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Abstract: The production of wind energy requires knowledge of certain wind speeds and directions. 
Several tools are used for this purpose to characterize the wind power, including the Weibull 
distribution function with two parameters, shape factor k, and the scale factor c. In this paper six 
methods Graphical Method (GP), Empirical Method of Justus (EMJ), Empirical Method of Lysen 
(EML), Energy Pattern Factor (EPF), Maximum Likelihood (ML), and Moroccan Method (MMa) are 
used to estimate Weibull distribution parameters to evaluate the wind potential an its power density. 
Twelve sites in West African sub-region such as Abuja, Accra Kotoka, Bamako Senou, Conakry Gbessia, 
Cotonou Cadjehoun, Kano Mallam Aminu, Lagos Ikeja, Lome Tokoin, Niamey, Niamtougou, 
Ouagadougou, Tambacounda were selected as case studies. For each selected site, hourly wind speed 
data collected at 10 m height for the twelve years from January 2011 to December 2023 are used. The 
evaluations of each method were carried out every month and statistical criteria to provide a more 
complete analysis. The results show that the EPF, EMJ, EML, and ML provide highly desirable better 
performance while the GP and MMa showed poor performance for all stations. For all sites, the EPF 
was recognized as the most appropriate method except for the Lagos site where the EMJ ranks first on 
the others. The methods that ranked second after EPF varied among the sites. 

Keywords: Numerical estimation methods, Power density, Weibull distribution, Wind speed. 

 
1. Introduction  

The problem of electrification in West Africa has been growing in recent years. Additionally, the 
depletion of fossil fuels and the environmental impacts have led to a shift towards other sources of 
electrical energy production. In fact, West Africa has significant hydroelectric potential, strong wind 
potential for the deployment of wind energy, high solar radiation, particularly in desert areas, and 
considerable hydrocarbon resources, accounting for about half of the continent's reserves [1]. In terms 
of wind power, only 43 megawatts of installed capacity were deployed, with another 230 megawatts 
being installed in the region by 2011. The only wind farm operational on a commercial scale is 
Cabeolica in Cape Verde, which has the largest installed capacity at over 28 MW. Consequently, West 
Africa lags behind with few projects in the wind sector. For example, a project to build and operate a 
25.2 MW wind power plant in Lome is planned but has not yet been implemented. However, the West 
Africa region is well positioned especially in its coastal areas to take advantage of its wind energy 
potential.  
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Other aspects to consider in a wind farm project include comprehensive assessments of the wind 
resource, as well as the power and energy densities required to verify the financial viability of this 
potential. The power density of a wind turbine is an important factor to consider when assessing wind 
resources and implementing wind farm projects, as it helps in selecting the optimum turbines for a 
particular area [2]–[4]. Power density is calculated from the amount of energy available, which can be 
converted into electricity using wind turbines. There are two approaches to calculating the power 
density of a wind turbine. In the first approach, wind power density is calculated empirically from 
measured wind speed data. The wind energy at a given location depends on the cube of the wind speed. 
Thus, the power density for the time series of actual wind speed data can be calculated using the 
parameters of the Weibull distribution [5].  

Several methods have been proposed in the literature to estimate the parameters of the Weibull 
distribution with two parameters k and c, respectively the shape and scale factors [2], [6]–[9]. The 
Graphical method, Justus' empirical method, Lysen's empirical method, the Energy pattern factor 
method, the Moroccan method, the Maximum likelihood method, the Modified maximum likelihood 
method, the Method of moments are commonly used [10], [11]. It can be concluded that the relevance 
of the methods may vary depending on the sample size of the data, the distribution of the sample data, 
the sample data format and the precision of the fit tests. In this paper, the GP, EMJ, EML, EPF, ML, 
and MMa are used to compute of the Weibull parameters of twelve sites in West Africa. The aim is to 
determine the most accurate for wind power density estimation in this region. The rest of the study is 
organized as follows: in section 2 the study background is presented, section 3 depicts the study area 
and data description, Sections 4 and 5 exhibits respectively the wind speed and wind potential based on 
Weibull distribution and evaluation metrics. The case study results and discussions of twelve West 
African sites are presented in Section 6 concludes with section 5. 
 

2. Study Background 
Two parameters of the Weibull distribution are known as form (k) and scale (c) parameters. As 

mentionné, l’estimation de ces paramètres de la distribution de la vitesse du vent est faite grâce à 
plusieurs méthodes proposées dans la littérature. For example, [11] compared the performance of five 
methods for calculating the shape and scale parameters of the Weibull function to characterize the wind 
speed distribution. The results indicate that the maximum likelihood method outperforms the other 
methods in terms of representing the wind speed distribution. In [12], the authors evaluated the 
performance of four parameter estimation methods of the Weibull function for the monthly wind speed 
distribution modeling in Halabja, Pakistan. [13] compared the performance of six different methods to 
compute shape and scale parameters for estimating the wind speed distribution. According to the 
results, the maximum likelihood method followed by the modified maximum likelihood method showed 
the highest performance, while the graphical methods had the lowest performance. The study in [14] 
evaluated the Weibull parameters to represent the distribution of wind speed in Garoua, Nigeria. Their 
results showed that the use of the energy pattern factor has more aptitude than the other examined 
methods. [2] has evaluated the performance of six numerical methods as GP, EMJ, EML, EPF, ML, 
and MML to determine the k and c parameters of the Weibull distribution function to evaluate wind 
energy density at four stations distributed in the province of Canada, Alberta. À cet égard, la densité 
d'énergie éolienne estimée à l'aide de la fonction de Weibull est comparée à celle obtenue avec les 
données de vent mesurées. The daily and monthly results indicated that the accuracy changed with 
numerical methods compared to empirical results. It was found that the EMJ, EML, EPF, and ML 
methods provided the best performance than the GP method which ranks last for all the considered 
stations. Another observation was that the EMJ and EML methods are very close in terms of efficiency. 
A study conducted in [15], analyzed wind characteristics using wind speed data collected from five 
meteorological sites in Lebanon. The authors found that the power density method gives the best 
estimate of the measured distribution for all sites except Quaraoun where Justus' empirical method gives 
the best estimate. In the Northeast region of Brazil [13], the EPF and GP are efficient in fitting 
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Weibull distribution for wind speed data from the coastal area of Ceará, based on data collected from the 
cities of Camocim and Paracuru and analyzed using statistical tests. The authors in [16], have 
determined for the Lome site, the best model that corresponds to la forte fréquence des vents calmes 
observee to accurately estimate the amounts of recoverable wind energy. They propose using the 
Weibull hybrid distribution approach. Two other traditional approaches are often used in this context to 
evaluate the la pertinence de cette approach. They found that if the frequencies of calm winds are 
relatively high, the Weibull distribution is inadequate. In this case, the hybrid Weibull distribution 
function is the best solution. The same authors in [17] also presented the characterization and 
evaluation of the wind potential at annual and monthly scales of the Lome site and specified the 
characteristics of the wind turbines to be installed on this site. The wind speed data collected over two 
years at a height of 10 meters above the ground show that the mean annual speed is 2.9 m/s. These 
studies also showed that February, March, April, July, August, and September have a monthly average 
speed close to 4 m/s. Il est ressorti que that wind turbines with low nominal speeds of the order of 6 
m/s to 8 m/s will be the most suitable for optimal exploitation of electrical energy from wind energy on 
the Lome site from a height of 25 meters above ground. Other approaches as, Rayleigh distribution 
[18], mixture hybrid Weibull distribution [19], le machine learning [20] are also used in the 
literature. 

The methods for assessing wind resources make them suitable for installing commercial wind 
turbines. However, understanding the wind characteristics and potential in West Africa has gaps due to 
a lack of specifically documented information to assess the wind potential of study sites and select 
appropriate commercial turbines. Additionally, no studies have directly addressed the wind regimes and 
unique atmospheric conditions prevailing in West Africa over various months. The relevance of power 
density in evaluating wind resources and selecting suitable turbines is crucial. Further research is 
needed to obtain specific information for wind project feasibility studies. The study used the Weibull 
distribution method, with the best numerical fit, to analyze monthly wind patterns and assess energy 
potential 
 
3. Study Area and Data Analyses 

For this study, twelve sites Abuja, Accra Kotoka, Bamako Senou, Conakry Gbessia, Cotonou 
Cadjehoun, Kano Mallam Aminu, Lagos Ikeja, Lome Tokoin, Niamey, Niamtougou, Ouagadougou, 
Tambacounda were selected as case studies. Figure 1 illustrates the location of the selected sites on a 
map of Africa. Table 1 shows the geographic location of the twelve selected sites. For each selected site, 
hourly wind speed data collected at 10 m height for the twelve years from January 2011 to December 
2023 are used. Table 2 shows the statistics; mean speed, standard deviation, kurtosis, skewness, and 
power density, calculated from the measured wind speed data for the selected sites. 
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Figure 1.  
Geographical location of the selected sites. 

 
Table 1.  
Graphical location of selected sites. 

Sites OACI Code  Latitude (°N) Longitude (°E/°W) Altitude (m) 
Abuja. Nigeria DNAA 9.25N 7.00 °E 344 
Accra Kotoka. Ghana DGAA 5.60N 0.17 °W 69 
Bamako Senou. Mali GABS 12.53N 7.95 °W 381 
Conakry Gbessia. Guinée GUCY 9.34N 13.36 °W 22 
Cotonou Cadjehoun. Benin DBBB 6.35N 2.38 °E 9 
Kano Mallam Aminu. Nigeria DNKN 12.05N 8.53 °E 481 
Lagos Ikeja. Nigeria DNMM 6.58N 3.33 °E 38 
Lome Tokoin. Togo DXXX 6.17N 1.25 °E 25 
Niamey. Niger DRRN 13.48N 2.17 °E 227 
Niamtougou. Togo DXNG 9.77N 1.10 °E 343 
Ouagadougou. Burkina Faso DFFD 12.35N 1.52 °W 306 
Tambacounda. Sénégal GOTT 13.77N 13.68 °W 50 
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Table 2.  
Descriptive statistics of the wind data used from the selected sites. 

Sites Mean (m/s) Std (m/s) Skewness Kurtosis 
Abuja 2.43045 1.27036 1.25746 11.03356 
Accra 4.16032 2.21591 0.08801 2.76699 

Bamako 2.79606 1.72889 0.82169 5.09067 

Conakry 3.35295 1.65166 0.54587 6.07934 

Cotonou 4.01159 1.81438 -0.12249 2.49218 

Kano 4.78558 2.32290 0.25828 4.31923 

Lagos 2.71353 2.24166 1.23657 5.64726 

Lome 3.52870 2.02964 0.26247 2.33358 

Niamey 3.31053 1.84692 1.08897 5.66665 

Niamtougou 2.61775 1.79118 0.41532 3.62772 

Ouagadougou 2.99562 1.66267 0.78947 4.59290 

Tambacounda 2.95754 1.64106 1.36276 8.59716 

 
We note that Kano, Accra and Cotonou have the highest average wind speeds at 4.78558m/s, 

4.16032m/s and 4.01159m/s respectively. Lome follows with an average speed of 3.52870m/s. On the 
other hand, the lowest wind speed is observed for Abuja. In addition, for the stations of Abuja and 
Tambacounda the kurtosis coefficient is significantly higher than the stations of Lome, Accra and 
Cotonou. It is observed that for all stations the values of the skewness coefficients are positive except for 
Cotonou, indicating that all distributions are skewed to the right except for Cotonou which is skewed to 
the left. The standard deviation for all stations is between 1 and 2.5. It should be noted, however, that 
Accra has the largest standard deviation, which is 2.21591. 
 

4. Weibull Distribution 
The wind energy at a given location depends on the wind speed cube. Thus, the power density for 

time series of actual wind speed data can be calculated using Equation (1). where  denotes the air 
density, a parameter that varies with latitude and temperature, but is generally considered to be 
constant and averages about 1.25 kg/m3 which depends on altitude, air pressure and temperature; and v 
is the wind speed in m/s. S is the swept area by the wind turbine in the previous expression shows that 
the available power varies with the average cubic speed of the observed wind. 

31

2
P Sv=                   (1) 

The latter method is based on a statistical treatment of the raw wind data and the calculation of 
frequencies at a given threshold of speed. The two-parameters Weibull probability density function is 
given by Equation (2) [21]. 

1
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k k
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               (2) 

where k is the shape parameter that indicates the wind distribution of any region, c is the scale 
parameter in m/s indicates how windy the location is. The cumulative function can be obtained by 
calculating the integral of the probability density function. The cumulative distribution function is 
expressed by Equation (3). 

( ) ( )
0

1 exp

k
V v

F v f V dv
c

  
= = − −     
    (3) 



1942 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484  

Vol. 8, No. 4: 1937-1955, 2024 
DOI: 10.55214/25768484.v8i4.1568 
© 2024 by the author; licensee Learning Gate 

 

The wind density energy calculated from the density of the Weibull probability density function is 
estimated using the following Equation (4) [1]. The wind density energy calculated from the density of 

the Weibull probability density function is estimated using the following Equation (4). where () 
denotes gamma function. 

3

2

1 3
1

2

W
P c

k m


   
=  +   

   
            (4) 

The estimation of the parameters of the wind speed distribution is important in terms of selecting 
the wind turbine to be implemented in order to obtain a good return on wind energy production and 
also the economic viability of the project. There are several methods in the literature to compute the 
parameters k and c of the Weibull distribution function. In this study, six methods such as the graphical 
method (GP), the empirical method of Justus (EMJ), the empirical method of Lysen (EML), the energy 
pattern factor method (EPF), the maximum likelihood method (ML), and the Moroccan method (MMa) 
are used to calculate these parameters. 

The graphical method is achieved using the cumulative distribution function. In this method, the 
wind speed data are interpolated using least-squares regression. The observed wind speeds are divided 
into v1,...,vn intervals. The discrete probability of these wind speeds is respectively given by Equation (5). 

( )   1 exp

k

i
i i
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 
          

(5) 
By taking twice the logarithm of the equation (5) [2], [11], [22], we obtained as the Equation (6). 

( )  ( ) ( )ln ln 1 ln lniF v k v k c− − = −                  (6) 

Plotting ln(v) as the axis x compared to the first member of (6) as the axis of the y presents a straight 
line in which k is the slope of the line and the ordinate at the origin is -kln(c) [7], [17], [23]. This 
determines the linear regression line of yi according to xi in the form given by Equation (7). 

i iy a x b=  +             

(7) 
With a=k, and b= - kln(c). The Weibull parameters are then calculated according to the Equation (8). 

exp exp

k a

b b
c

a k


=




   = − = −   
   

                (8) 

Based on the empirical method introduced by Justus, the parameters k and c are calculated respectively 
by Equations (9) and (10) [2], [24], [25]. 
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−
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( )1 1

v
c

k
=
 +

                       (10) 

In the empirical method proposed by Lysen, k is calculated by Equation (9) as in the Justus method. The 
only difference is the calculation of c given by Equation (11) [2], [26]. 



1943 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484  

Vol. 8, No. 4: 1937-1955, 2024 
DOI: 10.55214/25768484.v8i4.1568 
© 2024 by the author; licensee Learning Gate 

 

1

0,433
0,586

k

c v
k

−

 
= + 

 
              (11) 

To calculate the parameters k and c by this process, the Energy pattern factor as a parameter used 
for the aerodynamic design of the turbines must be defined first. The energy pattern factor is obtained 
by using Equation (12) [2], [3]. 
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where 𝑣3̅̅ ̅ is the average wind speed cube, �̅�3 is the cube of the average speed. Then, the parameter k  
can be calculated by Equation (13). 
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The parameter c is also calculated in the same way using Justus empirical method given by the 
Equation (10) with the obtained parameter. 

The maximum likelihood method is a mathematical expression recognized as a likelihood function of 
wind speed data in time series format. In this method, extended numerical iterations are required to 
determine the k and c parameters of the Weibull distribution. Using the maximum likelihood method, 
these parameters are respectively calculated by Equations (14) and (15) [3], [23], [27], [28]. where vi 
is the wind speed at time i in m/s and n is the number of non-zero wind speed data points. 
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This method was used in the evaluation of the wind potential in Morocco [15]. The parameters k and c 
are determined respectively by the Equation (16) and (10) using the obtained value of the parameter k. 

( )( )
0,51

1 0,483 2k v= +  −          (16) 

 

5. Evaluation Metrics 
To evaluate the performance of the six methods for wind energy density estimates, different 

statistical approaches, including seven reliable statistical indicators are used in this study. Several 
statistical indicators including mean absolute percentage error (MAPE), mean absolute error (MABE), 
root mean square error (RMSE). In their formula, Pi,w et Pi,M are respectively the i-order wind power 
densities calculated by the Weibull function and the i-order wind power densities calculated by the 
measured data. In addition Pw,avg et PM,avg are the averages of the values of Pi,w et Pi,M and n is the 
total number of wind speed. 

The MAPE shows the average absolute percentage difference between the wind powers calculated 
using the Weibull function and those reached by the measured values. The MAPE is calculated by 
Equation (17). 
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The MABE represents the mean total absolute amount of polarization errors between the wind powers 
calculated by the Weibull function and those obtained by the measured values. The MABE is defined by 
Equation (18). 
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 
= − 
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               (18) 

The RMSE identifies the accuracy of the model by comparing the difference between the values 
obtained by the Weibull function and those of the measured data. The RMSE always has a positive 
value and is calculated by Equation (21) [22], [29], [30]: The root mean square error is very useful for 
comparing several estimators. It measures the performance of the estimators based on the mean of the 
squares of the errors. In our study we also use it to determine the method that gives a Weibull function 
that better follows the frequency histograms of the different classes of measured wind speeds. The fit is 
better when the RMSE is low (very close to 0). 

( )
2

, ,1

1 n

i W i Mi
RMSE P P

n =
= −              (19) 

 

6. Results and Discussion 
Figures 2 to 11 show some monthly curves of k and c parameters estimated with each method and 

the Weibull distribution functions plotted with the obtained values. For all sites, the shape parameters 
follow practically the same variations for all methods. But it should be noted that for some sites there 
are some curves that are slightly out of phase: the MMa method for the Abuja site, the GP and MMa 
methods for Conakry, the MMa method for Cotonou and Kano and the ML method for Niamey. The 
peak for k values is reached for Cotonou with k equals to 4 for the ML method. But generally, for the k 
methods varies between 1 and 3. As for the variations in c curves, they are mostly in the same range for 
all sites. As for the variations in c curves, they are mostly in the same range for all sites. The Weibull 
distributions vary according to the values of the parameters k and c calculated for each method. It can 
be seen that for all stations the values of the parameter c for all methods are quite close to each other 
and only minor differences are found for the GP method and sometimes also for the ML method. 
Nevertheless, the values of the parameter k for the EMJ, EML and EPF methods are in the same range 
for all months while for the ML, GP and MMa methods the values of k are sometimes higher or lower 
than other methods 

These differences of k and c values for each method highlight the difference in the calculated values 
of wind power densities with the measured data. Although the summarizes provide significant insights 
especially with respect to the distribution of wind power density but they cannot be used solely to 
determine the level of precision of the monthly power density calculation methods. Therefore, the 
statistical indicators are used in order to identify the level of precision of each method. The statistical 
indicators introduced in this section are used to assess the performance of the six estimation methods. 
Tables 3 to 14 provide the results of descriptive statistics and power density estimation, and Figure 12 
the evaluation of the performance of the six selected methods on a monthly basis in terms of MAPE, 
MABE, RMSE, RMSE, respectively for Abuja, Accra, Bamako, Conakry, Cotonou, Kano, Lagos, Lome, 
Niamey, Niamtougou, Ouagadougou, and Tambacounda.  
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Figure 2. 
Monthly variation of k and c values, and Weibull distribution for Abuja. 
 

 
Figure 3.  
Monthly variation of k and c values, and Weibull distribution for Accra. 
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Figure 4.  
Monthly variation of k and c values, and Weibull distribution for Bamako. 

 

 
Figure 5.  
Monthly variation of k and c values, and Weibull distribution for Conakry. 
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Figure 6.  
Monthly variation of k and c values, and Weibull distribution for Cotonou  

 

 
Figure 7.  
Monthly variation of k and c values, and Weibull distribution for Kano  
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Figure 8.  
Monthly variation of k and c values, and Weibull distribution for Lagos 

 

 
Figure 9.  
Monthly variation of k and c values, and Weibull distribution for Niamey 
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Figure 10.  
Monthly variation of k and c values, and Weibull distribution for Niamtougou 
 

 
Figure 11.  
Monthly variation of k and c values, and Weibull distribution for Ouagadougou 

 



1950 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484  

Vol. 8, No. 4: 1937-1955, 2024 
DOI: 10.55214/25768484.v8i4.1568 
© 2024 by the author; licensee Learning Gate 

 

Table 1. 
Descriptive statistics and power density for Abuja site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy. 2.43776 2.0605 2.4378 2.4378 2.439 2.5368 2.4378 
Ec.typ. 1.24492 1.367 1.2832 1.233 1.2337 1.1775 1.7101 
Dens.puiss. 17.4943 15.229 17.462 16.612 16.638 17.177 25.541 
Kurtosis 8.91043 6.9212 7.4299 9.2685 9.2434 10.451 3.1199 
Skewness 1.04677 1.6215 0.9168 1.0794 1.0747 0.9273 0.4831 
 
Table 2.  
Descriptive statistics and power density for Accra site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy. 4.15723 3.55301 4.15723 4.15723 4.15930 4.43428 4.15723 
Ec.typ. 2.14720 2.01581 2.06641 2.12624 2.12736 1.92788 2.15189 
Dens.puiss 82.12856 60.10977 82.17615 84.62223 84.74185 87.43053 86.26740 
Kurtosis 2.92631 4.65209 3.39907 3.04094 3.03396 4.57299 3.03982 
Skewness 0.08977 1.21591 0.10664 0.09400 0.09078 -0.41216 0.12566 
 
Table 3. 
Descriptive statistics and power density for Bamako site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 2.79765 2.37492 2.79765 2.79765 2.79934 3.01251 2.79765 
Ec.typ. 1.62835 1.65579 1.63012 1.60993 1.61095 1.49114 1.83500 
Dens.puiss 31.39636 25.65127 31.29463 30.79267 30.84730 31.90702 36.68506 

Kurtosis 6.00753 6.71940 5.81369 6.30352 6.28229 8.14727 3.92648 
Skewness 0.91573 1.66482 0.89034 0.95025 0.94505 0.66773 0.66526 
 
Table 4.  
Descriptive statistics and power density for Conakry site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 3.33148 3.00024 3.33148 3.33148 3.33280 3.46414 3.33148 
Ec.typ. 1.60201 1.81798 1.59259 1.58902 1.58965 1.50113 1.91915 
Dens.puiss 40.69449 40.50231 40.56237 40.46758 40.51499 41.68727 49.60185 
Kurtosis 6.44260 4.09952 6.33274 6.65489 6.64252 8.07227 3.04739 
Skewness 0.48592 0.88131 0.47693 0.49775 0.49461 0.25320 0.27832 

 
Table 5.  
Descriptive statistics and power density for Cotonou site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 4.02330 3.33855 4.02330 4.02330 4.02384 4.10702 4.02330 
Ec.typ. 1.69862 1.60903 1.68343 1.69004 1.69037 1.59787 2.11385 
Dens.puiss 63.79816 42.86103 65.06774 65.18791 65.20482 65.20710 80.72832 
Kurtosis 2.69366 4.49615 2.78383 2.74248 2.74035 3.46772 1.21240 
Skewness -0.14677 1.41403 -0.13552 -0.14623 -0.14725 -0.35331 -0.05093 

 
 

 

 
 

 
 



1951 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484  

Vol. 8, No. 4: 1937-1955, 2024 
DOI: 10.55214/25768484.v8i4.1568 
© 2024 by the author; licensee Learning Gate 

 

Table 6.  
Descriptive statistics and power density for Kano site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 4.71277 4.36121 4.71277 4.71277 4.71446 5.10566 4.71277 
Ec.typ. 2.25113 2.27993 2.21547 2.23338 2.23425 1.96098 2.30906 
Dens.puiss 112.7769 101.1049 112.9734 113.7094 113.8243 120.7997 118.0493 
Kurtosis 4.51041 4.58891 4.78343 4.65114 4.64290 8.46210 4.44586 
Skewness 0.28197 0.77250 0.28125 0.28838 0.28574 -0.54907 0.26923 
 
Table 7.  
Descriptive statistics and power density for Lagos site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 2.70026 2.28902 2.70026 2.70026 2.70148 3.18704 2.70026 
Ec.typ. 2.16501 2.00671 2.09101 2.14185 2.14275 1.92858 1.78841 
Dens.puiss 45.03188 33.96930 43.48667 45.64691 45.71185 47.88559 32.88635 
Kurtosis 6.37692 9.48775 7.22131 6.64091 6.62908 8.87452 13.44755 
Skewness 1.27921 2.26594 1.40586 1.31888 1.31577 0.81327 2.23905 

 
Table 8. 
Descriptive statistics and power density for Lome site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 3.53826 2.91092 3.53826 3.53826 3.54031 3.70109 3.53826 
Ec.typ. 1.94333 1.72320 1.87766 1.92214 1.92333 1.82855 1.97795 
Dens.puiss 55.29799 35.38807 55.31737 56.78762 56.88031 58.08273 59.19682 
Kurtosis 2.40566 5.58399 2.75858 2.51307 2.50547 2.99925 2.37624 
Skewness 0.26244 1.84950 0.29571 0.27278 0.26891 0.01376 0.28701 

 
Table 9.  
Descriptive statistics and power density for Niamey site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 3.32004 2.99810 3.32004 3.32004 3.32192 3.40313 3.32004 
Ec.typ. 1.77855 1.92446 1.81939 1.75988 1.76090 1.72087 1.91881 
Dens.puiss 47.52339 44.26524 47.32130 45.62783 45.70436 46.48500 50.15246 
Kurtosis 6.39370 5.23938 5.58891 6.65319 6.63403 6.92268 4.28204 
Skewness 1.12474 1.43759 1.03090 1.15983 1.15461 1.06955 0.86939 
 
Table 10.  
Descriptive statistics and power density for Niamtougou site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 2.60855 2.27461 2.60855 2.60855 2.61052 3.17567 2.60855 
Ec.typ. 1.73066 1.55230 1.63536 1.70829 1.70956 1.39119 1.80945 
Dens.puiss 27.76409 21.10048 27.68213 29.44720 29.51493 32.85143 31.83122 
Kurtosis 3.77115 6.61094 4.70233 3.96792 3.95486 9.74914 3.23382 
Skewness 0.35281 1.35784 0.41839 0.36637 0.36213 -1.38592 0.30581 
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Table 11.  
Descriptive statistics and power density for Ouagadougou site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 2.99765 2.58985 2.99765 2.99765 2.99936 3.12567 2.99765 
Ec.typ. 1.60551 1.64402 1.61133 1.58862 1.58954 1.51770 1.83538 
Dens.puiss 34.01567 27.77934 33.88799 33.38351 33.43866 34.33200 39.77047 
Kurtosis 4.98264 5.57020 4.77967 5.19495 5.17930 5.92498 2.82876 
Skewness 0.80675 1.55254 0.78654 0.83299 0.82820 0.66273 0.53418 
 

Table 12.  
Descriptive statistics and power density for Tambacounda site. 

Results Real values GP EPF EMJ EML ML MMa 
Vit.moy 2.97820 2.69982 2.97820 2.97820 2.97987 3.05704 2.97820 
Ec.typ. 1.57577 1.83930 1.64332 1.55950 1.56039 1.51973 1.83429 
Dens.puiss 34.72223 35.61662 34.56636 32.65425 32.70756 33.35933 39.48413 
Kurtosis 10.16318 5.60248 8.01953 10.61158 10.57942 11.59459 5.24357 
Skewness 1.41329 1.28658 1.20300 1.45946 1.45355 1.41555 0.87873 

 
It is important to note that each statistical parameter offers different perspectives that are useful for 

comparing methods. Thus, the combination of all these statistical indicators offers a possibility to 
compare the differences between the wind power calculated by the measured data and that of the 
Weibull distribution function with much more reliability. The results show that the accuracy of the 
computed wind power density values changes with estimates methods. It is clear that for all stations 
when the four methods EPF, EMJ, EML and ML are used to compute the Weibull parameters, the 
values of wind power density computed by the Weibull distribution function are in favorable agreement 
with the value of wind power density computed by measured data. This conclusion is drawn by the low 
values of the MAPE, MABE, RMSE. On the other hand, it can be seen that the lowest agreement 
indices are reached when the MMa and GP methods are applied for the calculation of k and c 
parameters. Abuja, Accra, Bamako, Conakry, Cotonou, Kano, Lagos, Lome, Niamey, Niamtougou and 
Tambacounda present the best results in terms of wind energy density calculation when the EPF 
method is used to calculate the k and c parameters. After the EPF method, for the stations Accra, 
Conakry, Cotonou, Kano, Lagos, Lome, Niamtougou, the most accurate results are obtained using the 
EMJ method. For Abuja, Niamey, Ouagadougou and Tambacounda stations, the ML method is the most 
accurate after the EPF method. As for the Bamako station, the EML method. However, the EPF 
method gives the best accuracy for all sites. The reason why the most appropriate methods come after 
the EPF method are different between sites with the wind characteristics variation. It is also important 
to note that the performances of the EMJ and EML methods are very close to each other based on all 
statistical indicators with a slight difference but the highest precision is often obtained by the EMJ 
process. In each table, the most accurate method for each station is indicated in bold. With respect to the 
weakest methods, the GP and MMa methods show relatively high differences from the other selected 
methods. In the rankings they occupy the last places so that their use leads to much higher errors than 
the other methods. 
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Figure 12.  
Metrics for methods evaluation. 

7. Conclusion 
Knowledge of wind power density is therefore of vital importance in assessing the potential of wind 

energy and in determining the suitability of the site for wind energy development. The two parameters 
Weibull distribution function has been widely used in various wind energy applications because of its 
simplicity, adaptability and accuracy. In this work, the performance of six numerical methods namely 
GP, EPF, EMJ, EML, ML and MMa were evaluated to determine the k and c parameters of the Weibull 
distribution function for the calculation of wind energy density at twelve stations distributed in the 
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West African sub-region. To achieve this goal, the wind power density derived from the Weibull 
function is compared to the power wind density calculated using measured wind data. Evaluations were 
performed on monthly basis in order to provide more complete analysis. The results indicated that by 
using different estimation methods to determine the k and c parameters, the accuracy of calculating 
wind power density values using the Weibull function changes. Based on the analysis of the results of, it 
is proven that the EPF, EMJ, EML and ML methods provide highly desirable better performance while 
the GP and MMa methods showed poor performance for all stations. Furthermore, the analysis of the 
results shows that the most appropriate parameter estimation methods are not the same for all stations 
examined due to the wind characteristics. At all sites, the EPF method was recognized as the most 
appropriate of the methods except for the Lagos site where some indicators put the EMJ method in first 
place. The methods that occupy second place after EPF vary according to the sites: the EMJ method for 
Accra, Conakry, Cotonou, Kano, Lome, Niamtougou; EML for Bamako, ML for Abuja, Niamey, 
Ouagadougou and Tambacounda. The parameters estimated can be used with excellent performance to 
represent the monthly wind speed distribution and determine the different statistical properties of the 
power density. Nevertheless, it should be mentioned that since each station benefits from specific wind 
power characteristics, the results obtained in this study with respect to the efficiency of the estimation 
methods of the Weibull distribution function parameters can only be extended to regions with identical 
wind power characteristics. 
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