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Abstract: The study examines the effect of climate change on crop production in Somalia for the period 
1990 to 2022 obtained from the World Bank and FAOSTAT. Initial assessments were conducted on the 
data using various techniques, including the Correlation Matrix, Augmented Dickey-Fuller test, and 
Phillips-Perron unit root test. The findings from both the Bounds test and Johansen test demonstrate 
the existence of cointegration within the model. To estimate the parameter values of the regression 
model, three methods were employed: the Autoregressive Distributed Lagged (ARDL) model, Dynamic 
Ordinary Least Squares (DOLS), and Fully Modified Least Squares (FMOLS). The study's results 
demonstrate a positive and significant influence of foreign direct investment (FDI) on crop production. 
Specifically, the impact of FDI is found to be more pronounced in the long term compared to the short 
term. Similarly, the study finds that the harvested area and labor force have substantial positive impacts 
on crop production, both in the short run and long run. Based on the ARDL model results, the study 
finds that rainfall and temperature do not have a beneficial influence on crop production in both the 
short run and long run. This is becuase, Somalia is considered as one of the most susceptible countries 
to the effects of climate change globally.  The paper advises Somalia's government to focus on 
developing heat-resistant crops to counter the opposing effects of temperature on crop production and 
ensure food security. It also requires a comprehensive agriculture funding-framework including 
emergency assistance. 
Keywords: Arable Land, ARDL, Climate change, Crop production, DOLS, FMOLS, Precipitation, Somalia, Temperature. 

 
1. Introduction  

This century is being profoundly affected by climate change, and Somalia, like the rest of Africa, is 
especially susceptible to its consequences. The atmosphere, ocean, cryosphere, and biosphere have 
changed rapidly. Global rainfall patterns, temperature fluctuations, the regularity and intensity of 
severe weather, and climatic extremes are all being affected by human-caused climate change. This has 
caused significant devastation to people and nature (IPCC, 2023). Climate change and its environmental 
effects are happening now at a rate never seen before, making it difficult for the government and society 
to adjust to and deal with the changing environment. Changes in climate and the environment 
increasingly destabilize the systems that support the livelihoods of billions of people around the globe 
(UNDP, 2023).  

There's no doubt that human activity has significantly impacted the warming of our planet's 
atmosphere, oceans, and land. Between 1901 and 2018, the average worldwide sea level witnessed a rise 
of 0.20 meters, ranging from 0.15 to 0.25 meters (IPCC, 2023). Between 1901 and 1971, the average 
pace of rising sea levels was at 1.3 [0.6 to 2.1] mm per year. This rate increased to 1.9 [0.8 to 2.9] mm 
annually from 1971 to 2006, and then escalated even more to 3.7 [3.2 to 4.2] mm per year from 2006 to 
2018 (IPCC, 2023). It is highly probable that human intervention has been the primary factor behind 
these surges since at least 1971, if not earlier. 
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The effect of climate change, which have been getting more sever over the past two to three 
decades, are having a negative impact on global food supply (FAO, 2015). Agriculture is the industry 
most sensitive to climate change. Climate change affects agricultural output through rainfall patterns, 
temperature rise, sowing and harvesting dates, water availability, evapotranspiration, and suitability of 
land (Janjua, et al., 2010). As stated by Shakooret et al, (2015), climate change has been a more 
significant danger to the socioeconomic and agricultural growth of any nation than any other factor 
considered. Agricultural output is negatively influenced by both temperature and precipitation (Ali, et 
al., 2021). Climate variability (temperature and precipitation) and climate-driven extremes such as 
floods, droughts, and heat stress have a detrimental effect on agricultural production in Asia  (Habib-ur-
Rahman, et al., 2022). Furthermore, it is anticipated that climate change would have an effect on the 
production of cereal crops in Sub-Saharan Africa (SSA), with significant regional variation in yield 
forecasts (Mereu, et al., 2015).  

Moreover, climate variability can have a significant impact on agriculture resulting in elevated crop 
damage, reduced productivity, and heightened operational expenses. These challenges pose vast 
implications on the industry. Anabaraonye, et al. (2021) found that climate change reduces soil fertility 
and plant growth in climate-smart agricultural systems in Nigeria. Soil degradation has also been 
discovered to negatively affect crop production, leading to food insecurity. Moreover, Pakistan's 
agricultural productivity is being negatively impacted by crop diseases brought on by climate change 
(Abbas, 2021). The productivity of animals and agriculture are both impacted by climate variability and 
the frequency of extreme weather events like windstorms, droughts, and floods (Quandt & Kimathi, 
2017). Farmers are less likely to participate in agriculture due to the climate change as it lowers their 
income and causes inequality and misery (Chandio, et al., 2020). In addition, the frequency and severity 
of extreme weather events like cyclones, floods, and droughts are rising due to climate change. In 
addition to impairing agricultural output, these occurrences upset the equilibrium of water supplies.  
(Baig & Amjad, 2014). 

The tropical and subtropical regions especially Sub-Saharan African nations are more susceptible to 
the effects of rising temperatures, which can result in the destruction of crops as well as an increased 
need for water. It results in famines and floods, which in turn causes a country's socioeconomic standing 
to deteriorate (Samatar, 2023; Msowoya, et al., 2016). The amount of direct water available to crops may 
vary due to variations in the frequency and intensity of rainfall brought on by climate change, the 
severity of drought on crops, the health of livestock, the availability of forage, and the efficacy of 
irrigation systems (Shankar & Shikha, 2017). Furthermore, according to Adimassu and Kessler (2016), 
sub-Saharan Africa is subjected to a disproportionate impact of climate change as a result of its 
significant reliance on agriculture, which is dependent on rainfall. As a consequence, the region is unable 
to adequately foresee and mitigate the far-reaching implications of such catastrophes. 

There is a very modest amount of land in Somalia that is used for rainfed farmland, which is 
estimated to be 234,000 hectares (Bremer, 2021; NCEA, 2021). The most susceptible country to Climate 
change's impacts and the one with the least amount of preparation is Somalia  (NCEA, 2021). The effects 
of climate change are having a disproportionately negative impact on vulnerable communities, such as 
that of Somalia, which have historically contributed the least to the present climate change. Between 3.3 
and 3.6 billion people reside in regions that are vulnerable to climate change (IPCC, 2023). Africa's 
agriculture, water, and food security are suffering from climate change. Food insecurity is caused by 
periodic droughts and floods affecting crop productivity. Somalia, located in a highly vulnerable region, 
is particularly affected by climate change.  

It is estimated that about 8.3 million people across the country of Somalia would endure a crisis 
(IPC Phase 3) or severe acute food insecurity as a result of the effects of five consecutive seasons of 
inadequate rainfall (IPC, 2022), a phenomenon not observed in at least the past 40 years (FSNWG, 
2022). In general, Somalia is classified as an arid to semi-arid country that receives 250 mm of rain 
annually. The northern maritime plains are hot and dry, with an average annual rainfall of less than 250 
mm. The south and south-west receive 400 mm and 700 mm of average annual rainfall, respectively  
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(NEC Somalia, 2022). The production of cash crops and cereal in riverine areas has been further 
hampered by reduced water levels in the Shabelle and Juba Rivers, which have resulted in a string of 
unsuccessful cereal harvests for households in livelihood zones that are riverine and agropastoral (IPC, 
2022). 

Due to their reliance on agriculture, Horn of Africa countries are particularly vulnerable to climate 
change and suffer severe natural resource shortages, particularly water and arable land for food 
production (UNDP, 2023). Somalia has a population mainly living in rural areas and is situated in the 
Horn of Africa. The country's economy is centered around agriculture, which makes up 75% of the 
GDP, and this sector is also the main source of livelihood for the majority of the population employing 
above 45.8% (World Bank & FAO, 2018). 

The availability of staple crops is being severely impacted due to a significant decline in crop yields, 
exceeding 40-60 percent of the long-term average, affecting both irrigated and rainfed crops (IMF, 
2022). Furthermore, in the past few years, fluctuations in climate patterns have had a detrimental 
impact on agricultural output in various regions of the country. This has resulted in recurrent crop 
failures and reduced yields, as a consequence of consecutive instances of inadequate rainfall followed by 
destructive floods that have wreaked havoc on crops. As a result, there has been a significant decline in 
both crop and livestock production. Previous research demonstrates that climate change is causing a rise 
in temperature while also having negative impacts on rice crops, It will eventually result in lower crop 
quality and output. (Joyo, et al., 2018). Climate change threatens global agricultural productivity and 
food security (Abbas, 2021). 

Ideally, comprehensive studies investigating the influence of climate change on crop production in 
Somalia would provide empirical evidence supported by up-to-date data and sophisticated 
methodologies. Such studies would not only address the unique challenges faced by Somalia's 
agricultural sector but also offer practical policy recommendations to mitigate the adverse effects of 
climate change and enhance agricultural productivity. 

However, the existing literature lacks comprehensive and up-to-date data specifically focused on 
Somalia, leaving a significant research gap regarding the specific effects of climate change on crop 
production in the country. While some studies have examined the climate-crop nexus in Somalia, they 
often overlook critical factors such as land use, foreign direct investment, and the labor force. 
Furthermore, existing research primarily concentrates on other regions, neglecting Somalia's distinct 
agricultural landscape and challenges. 

This lack of comprehensive research and policy recommendations poses significant challenges for 
Somalia's agricultural sector, which serves as the main source of employment and income for the 
majority of the rural population. Without tailored solutions addressing the influence of climate change 
on crop production, Somalia faces heightened risks of food insecurity, poverty, and socio-economic 
instability. Additionally, the absence of effective policies exacerbates the vulnerability of Somalia's 
agricultural sector to climate-related shocks, hindering its potential for growth and development. 

This study aims to bridge the identified research gaps by conducting a thorough investigation into 
the influence of climate change factors on crop production in Somalia between 1990 and 2022. Utilizing 
data from reputable sources such as the World Bank and FAOSTAT, this research employs 
sophisticated econometric models and methodologies to analyze the complex interactions between 
climate change variables and crop production. By providing empirical data and comprehensive analysis 
of multiple factors such as land use, foreign direct investment, and labor force in addition to climate 
variables this study seeks to offer practical policy recommendations tailored to Somalia's agricultural 
sector, thereby contributing to enhanced agricultural productivity, food security, and socio-economic 
development in the face of climate change. 
 
 

2. Literature Review 
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Over the past recent decades, climate change has had an adverse effect on crop productivity globally 
due to alterations in temperature, the occurrence of severe weather events, precipitation patterns, pests, 
and diseases. The rise in temperature results in heat stress and impacts the development of plants, while 
changes in precipitation can lead to water stress and crop damage. Numerous studies have utilized 
econometric models, the Ricardian model, crop simulations, and other methods To evaluate the 
influence that climate change will have on agriculture and food security. In general, the impact of 
climate change will be quite significant.  

In Pakistan, Chandio, et al., (2020) examined CO2 emissions, rice output, planted area, average 
temperature, and fertilizer usage. In order to strengthen the empirical results, the paper makes use of 
yearly time series data spanning between 1968 to 2014. The impacts of climate change on rice 
production are investigated using cointegration analysis with the auto-regressive distributed lag 
(ARDL) bounds test. Additionally, the canonical cointegrating regression (CCR) and fully modified 
ordinary least squares (FMOLS) techniques are used to confirm the predicted long-run results. 
Empirical findings showed the cointegration of the chosen study variables, indicating long-term 
relationships. The study found that Pakistani rice production is favorably influenced by CO 2 emissions 
in both in the short and long run.  

Tajudeen, et al., (2022) conduct research in Lagos, Nigeria, to determine how the effects of climate 
change are affecting the production of food crops such as cassava and maize. The examined weather data 
from 1998 to 2018 shows a little influence on cassava output but a considerable impact on maize 
production. Climate change reduces crop yield, soil fertility, limits soil water availability, contributes to 
pests spread, and increases soil erosion. Despite the negative effect of climate change on crop 
production, a lack of access to modern farming equipment that would reduce overreliance exacerbates 
the agricultural conditions in Nigeria. Access to affordable credits, creative climate change adaptation 
measures, and irrigation systems are needed to attract young and older farmers, according to this study.  

A research that was carried out by Kumar, et al., (2021) investigated the influence that climate 
change, ecological variables, and carbon footprint had on the production of rice crops in India between 
the years 1982 and 2016. This research examined the correlation between these variables and their 
effects on India's rice industry. For the purpose of providing support for their study and conclusions, the 
writers of the research piece make use of methods such as canonical cointegration regression (CCR), 
autoregressive distributed lag (ARDL), and fully modified ordinary least squares (FMOLS). There is a 
long-term connection discovered between climatic change and India's rice cultivation. The findings 
reveal that both ecological and carbon footprints stimulate sustained rice production. Although rain 
plays a vital role in enhancing short-term agricultural productivity, it negatively affects it in the long 
run. Additionally, the results that are reached from the ARDL models are supported by other 
cointegration models, notably the FMOLS and CCR models with their respective conclusions. 

Shakoor, et al., (2015) examined Pakistan’s rice crop production and climate variability. By using a 
Vector Auto Regression (VAR) model, this study conducts an empirical analysis of the impacts of 
climate change on Pakistan's rice production. The climate factors' annual seasonal data ranged from 
1980 to 2013. Findings revealed that higher mean maximum temperatures will reduce rice output, but 
higher mean minimum temperatures would be beneficial. According to Variance Decomposition, a 
change in the mean minimum temperature led to a 7% boost in rice yield. Simulations for the year 2030 
indicated that a significant rise in rainfall and mean temperature will have a detrimental impact on rice 
productivity in the far future despite the fact that these factors will enhance rice yield in the short term. 
The study further recommended that adequate policy action is beneficial to safeguard crop production 
from disastrous effects.  

Mwangi (2023) conducted an extensive examination of the consequences of climate change on 
agricultural food production. The study adopted a desk review approach that relied on secondary data, 
such as an analysis of existing literature from previously published studies and reports that were easily 
accessible through digital journals and libraries. The investigation showed that climate change has a 
detrimental effect on crop yields, livestock production, and viticulture by causing rising temperatures, 
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changes in rainfall patterns and increased frequency of extreme weather occurrences. These findings 
repeatedly show that climate change poses a significant threat to food security and agricultural 
livelihoods in many countries. 

Through an eclectic production model, Abbas (2021) examined  the dynamic connection between 
yearly temperature and the main crop production such as cotton, sugar cane, mastered oil, wheat, rice, 
gam, bajra, barley, maize, and jowar in Pakistan from 2000 to 2019. The study found that rising 
temperatures had a substantial negative influence on chosen crop output in the long run but had no 
effect in the short term. In a similar manner, Jan, et al., (2021) utilized the second generation of panel 
cointegration analysis in order to investigate the influence that climate change (CO2) emission had on 
wheat and maize yields in the northern climatic area of Khyber Pakhtunkhwa (KP) in Pakistan between 
the years 1986 and 2015. Increasing the amount of precipitation has been found to have a large 
beneficial impact on grain output, namely maize and wheat. On the other hand, a rise in the average 
temperature has been found to have a minor impact over the course of various time periods. 

The authors Sossou, et al., (2020) considered the effect that climate change has on the amount of 
cereal that is produced in Burkina Faso. Through intense analysis of time-series data collected from the 
World Bank website between 1991 and 2016, the study applied the ordinary least squares (OLS). The 
results showed that yield and cereal production are adversely affected by temperature but positively 
influenced by precipitation. This groundbreaking study highlights the crucial effects of climate change 
on cereal yield in Burkina Faso. Carbon dioxide (CO2) emissions were found to have no significant effect 
on yield or crop output. 

Samuel, et al. (2022) investigated the effects of climate change on crop productivity in the Nigerian 
agricultural sector from 1990 to 2020. During the course of this investigation, the Non-linear 
Autoregressive Distributed Lag (NARDL) Model was utilized. Results have shown that increased 
temperature has negative impact on crop yield as well decrease in rainfall. The research further 
recommends and urges farmers to be provided with irrigation equipment, including dams, pumps, hoses, 
wells, and boreholes, since doing so will assist farmers cope with water shortages brought on by climate 
change. 

This study by (Kumar, et al., (2021)uses a balanced panel dataset covering 1971–2016 to objectively 
investigate the influence of climate change on production of cereals  in a selection of lower-middle 
income nations. Climate change was measured by average yearly temperature and rainfall. Control 
variables including CO2 emissions, cereal-producing land, and rural population were used by the study. 
Unit root tests of the second generation, such as CIPS and CADF, are applied so as to determine 
whether or not the factors remain stationary. The models known as feasible generalized least square 
(FGLS) and thoroughly modified ordinary least square (FMOLS) are applied in order to fulfill the goal 
being sought for. An increase in temperature, as indicated by the findings of the study, leads to a 
reduction in the production of cereal in countries with lower-middle incomes. This is in contrast to the 
fact that rainfall and emissions of carbon dioxide have a positive influence on the production of cereal. 
The temperature's negative impacts on cereal output are anticipated to have significant repercussions 
for the country's overall food security. 
 

3. Methodological Framework 
This section provides a detailed account of the data source, model specifications, and estimation 

techniques employed to investigate the influence of Climate Change on Crop Production, with Crop 
Production (CP) serving as the dependent variable. The independent variables considered in this study 
include Foreign Direct Investment (FDI), Area Harvested (AH), Labour Force (LF), Rainfall (RF), and 
Annual Mean Temperature (AMT). Among these variables, the annual mean temperature and annual 
rainfall are utilized as proxies for climate change.  
 
 
3.1. Data Description 
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The study's sample duration spans from 1990 to 2022, and the data is obtained from diverse 
international open-data repositories. The data of labour force, rainfall, and annual mean temperature 
have been collected from (World Bank, 2023);  whereas the data of crop production, foreign direct 
investment, and area harvested were collected from (FAO, 2023). Table 1 provides an overview of the 
variables' description and summary statistics. 
 

Table 1. 
Variables description. 

Acronym Measure Unit Database 
CP Crop production 100 g/ha FAOSTAT 
FDI Foreign direct investment Million USD FAOSTAT 
AH Area harvested Ha FAOSTAT 
LF Labour force Million WDI 
RF Rain fall mm per year WDI 
AMT Annual mean-temperature Monthly Average WDI 

 
3.2. Bounds test/Autoregressive Distributed Lag (ARDL) Model 

The autoregressive distributed lag (ARDL) bounds testing approach that was introduced by 
Pesaran (1997) is utilized in this particular study in order to examine the long-term cointegration 
relationship that exists between the explanatory factors and the dependent variables, as well as to 
consider the short-run dynamics. The ARDL model offers advantages over the Engle and Granger 
(1987) and Johansen and Juselius (1990) models. When applying the ARDL model, it is important to 
consider that the data can exhibit either I(0) or I(1) properties, or both combined. However, it is crucial 
to note that the ARDL approach becomes inappropriate if any series are integrated at a level two or 
above. To ensure that none of the series is integrated at the second or higher order, examining the 
variables' stationarity is essential.. Another benefit of utilizing the ARDL model is its suitability for 
small sample sizes and its ability to avoid the issue of endogeneity. As stated by Pesaran, Shin, and 
Smith (2001), the boundaries test is preferred over the Johansen method of cointegration. 

Therefore, the PP and ADF tests to determine whether the variables are stationary, which is crucial 
for ensuring their stability over time. Results indicate that some variables are stationary at the level, 
while others are stationary at first differencing. This suggests that the variables are suitable for the 
ARDL model, which can handle both stationary levels. 

Additionally, the Bounds test and Johansen cointegration results demonstrate whether the variables 
are cointegrating.. Cointegration implies a long-term relationship among the variables, which is 
important for analyzing their interactions and dynamics over time. The Bounds F-statistics value 
exceeds both the lower and upper bounds at a 99% confidence level, and the Johansen cointegration 
results show three cointegrated equations, further supporting the suitability of the ARDL model for the 
study. 
 
3.3. Fully-modified OLS (FMOLS) Estimates 

It is crucial to assess the sensitivity and robustness of the long-run parameters resulted from the 
ARDL model before making a final decision regarding the parameter estimates. The Fully Modified 
Ordinary Least Squares (FMOLS) approach, which was developed by Phillips and Hansen (1990), and 
the Dynamic Ordinary Least Squares (DOLS) method, which was presented by Stock and Watson 
(1993), are both utilized in the process of re-estimating the model. This is done in order to guarantee the 
accuracy of the estimates.  This approach allows for a comprehensive assessment of the model's 
robustness. The Equation (1) for FMOLS is as follows: 

�̂�𝐹𝑀𝑂𝐿𝑆=(∑ 𝑍𝑡𝑍𝑡
′𝑡

𝑡=1 )−1 (∑ 𝑍𝑡𝑍𝑡
+ − 𝑇[𝜆12

+ ]𝑡
𝑡−1 )  (1) 

Where the endogeneity and serial correlation are corrected by  𝑌𝑡
+ and  𝑌12

+ terms.  
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3.4. The Dynamic OLS Estimates  
The Dynamic Ordinary Least Squares (DOLS) method, developed by Saikkonen (1991) and further 

refined by Stock and Watson (1993), employs a parametric method to estimate a long-run relationship 
within a model where the variables exhibit different orders of integration but remain cointegrated 
(Masih & Masih, 1996). This technique allows for the estimation of a robust long-term link between the 
variables.. The DOLS method, as described by Kurozumi and Hayakawa (2009), not only eliminates the 
problem of small sample bias, but it also reduces the impact of simultaneity bias by combining both leads 
and lags into the method of analysis. The least squares estimates, which are unbiased and efficient even 
in the face of endogeneity problems, serve as the basis for the estimators employed in DOLS. The 
Equation (2) for DOLS is as follows:  

𝑦𝑡 = 𝑎 + 𝑏𝑋𝑡 + ∑ ∅∆𝑋𝑡+𝑖 +∈𝑡
𝑖=𝑘
𝑖=−𝑘   (2) 

In equation (2), the parameter “b” represents the long-run elasticity. The coefficients “∅𝑠” 
correspond to the leads and lags differences of the I(1). According to Herzer and Nowak-Lehmann 
(2006), the coefficients mentioned above are regarded as nuisance parameters, and their purpose is to 
account for potential issues such as endogeneity, autocorrelation, and non-normal residuals. They play a 
crucial role in the adjustment process. 
 
3.5. Model Specification  

Aside from annual mean temperature and precipitation changes, numerous factors can impact the 
crop production in Somalia. These factors include area under cultivation, water availability, specific crop 
prices, fertilizer usage, seed quality, improved seed quality, prices of substitute and complementary 
goods, concentration of CO2, and access to credit and microfinance. The model's capacity to incorporate 
particular explanatory variables has been hindered as a result of the absence of data for significant 
variables from the years 1990 to 2022. The expression of the function can be found in Equation (3), 
which is explained below.  

𝐶𝑃 = 𝑓(𝐹𝐷𝐼, 𝐴𝐻, 𝐿𝐹, 𝑅𝐹, 𝐴𝑀𝑇)       (3) 

𝑙𝑛𝐶𝑃𝑡 = 𝛽0 + 𝛽1 𝑙𝑛𝐹𝐷𝐼𝑡 + 𝛽2𝑙𝑛𝐴𝐻𝑡 + 𝛽3𝑙𝑛𝐿𝐹𝑡 + 𝛽4𝑙𝑛𝑅𝐹𝑡 + 𝛽5𝑙𝑛𝐴𝑀𝑇𝑡 + 𝜇𝑡 (4) 
To address heteroskedasticity and facilitate the interpretation in terms of elasticity, the variables are 

logarithmically transformed. 

Where 𝑙𝑛𝐶𝑃 shows the natural logarithm of crop production , 𝑙𝑛𝐹𝐷𝐼 indicates the natural 

logarithm of foreign direct investment , 𝑙𝑛𝐴𝐻 stands for the natural logarithm area harvested , 𝑙𝑛𝐿𝐹 
represents labour force in natural logarithm, 𝑙𝑛𝑅𝐹 denotes average rainfall in natural logarithm, 𝑙𝑛𝐴𝑀𝑇 

represents annual mean temperature in natural logarithm, and 𝜇 indicates the error. The ARDL 
approach employed in this study investigates the existence of a long-run relationship, depicted in 
Equation (5). 

Δ𝑙𝑛𝑪𝑷𝒕 = 𝜆0 + ∑ 𝜆1𝑘Δ𝑙𝑛𝐶𝑃𝑡−𝑘 +

𝑛

𝑘=1

∑ 𝜆2𝑘Δ𝑙𝑛𝐹𝐷𝐼𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆3𝑘Δ𝑙𝑛𝐴𝐻𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆4𝑘Δ𝑙𝑛𝐿𝐹𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆5𝑘Δ𝑙𝑛𝑅𝐹𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆6𝑘Δ𝑙𝑛𝐴𝑀𝑇𝑡−𝑘

𝑛

𝑘=1

+ 𝛽1𝑙𝑛𝐶𝑃𝑡−1 +  𝛽2𝑙𝑛𝐹𝐷𝐼𝑡−1 + 𝛽3𝑙𝑛𝐴𝐻𝑡−1

+ 𝛽4𝑙𝑛𝐿𝐹𝑡−1 + 𝛽5𝑙𝑛𝑅𝐹𝑡−1 + 𝛽6𝑙𝑛𝐴𝑀𝑇𝑡−1 + 𝜀𝑡  
            (5) 

The null hypothesis of 𝐻0 = 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 while the alternative hypothesis 𝐻1 ≠
𝛽1 ≠ 𝛽2 ≠ 𝛽3 ≠ 𝛽4 ≠ 𝛽5 ≠ 𝛽6 is tested in Equation (5). 

Equation (6) formulates the error correction term (ECT) for the estimated ARDL model, which 
captures the short-run relationship. 
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Δ𝑙𝑛𝑪𝑷𝒕 = 𝜆0 + ∑ 𝜆1𝑘Δ𝑙𝑛𝐶𝑃𝑡−𝑘 +

𝑛

𝑘=1

∑ 𝜆2𝑘Δ𝑙𝑛𝐹𝐷𝐼𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆3𝑘Δ𝑙𝑛𝐴𝐻𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆4𝑘Δ𝑙𝑛𝐿𝐹𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆5𝑘Δ𝑙𝑛𝑅𝐹𝑡−𝑘

𝑛

𝑘=1

+ ∑ 𝜆6𝑘Δ𝑙𝑛𝐴𝑀𝑇𝑡−𝑘

𝑛

𝑘=1

+ 𝛾𝛼𝐸𝐶𝑇𝑡−1 + 𝜀𝑡 

            (6) 

Where the coefficient 𝜸 in the equation shows the error correction coefficient, which quantifies the 
speed at which the system adjusts from the short-run dynamics to the long-run equilibrium following a 
shock. The researcher opted to utilize EViews 9.0 econometric software for conducting the data 
analysis. This decision was motivated by the software's availability of the ARDL tool, which is essential 
for implementing the ARDL approach in the study.  
 

4. Results and Discussion 
In this section, the findings of the estimation are presented, and a connection between climate 

change and crop production in Somalia is established for both the short run and the long run.  
 
4.1. Results of Unit Root Analysis 

According to the information provided in Table 2, the stationarity of the variables was measured 
using the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests. Stationarity is a crucial step 
in estimating the model, signifying that the variable's mean and variance remain constant. If the mean 
and variance are not constant for a variable, it is considered to have a unit root. Consequently, various 
methods are applied to transform non-stationary (unit root) data into stationarity. The stationarity 
results presented in Table 2 demonstrate that CP, FDI, AH, LF, RF, and AMT are stationary at the 
level. However, RF and AMT initially exhibited a unit root, but they became stationary when 
differenced once. Given that the variables are shown to be stationary at both the level and the first 
difference, this suggests that the ARDL model can be used. 
 

Table 2. 
Results of ADF and PP unit root test of the time series of variables. 

Result of ADF unit root test of the variables Result of PP unit root test of the variables 

  I(0) I(1) I(0) I(1)   

Variables t-stat P-value t-stat P-value t-stat P-value t-stat P-value Decision 
LnCP -3.88 0.000 -8.82 0.000 -4.00 0.004 -14.54 0.000 I(0) & I(1) 

LnAH -3.47 0.0156 -5.95 0.000 -3.44 0.016 -14.52 0.000 I(0) & I(1) 
FDI 1.67 0.9994 -5.90 0.000 1.67 0.999 5.89 0.000 I(1) 

LnLF -0.70 0.831 -4.55 0.001 1.00 0.995 -5.11 0.000 I(1) 
LnRF -3.03 0.042 -10.96 0.000 -5.09 0.000 -24.64 0.000 I(0) & I(1) 

AMT -3.66 0.009 -8.47 0.000 -3.61 0.011 25.39 0.000 I(0) & I(1) 
Source:  The output of the ADF unit root test of the variables in EViews 12. 

 
Table 3 presents the descriptive statistics for various variables, including crop production (CP), area 

harvested (AH), foreign direct investment (FDI), labor force (LF), rainfall (RF), and annual mean 
temperature (AMT). Among these variables, FDI exhibits the highest mean value, followed by AMT, 
LF, AH, CP, and RF. Based on the Jarque-Bera statistics, the descriptive statistics demonstrate that the 
variables follow a normal distribution. 
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Table 3. 
Descriptive statistics. 

 LNCP LNAH FDI LNLF LNRF AMT 
 Mean 12.46841 13.02628 147.0933 14.45219 5.624798 26.95242 
 Median 12.46959 13.02981 53.96000 14.47394 5.626901 26.92000 
 Maximum 12.99873 13.80283 542.3900 14.96550 5.854126 27.34000 
 Minimum 11.68581 12.46843 -3.510000 13.96024 5.439122 26.60000 
 Std. Dev. 0.352439 0.285967 187.9522 0.305530 0.096806 0.183763 
 Skewness -0.251156 0.222615 0.978278 -0.044194 0.378803 0.228637 
 Kurtosis 2.084902 3.014742 2.489139 1.835486 3.322614 2.377230 
 Jarque-Bera 1.498368 0.272865 5.622500 1.875368 0.932315 0.820796 
 Probability 0.472752 0.872465 0.060130 0.391533 0.627408 0.663386 
 Observations 33 33 33 33 33 33 
Source:  EViews 12 output for the result of descriptive statistics. 

 
It is crucial to look at the correlation between variables before running the regression model. The 

correlation matrix, displayed in Table 4, indicates that there is no significant correlation among the 
variables. This implies that multicollinearity, which refers to high correlations between independent 
variables, is not present in the estimated models. 
 

Table 3. 
Correlation matrix. 

Variables LNCP LNAH FDI LNLF LNRF AMT 
LNCP 1.000      
LNAH 0.742989 1.000     
FDI -0.536198 -0.607544 1.000    
LNLF -0.375830 -0.576961 0.884393 1.000   
LNRF -0.168633 -0.159967 0.426000 0.476832 1.000  
AMT -0.242177 -0.282202 0.529186 0.628943 0.313145 1.000 

Source:  EViews 12 output for the correlation matrix. 

 
Table 4. 
Results of lag order selection criteria. 

Endogenous variables: LNAH LNAMT LNCP LNLF LNRF  
 Lag LogL LR FPE AIC SC HQ 
0 148.9636 NA 6.37e-11 -9.287976 -9.056688 -9.212582 
1 258.7025 176.9981 2.76e-13 -14.75500 -13.36727* -14.30263 
2 295.3324 47.26442* 1.49e-13* -15.50532* -12.96115 -14.67598* 

 
The Table 5 above presents results of lag order selection, encompassing endogenous variables 

LNAH, LNAMT, LNCP, LNLF, and LNRF, over the sample period crossing from 1990 to 2022, 
totaling 31 observations. It reveals that as the lag order increases from 0 to 2, there is a corresponding 
improvement in model fit, as evidenced by the increase in log-likelihood values. Notably, the likelihood 
ratio (LR) statistic also demonstrates substantial gains in model fit with each incremental increase in lag 
order. Furthermore, the previous selection criteria, such as, Final Prediction Error (FPE), Akaike 
Information Criterion (AIC), Schwarz Information Criterion (SC), and Hannan-Quinn Criterion (HQ), 
consistently favor higher lag orders, indicating enhanced predictive performance and model fit. 
Specifically, lag 2 emerges as the preferred lag order across most criteria, as denoted by asterisks, 
suggesting that a model with a lag order of 2 is most suitable for capturing the temporal dynamics 
among the variables under consideration. This interpretation underscores the importance of selecting an 



1437 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484  

Vol. 8, No. 4: 1428-1447, 2024 
DOI: 10.55214/25768484.v8i4.1627 
© 2024 by the author; licensee Learning Gate 

 

appropriate lag order in VAR modeling to ensure robustness and accuracy in analyzing the relationships 
between the endogenous variables over the specified sample period. 
 

Table 6. 
Johansen cointegration test. 

Series: LNAH LNAMT LNCP LNLF LNRF  
Panel A: Unrestricted cointegration rank test (Trace) 
Assumed  Trace 0.05  

No. of CE(s) Eigenvalue Statistic Critical value Prob.** 
None * 0.794184 114.8640 69.81889 0.0000 
At most 1 * 0.681951 67.44081 47.85613 0.0003 
At most 2 * 0.510459 33.07434 29.79707 0.0202 
At most 3 0.284414 11.64573 15.49471 0.1747 
At most 4 0.052129 1.606105 3.841465 0.2050 
 Note:  
 

* denotes  significance at the 0.05 level 
 ** p-values of MacKinnon-Haug-Michelis (1999). 

 

Panel B unresticted cointegration rank test (Maximum eigenvalue) 
Assumed  Max-eigen 0.05  
CE(s) No Eigenvalue Statistic Critical Value Prob.** 
None * 0.794184 47.42316 33.87687 0.0007 
At most 1 * 0.681951 34.36646 27.58434 0.0058 
At most 2 * 0.510459 21.42862 21.13162 0.0454 
At most 3 0.284414 10.03962 14.26460 0.2093 
At most 4 0.052129 1.606105 3.841465 0.2050 

Note:  * denotes significance at the 0.05 level 
 ** p-values of of MacKinnon-Haug-Michelis (1999) 

Source:  Results of EViews 12 of Johansen test (Cointegration of the variables) 

 
 

Table 6 argued that there are cointegration relationships among the series LNAH, LNAMT, LNCP, 
LNLF, and LNRF. Both the Trace test and the Maximum Eigenvalue test argued the presence of 
cointegration at the 0.05 significance level. Specifically, the null hypothesis of no cointegration is 
rejected, demonstrating the presence of long-term equilibrium associations among the variables. These 
findings are important for understanding the underlying dynamics and relationships among the series, 
which can be valuable for forecasting and economic analysis. 
 
4.2. ARDL Model Estimation Outcomes: The Long-Run findings 

According to the results, the Bounds test proved the existence of cointegration, which stands for a 
long-term relationship. In Table 7, the Bounds F-statistics value of 4.051 exceeds both the lower limit 
(2.62) and the upper limit (3.79) at a 99% confidence level. These results imply the presence of a long-
term relationship between crop production and the chosen independent variables in the study conducted 
in Somalia from 1990 to 2022. Moreover, the research investigates the long-term and short-term 
relationships between crop production and the variables of area harvested, foreign direct investment, 
labor force, rainfall, and annual mean temperature. The outcomes of the long-term and short-term 
elasticities are reported in Table 8 and the respective Table 9, respectively. 
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Table 5. 
ARDL bounds testing results. 

F-bounds test Relationship at all levels 
Test statistic Value Significance (%) Lower bounds Upper bounds 
F-statistic 4.0511531 10% 2.26 3.35 
K 5 5% 2.62 3.79 
  2.5% 2.96 4.18 
  1% 3.41 4.68 

Note:  (s)” Superscript “1” indicates the significance level at 5%. 
Source:  findings of EViews 12 of bound test (Cointegration of the variables). 

 
Table 8 reports the estimated parameters of the long-run model, which provide the findings for the 

long-term results. Table 8 reveals that the variables of foreign direct investment (FDI) and labor force 
(LF) exhibit statistical significance in the long run. On the other hand, it has been discovered that the 
variables of areas harvested (AH), annual mean temperature (AMT), and rainfall (RF) do not have any 
statistical significance throughout the long run period. The findings suggest that foreign direct 
investment and the size of the labor force have a meaningful impact on crop production over an 
extended period, while factors such as rainfall and annual mean temperature have notable detrimental 
impact on crop production in Somalia. Furthermore, the long-term effect of annual mean temperature 
change is also observed to have a significant negative influence on crop production. These findings 
argued that the increasing annual mean temperature is adversely affecting the productivity of crops in 
the long run, potentially causing disruptions in crop production performance. The statistical 
insignificance for the rainfall variable in the long run may be credited with the occurrence of consecutive 
rainfall failures in Somalia from 2017 to 2022. This means that, in the long run, the negative 
consequences of the rainfall failure probably outweighed the total impact of rainfall on crop 
productivity.  

Therefore, as the annual mean temperature steadily increased throughout the study period (1990 to 
2022), it became apparent that these factors had the potential to disrupt the production of particular 
agricultural crops and compromise food security conditions. This was due to the fact that deforestation 
and periodic droughts were also common during this time period. 
 

Table 6. 

ARDL long‐run model results. 

Dependent variable: LNCP 
Variable Coefficient Std. error t-statistic Prob. 
LNAH 0.593346 0.344665 1.721515 0.0980 
FDI -0.001702 0.000698 -2.438705 0.0225 
LNLF 1.116404 0.504509 2.212853 0.0367 
LNRF -0.597699 0.663440 -0.900909 0.3766 
LNAMT -11.683085 13.188773 -0.885836 0.3845 
C 30.692096 39.636125 0.774347 0.4463 
R2 = 0.797572 Adj R2 = 0.783612 
F-Statistic = 57.13052 Prob (F-statistic = 0.000000 
Durbin – Watson stat = 1.952650 
Source:  EViews 12 outcomes for the long run model. 

 
4.3. Results of ARDL Short-Run Estimation 

Table 9 presents the outcomes of analyzing the short-term dynamics of how climate change affects 
crop production in Somalia. The analysis revealed that the majority of the variables exhibited their a 
priori signs, except for the area harvested variable. While the area harvested variable was statistically 
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insignificant with a positive coefficient in the long run, it was found to have a positive impact on crop 
production in the short run. According to the analysis, a one-hectare increase in the area harvested (AH) 
is associated with approximately a US $0.92 million increase in the value added to crop production in 
Somalia. However, it was observed that the increase in foreign direct investment (FDI) had a 
statistically significant with negative coefficient. This could possibly be attributed to inefficiencies in 
utilizing the allocated funds for the development of the crop production sector. Moreover, a significant 
number of farmers continue to rely on traditional farming methods, which poses challenges in their 
adoption of improved crop varieties and modernized farming equipment. 

In addition, the data suggest that the employment of a single person in the sector of crop production 
will result in an increase of around 0.772 percent in the amount of crops produced in Somalia. 
Furthermore, crop productivity is negatively impacted by a one-year rainfall lag as well as by the first 
temperature lag. This can be attributed to the occurrence of rainfall failures and the persistent increase 
in temperature, which have detrimental effects on crop production. 

The study examined the goodness of fit of the entire model and found that the R-squared (R2) value, 
which stands at 0.79, suggests that approximately 79% of the variation in crop production can be 
explained by the variables comprised in the model. Additionally, the Durbin-Watson statistic yielded a 
value of 1.95, indicating a potential presence of autocorrelation. The results of the serial correlation test, 
on the other hand, demonstrated that the model does not exhibit serial correlation, which is an essential 
assumption in this test. As an additional point of interest, the fact that the probability value of the F-
statistic is 0.0000 indicates that the model is both robust and suitable for this research. 

Overall, the regression is statistically significant, signifying its relevance in explaining the 
relationships between the selected explanatory variables and crop production. 

Finally, the study found that the error correction term (ECM), which gauges how quickly the short-
run model adjusts towards long-run equilibrium, was both negative (-0.69) and statistically significant. 
This aligns with theoretical expectations. In summary, the findings show that, on a quarterly basis, 
about 69% of the short-term deviations from long-term equilibrium are corrected. This suggests that 
the model exhibits a mechanism that brings the system back to its long-run equilibrium over time. 
 

Table 7. 
Findings of short - run estimation. 

Dependent variable: LNCP 
Variable Coefficient Std. error t-statistic Prob. 
D(LNAH) 0.921354 0.168591 5.465016 0.0000 
D(FDI) -0.001177 0.000494 -2.383162 0.0254 
D(LNLF) 0.772358 0.319968 2.413863 0.0238 
D(LNRF) -0.413504 0.448862 -0.921227 0.3661 
D(LNAMT) -8.082664 8.117468 -0.995712 0.3293 
CointEq(-1) -0.691826 0.182360 -3.793742 0.0009 
R-squared 0.797572 Mean dependent var -0.020711 
Adjusted R-squared 0.783612 S.D. dependent var 0.411870 
S.E. of regression 0.191592 Akaike info criterion -0.377838 
Sum squared resid 1.064517 Schwarz criterion -0.240425 
Log likelihood 9.045405 Hannan-Quinn criter. -0.332289 
F-statistic 57.13052 Durbin-Watson stat 1.952650 
Prob(F-statistic) 0.000000   

* p-value incompatible with t-Bounds distribution. 
Source:  EViews 12 output for the short run model. 

 
4.4. Results of FMOLS and DOLS 



1440 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484  

Vol. 8, No. 4: 1428-1447, 2024 
DOI: 10.55214/25768484.v8i4.1627 
© 2024 by the author; licensee Learning Gate 

 

The outcomes of the fully modified OLS and dynamic OLS models are presented in Table 10 and 
Table 11, respectively. Both models reveal significant positive associations between the variables of 
foreign direct investment (FDI), and labor force (LF) with crop production in the studied period (1990 
to 2022). On the other hand, the variables of rainfall (RF) and annual mean temperature (AMT) 
continue to be statistically insignificant. This is most likely because of the influence of climatic factors 
such as the failure of rainfall and the ongoing rise in temperature. Table 12 presents a comprehensive 
description of the findings that were achieved through the utilization of these three methodologies. 
 

Table 10. 
Result of fully modified OLS. 

Dependent variable: LNCP 
Variable Coefficient Std. error t-statistic Prob. 
LNAH 0.913071 0.211238 4.322473 0.0002 
FDI -0.001158 0.000562 -2.059956 0.0495 
LNLF 0.809437 0.389379 2.078790 0.0476 
LNRF -0.352339 0.562871 -0.625968 0.5368 
LNAMT -2.787909 8.911449 -0.312846 0.7569 
C 0.207890 27.49393 0.007561 0.9940 
R-squared 0.659653 Mean dependent var 12.45960 
Adjusted R-squared 0.594201 S.D. dependent var 0.354368 
S.E. of regression 0.225741 Sum squared resid 1.324929 
Long-run variance 0.069880   

Source:  EViews 12 result of FMOLS. 

 
Table 11. 
Result of dynamic ordinary least squares. 

Dependent variable: LNCP 
Variable Coefficient Std. error t-statistic Prob. 
LNAH -1.429990 0.774274 -1.846878 0.0978 
FDI -0.004425 0.001061 -4.170749 0.0024 
LNLF 2.267107 0.715584 3.168192 0.0114 
LNRF 4.482256 2.318347 1.933384 0.0852 
LNAMT -41.32273 24.98594 -1.653839 0.1325 
C 109.4399 74.37672 1.471427 0.1753 
R-squared 0.861351 Mean dependent var 12.47227 
Adjusted R-squared 0.553243 S.D. dependent var 0.359577 
S.E. of regression 0.240341 Sum squared resid 0.519873 
Long-run variance 0.029817  
Source:  EViews 12 result of DOLS. 

 
Table 8. 

Summary results of long‐run coefficients and error correction term (ECM). 

Variable ARDL FMOLS DOLS 
LNAH 0.593346 

[1.721515] 
0.913071 

[4.322473] 
-1.429990 

[-1.846878] 
FDI -0.001702 

[-2.438705] 
-0.001158 

[-2.059956] 
-0.004425 

[-4.170749] 
LNLF 1.116404 

[2.212853] 
0.809437 

[2.078790] 
2.267107 

[3.168192] 
LNRF -0.597699 -0.352339 4.482256 
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Variable ARDL FMOLS DOLS 
[-0.900909] [-0.625968] [1.933384] 

LNAMT -11.683085 
[-0.885836] 

-2.787909 
[-0.312846] 

-41.32273 
[1.653839] 

ECM(-1) -0.691826 
[-3.793742] 

  

C 30.692096 0.207890 109.4399 
R2 0.797572 0.659653 0.861351 

Source:  EViews 12  outputs of ECM. 

 
4.5. Post – Estimation Tests 
4.5.1. Normality Test 

The normality test is a crucial step in determining the distribution of the dataset used in the model. 
Figure 1 provides evidence regarding the null hypothesis that the variables satisfy a normal 
distribution, as indicated by the Jarque-Bera test. The probability value associated with the test is 0.88 
which is greater than 0.05, suggesting that the data is normally distributed. This implies that the 
variables can be reasonably assumed to have a normal distribution in the model. 
 

 
Figure 1. 
Graph of normal distribution for model. 

 
4.5.2. Serial Correlation LM Test of the ARDL Model 

To examine the existence of serial correlation in the short-run ADRL model, we conducted the 
Breusch-Godfrey serial correlation LM test. The results, as shown in Table 13, indicate that the 
probability chi-square value is 0.9380, which is greater than 0.05 at a 5% level of significance. Therefore, 
we can conclude that there is no evidence of serial correlation in the residuals of our model. This 
suggests that the residuals are not systematically related to each other, supporting the assumption of no 
serial correlation in our analysis. 

 

Table 13. 
Result of serial correlation LM test. 

Breusch-Godfrey serial correlation LM Test: 
F-statistic 0.044158     Prob. F(2,22) 0.9569 
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Obs*R-squared 0.127946     Prob. chi-square(2) 0.9380 
Source:  EViews 12 output for the result of serial correlation. 

4.6. Heteroscedasticity Test 
Various diagnostic tests were employed to assess the suitability of the ARDL model. The outcomes 

presented in Table 14 indicate the absence of heteroskedasticity and serial correlation in the estimation. 
Furthermore, Figure 1, which illustrates the results of the normality tests, verifies that the data follows 
a normal distribution. Additionally, the stability of the coefficients in the ARDL model was confirmed 
through the CUSUM Plot and CUSUM Square Plot test (Figure 2 and Figure 3). 
 

Table 9. 
Analyzing heteroscedasticity. 

Breusch-Pagan-Godfrey test 
F-statistic 3.627435     Prob. F(7,24) 0.0083 
Obs.*R-squared 16.45094     Prob. Chi-Square(7) 0.0213 
Scaled explained SS 9.409317     Prob. Chi-Square(7) 0.2246 
Source:  Results of  EViews 12 for Heteroskedasticity . 

 
4.7. Stability Diagnostic Test 

The stability of the short-run model was assessed using the CUSUM test and CUSUM of squares 
test. These tests aim to determine whether the model remains stable over time. In Figure 2 and Figure 
3, which depict the CUSUM Plot and CUSUM Square Plot respectively, the blue solid lines are 
observed to fall within the boundaries of the dotted red lines. This indicates that the model is 
dynamically stable, as there is no significant deviation from stability. 
 

 
Figure 2.  
CUSUM. 
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Figure 3.  
CUSUM square plot. 

 
4.8. Ramsey Reset Test 

The specification test is conducted to determine if the estimated model is correctly specified. It 
utilizes the F-statistic, with the null hypothesis being that the model is correctly specified. If the 
probability value associated with the F-statistic is less than 0.05, the null hypothesis is rejected. 
Conversely, if the probability value is greater than 0.05, the null hypothesis is not rejected. In Table 15, 
the probability value of the F-statistic is found to be greater than 0.05, indicating that the research 
hypothesis is rejected at the 0.05 significance level. This implies that the estimated model is 
appropriately specified. 
 

Table 10. 
Ramsey RESET test. 

 Value df Probability  
t-statistic 1.482085 23 0.1519  
F-statistic 2.196576 (1, 23) 0.1519  
Likelihood ratio 2.918844 1 0.0876  
Source: EViews 12 results of Ramsey RESET. 

 
4.9. Discussions 

The studies by Chandio et al. (2020) and Kumar et al. (2021) both show that CO2 emissions have a 
positive effect on rice production in Pakistan and India, respectively. They also highlight the negative 
effect of rainfall on rice production. These findings suggest a positive link between foreign direct 
investment (FDI) and crop production in Somalia. Additionally, rainfall does not seem to have a 
significant impact on crop production in Somalia according to the statistical results, which aligns with 
these studies. 

Similarly, Jan et al. (2021) and Sossou et al. (2020) find that increased precipitation leads to higher 
grain output. Sossou et al. (2020) also note that while temperature negatively affects cereal yield, 
precipitation has a positive influence. These findings support the study result that the labor force 
positively affects crop production in Somalia, as indicated in the statistical results. 
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Tajudeen et al. (2022) say that climate change harms maize production in Nigeria. They also say it's 
important to use modern farming tools and adapt, but these ideas aren't shown directly in the Somalia 
results. 

Samuel et al. (2022) find that higher temperatures and less rainfall hurt crop yields in Nigeria. But 
the results in Somalia don't show rainfall as important, and the result show that foreign investment has 
adverse effect on crop production in the short term. 

The study makes a significant contribution by synthesizing findings from various research 
endeavors conducted in regions such as Pakistan, India, Nigeria, and Somalia, to shed light on the 
intricate relationship between environmental factors, foreign investment, and crop production. By 
drawing parallels between studies by Chandio et al. (2020), Kumar et al. (2021), Jan et al. (2021), Sossou 
et al. (2020), Tajudeen et al. (2022), and Samuel et al. (2022), the research elucidates several key 
insights. 

Firstly, it underscores the positive impact of CO2 emissions on rice production in Pakistan and 
India, reinforcing the notion that environmental factors play a pivotal role in agricultural outcomes. 
Moreover, the acknowledgment of the adverse effect of rainfall on rice production in these regions 
underscores the multifaceted nature of environmental influences on crop yield. 

Secondly, the study highlights the importance of foreign direct investment (FDI) in shaping crop 
production dynamics, particularly in Somalia. Despite contrasting findings regarding the significance of 
rainfall in Somalia compared to other regions, the research suggests a positive link between FDI and 
crop production, emphasizing the need for further exploration into the mechanisms underlying this 
relationship. 

Furthermore, the study aligns with the findings of Jan et al. (2021) and Sossou et al. (2020), 
emphasizing the positive correlation between precipitation and grain output. This underscores the 
critical role of environmental factors, such as rainfall, in shaping agricultural productivity. Additionally, 
the study supports the notion that the labor force positively influences crop production in Somalia, 
further underscoring the multifaceted nature of agricultural dynamics. 

However, the research also acknowledges discrepancies in findings, such as those highlighted by 
Tajudeen et al. (2022) and Samuel et al. (2022), regarding the opposing effects of climate change on 
maize production in Nigeria. While these findings provide valuable insights into regional variations in 
agricultural vulnerabilities, they also emphasize the need for nuanced approaches to agricultural 
adaptation and modernization, which may not directly translate to the context of Somalia. 

In essence, the study contributes to the existing body of knowledge by synthesizing disparate 
findings and offering insights into the complex interplay between environmental factors, foreign 
investment, and crop production dynamics, thereby providing a valuable foundation for further research 
and policy formulation in agricultural development contexts. 
 

5. Conclusion  
This paper investigates the impact of climate change on crop production in Somalia by using annual 

time series data from 1990 to 2022. The nature of long-term and short-term relationships is examined 
using various statistical techniques, including the Augmented Dickey-Fuller test, Phillips-Perron unit 
root test, ARDL, FMOLS, and DOLS. Annual mean temperature and rainfall have been employed as 
measure for assessing climate change. The results of the study indicate a significant influence of climate 
change on crop production. Specifically, the study finds that increasing temperatures and decreasing 
rainfall have a detrimental effect on crop production in Somalia. Further, the findings indicate that 
rainfall has a negative impact on crop production in Somalia. This can be attributed to the varying levels 
of rainfall received by farms across different regions of the country. In recent years, certain areas in 
northern, eastern, and central Somalia experienced reduced rainfall amounts. On the other hand, certain 
regions experienced excessive rainfall, resulting in flash flooding and floods that submerged crops. This 
led to significant crop losses, particularly in regions traversed by the Jubba and Shabelle rivers. 
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Consequently, it is crucial for farmers and the government to implement improved risk management 
strategies to effectively address climate-related scenarios in these areas. 

The study discovered that the area harvested has a crucial influence on the increase in crop 
production. A surge in the cultivated land area leads to an augmentation in crop production. Similarly, 
foreign direct investment, area harvested, and the labor force have a significant and positive effect on 
crop production,  both in the short run and the long run. The long-run findings of the ARDL model are 
supported by the FMOLS and DOLS models. The findings of the study would assist policymakers in 
directing their attention towards addressing the adverse impacts of temperature and enhancing the 
adaptive capacity of farmers to promote increased crop production in Somalia. Given the negative 
impact of temperature on crop production, it is imperative to conduct research and development aimed 
at cultivating heat-resistant crop varieties. This approach is crucial to ensure food security in the face of 
changing climatic conditions.  
 
5.1. Policy Implications  

Based on the analysis presented by the study, several policy implications can be drawn to address 
the challenges and capitalize on the opportunities identified in the study regarding the impact of climate 
change on crop production in Somalia: 
1. Given the significant positive impact of foreign direct investment (FDI) and labor force (LF) on 

crop production, policies should focus on attracting and facilitating investments in agricultural 
technology, mechanization, and infrastructure. This can enhance productivity, efficiency, and 
resilience to climate-related challenges. 

2. As traditional farming methods still prevail and hinder the adoption of improved practices, there is a 
need for comprehensive capacity-building programs targeting farmers. These programs should 
promote the adoption of modern techniques, crop varieties resilient to climate change, and 
sustainable land management practices. 

3. Recognizing the adverse effects of increasing annual mean temperature and rainfall failures on crop 
production, policymakers should prioritize climate resilience strategies. This may include the 
development of drought-resistant crops, water management systems, and soil conservation 
measures to mitigate the impact of climate change on agricultural productivity. 

4. Given the vulnerability of crop production to climate variability, diversification of crops should be 
encouraged to spread risk. Additionally, the establishment of crop insurance schemes can provide 
financial protection to farmers against crop losses resulting from extreme weather events. 

5. Enhancing the capacity for accurate data collection and monitoring of climate and agricultural 
indicators is crucial for informed decision-making and policy formulation. Investing in 
meteorological infrastructure and remote sensing technologies can improve early warning systems 
and facilitate adaptive responses to changing climate conditions. 

6. Addressing the complex challenges posed by climate change requires coordinated efforts across 
multiple sectors and stakeholders. Inter-ministerial collaboration, engagement with the private 
sector, civil society, and international partners is essential to develop holistic and effective policies 
for sustainable agricultural development and climate resilience. 

7. Given the dynamic nature of climate change, policies should be adaptive and incorporate long-term 
planning horizons. Flexible governance structures that allow for iterative policy adjustments based 
on evolving scientific evidence and stakeholder feedback can enhance the resilience of agricultural 
systems to future climate uncertainties. 
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