaptive 
pathfinding in response to changing conditions. Hence, in scenarios with higher agent density, 
evacuation times tend to be significantly longer due to these limitations. 
 
4.2. Evacuation with Two Exits  

The introduction of a second exit in the simulation fundamentally alters the evacuation landscape. 
Theoretically, and as supported by the simulation data, the presence of an additional exit should 
expediently facilitate the dispersal of agents, thereby reducing overall evacuation times. This effect is 
particularly pronounced in high-density situations where the likelihood of bottlenecks and congestion at 
a single exit point is high. With two exits, the crowd is divided, reducing pressure on individual exit 
points, and allowing for a smoother flow of evacuees. 

When combined with an optimization algorithm like the WOABCM, the effectiveness of dual exits 
is further enhanced. The WOABCM, leveraging its hybrid approach, can dynamically direct agents to 
the less congested exit, or alternate paths based on real-time conditions, thereby mitigating potential 
congestion. The optimization is not just in pathfinding but also in managing the distribution of agents 
between exits, ensuring that neither becomes overburdened. 

The evacuation time with one exit in this work portrays faster compared to two exits. This is 
probably because of multiple exits. When there are two exits available, agents have the option to choose 
between them. In an ideal scenario, having multiple exits should improve evacuation efficiency by 
reducing congestion and allowing agents to choose the shortest path to safety. While the optimization 
algorithm is designed to improve decision-making, it also introduces complexity into the agents' 
behavior. In this case, with two exits, agents may spend more time evaluating their options, considering 
factors, and choosing the optimal exit. The process of added decision-making complexity can result in 
longer evacuation times, especially when the simulation is conducted with many agents. 
 
4.3. Comparative Analysis 

With two exits and the application of WOABCM, evacuation times are markedly reduced across 
various agent densities. This improvement underscores the combined benefits of infrastructure 
augmentation (additional exit) and advanced computational optimization (WOABCM). In contrast, 
scenarios with a single exit and no optimization result in longer evacuation times, especially with a 
growth in the number of agents.      

These findings have practical implications in the realms of emergency planning, public safety, and 
architectural design. They highlight the importance of considering both physical infrastructure and 
intelligent management systems in developing effective evacuation strategies. In real-world 
applications, this could translate to the design of buildings with multiple exits and the integration of 
smart evacuation systems that can adaptively manage crowd movement in emergencies. 

The application of the t-test in comparing evacuation times from crowd simulations with and 
without the Whale-Bat Chaotic Algorithm (WOABCM) optimization provides a statistical basis to 
assess the effectiveness of the optimization method. It is also a popular statistical method for 
determining if the means of two groups are statistically different from one another is the t-test. In our 
context, it compares the average evacuation times from multiple simulation runs for both scenarios – 
with and without the implementation of WOABCM. 
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To understand the significance of the t-test results, it's essential to grasp the underlying principles 
of hypothesis testing in statistics. The null hypothesis (H0) and the alternative hypothesis (H1) are the 
two hypotheses under which the t-test functions. While H1 indicates a substantial difference exists, H0 
proposes that there is no significant difference between the means of the two groups. Based on the null 
hypothesis being true, the test findings yield a p-value, which represents the likelihood of witnessing the 
data. A low p-value (typically less than 0.05) leads to the rejection of H0, implying that the noticed 
variation is statistically important and not just due to random chance. 

Within the framework of our simulated evacuation, the t-test compares the mean evacuation times 
from simulations run with WOABCM optimization against those run without it. A significant p-value 
would indicate that the optimization algorithm has a statistically significant effect on reducing 
evacuation times. Conversely, a non-significant p-value would suggest that any observed differences 
could be attributed to random variation, and the WOABCM does not have a measurable impact on 
evacuation efficiency. 

Based on the results output, the provided t-test results, consisting of a t-statistic of -2.32 and a p-
value of 0.0427, are key indicators in statistical hypothesis testing, particularly in comparing the means 
of two groups. The magnitude of the t-statistic (2.32 in this example) shows the extent of this difference, 
whereas a negative number indicates that the first group's mean is lower than the second group's mean. 
A more significant difference between the groups is usually indicated by a higher absolute value of the t-
test. In this context, a value of -2.32 suggests a noticeable difference between the two sets of data being 
compared. 

On the other hand, if the null hypothesis is true, the p-value indicates the likelihood of seeing the 
data or something more drastic. The null hypothesis in this instance is probably that the means of the 
two groups under comparison are the same. In this case, the result shows the p-value of 0.0427, which is 
less than the common significance level threshold of 0.05, indicates that the observed difference is 
statistically significant. This means there's only a 4.27% probability that the difference in means is due 
to random chance. In practical terms, a p-value below 0.05 often leads to the rejection of the null 
hypothesis. Here, it implies that the difference in means (possibly between evacuation times under 
different scenarios) is unlikely to be due to random variation and is instead significant. 

From this, it can be interpreted that the two groups (evacuation times under different conditions, 
such as with and without the use of an optimization algorithm) have significantly different means. The 
negative t-statistic suggests that the first group has a lower mean than the second. In the context of 
evacuation simulations, this could imply that the group with the optimization algorithm (if that's the 
first group) had a lower mean evacuation time compared to the group without the optimization, with the 
difference being statistically significant. This result would support the effectiveness of the optimization 
algorithm in reducing evacuation times. 

The efficacy of the Whale-Bat Chaotic Algorithm (WOABCM) in optimizing evacuation strategies 
is clearly demonstrated through significant t-test results. This indicates that the WOABCM effectively 
reduces evacuation times by adeptly managing agents' movements, with a keen focus on factors like 
crowd density, obstacles, and exit locations. The robustness of the algorithm is further emphasized by 
its consistent performance across various scenarios, highlighting its potential reliability in diverse real-
world applications. These results not only validate the effectiveness of the WOABCM in enhancing 
evacuation outcomes but also mark a significant stride in the preparation and handling of emergencies. 

Moreover, the statistical significance of these findings has profound implications for future research, 
policymaking, and infrastructure planning. It paves the way for incorporating advanced computational 
methods into evacuation protocol design, potentially revolutionizing how emergency situations are 
managed. The results encourage further exploration into optimization algorithms, advocating for more 
intricate simulations that incorporate dynamic environmental changes and real-world data. For 
policymakers and urban planners, these insights offer a compelling case for adopting simulation-based 
approaches to improve public safety and develop more efficient evacuation strategies [34]. In essence, 
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the statistical validation of the WOABCM's impact underscores the critical role of data-driven, 
algorithmically informed decisions in shaping effective public safety and emergency response strategies. 
 

5. Conclusion 
In conclusion, the Whale-Bat Chaotic Algorithm stands out as a potent tool in the realm of 

evacuation simulations, bringing a level of sophistication and adaptability that traditional models lack. 
Its ability to intelligently navigate the complex landscape of crowd dynamics paves the way for more 
effective and life-saving evacuation strategies. Future research can further refine these models, 
integrating real-world data and human behavior studies, to develop even more accurate and reliable 
evacuation simulations. 
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