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Abstract: In this study, we introduce a speech enhancement method to improve the quality of decrypted 
speech signals from hand-talk devices, which are highly susceptible to security attacks. Ensuring high-
quality decrypted speech is essential because traditional speech enhancement methods struggle with 
artifacts only present during speech due to the encryption process applied selectively. This situation 
limits the effectiveness of traditional methods, which assume distortion is constant and can be estimated 
during silent periods. Our solution involves a deep-learning approach that employs a gated 
convolutional neural network (GCNN). Unlike typical convolutional neural networks (CNNs) that excel 
in processing spatial data but falter with temporal changes, our GCNN integrates a gating mechanism 
to enhance handling of temporal dynamics in speech data. This method directly maps distorted speech 
to its clean counterpart, bypassing the need for explicit noise estimation. Our experiments indicate that 
this deep-learning method significantly outperforms traditional speech enhancement techniques and 
conventional CNNs in several key evaluation metrics, offering a promising advancement in decrypted 
speech quality enhancement. 

Keywords: Convolutional neural networks, Gated convolutional neural networks, Gating mechanism, Secured speech 
communication, Speech enhancement. 

 
1. Introduction  

Speech communications have become more and more widely used, but they are vulnerable to 
unauthorized disclosure [1, 2] Therefore, providing secure speech communications is increasingly 
important. As such, a plethora of speech encryption techniques have been introduced. Unfortunately, the 
encryption process, which includes a randomization process, may leave artifacts when the signal is 
decrypted, which can distort speech and significantly degrade the quality of speech signals [3, 4]. In 
this study, our focus was on improving the quality of decrypted speech from hand-talk (or walkie-talkie) 
devices. For these devices, encryption is applied when speech is present, and as a consequence, the 
artifacts in the decryption process only exists when speech is present. 

There have been many studies in the literature that aimed to develop encryption methods that are 
capable of preserving speech quality and intelligibility or at least producing speech with an acceptable 
quality. A fast Fourier transform combined with multiple chaotic maps was applied in [5], and 
improvements were shown in several subjective and objective metrics of speech. Chaotic encryption [6, 
7] is a popular encryption method for speech, and studies have shown that it is able to maintain the 
quality and intelligibility of decrypted speech at some levels. However, in these approaches, the 
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strategies for improving the quality of speech signals are very dependent on the communication 
frameworks and require some knowledge of the communication channels, which is not always available. 

The other way to improve the quality of speech signals is by applying speech enhancement to the 
decrypted speech. Speech enhancement is a research field that aims to remove the distortions in speech 
signals and, hence, improve their quality and intelligibility. Applying speech enhancement improves the 
modularity of secure communication systems, as it may not require any knowledge of the 
communication channels. Before the emergence of deep learning technologies, various smoothing 
strategies were applied to speech signals to suppress noise. Blind source separation was implemented in 
[8–10], and it was shown that it was able to produce good-quality decrypted speech. Spectral 
subtraction [11], Wiener filtering [12, 13], and Kalman filtering [14]  have been applied to speech 
enhancement with some success. In our previous study, we employed several traditional smoothing 
based speech enhancement methods to improve the quality of speech signals [3].  

However, traditional speech enhancement methods may not work well for decrypted speech from 
hand-talk devices. Most traditional single-channel speech enhancement methods work on the 
assumption of slowly changing noise and/or the presence of noise all the time. If this assumption was, 
noise could be estimated and updated when speech was predicted to be absent. Unfortunately, the 
artifacts in decrypted speech signals from hand-talk devices are characteristically different. Encryption 
is performed only when speech is present. Therefore, the distortions occur mostly when speech is 
present and are minimal in non-speech periods. As a result, most noise estimators are not suitable, since 
they are not designed to deal with abruptly changed distortions [15–17]. 

Deep learning has been actively implemented for speech enhancement in recent years. Various 
architectures, such as deep neural networks (DNNs) [18–20], auto-encoders (AEs) [21], recurrent 
neural networks [22], convolutional neural networks (CNNs) [23, 24] and generative adversarial 
networks (GANs) [25–27] have been employed. Unlike traditional methods that rely on noise 
estimation, deep-learning-based methods work by mapping distorted speech to the target clean speech. 
With a certain amount of training data, the parameters of such models are then optimized so that the 
resulting models can use distorted signals to produce estimations of the clean speech signals; hence, no 
noise estimation is required. 

In this study, we explore the use of deep learning for speech enhancement to improve the quality of 
decrypted speech. Using an auto-encoder with a convolutional neural network (CNN) is a popular 
architecture for speech enhancement; examples thereof include WaveNet [28], U-net [29], and 
SEGAN (speech-enhancement-based GAN) [25]. CNNs are built from convolutional layers to model 
spatial correlations in data, which may be beneficial for speech enhancement. However, they may not be 
adequate for modeling the temporal correlations in speech data. In previous studies, attention modules 
[30] were added for this purpose [31]. Here, we added gating mechanisms to the convolutional layers, 
as in [32], and used this for speech enhancement. Our experiments showed that deep learning is 
generally better than traditional methods in improving the quality of speech signals. In our proposed 
method, gated convolutional neural networks (GCNNs) were shown to be better than CNNs on several 
evaluation metrics. To the best of our knowledge, no effort has been made to employ deep learning to 
improve the quality of decrypted speech. 
 
2. Related Studies 

The objective of speech enhancement methods is to improve the intelligibility and/or overall 
perceptual quality of degraded speech signals caused by either environmental noise or other types of 
distortions. We can categorize speech enhancement methods into two types: masking-based and 
mapping-based methods. The first category attempts to obtain clean speech estimates via various signal-
processing methods. One way to do so is by estimating the noise parts of noisy speech signals and then 
removing them using spectral subtraction [11], Wiener filtering [12, 13], or Kalman filtering [14]. In 
other words, estimated noise information is used to choose masking factors for the speech signals and, 
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hence, minimize their effects. However, inaccuracies in noise estimation often produce what is called 
musical noise, which is often more disturbing than the original noise [33]. Various approaches have 
been employed to minimize the effect of musical noise. Applying flooring factors [34, 35] or nonlinear 
signal processing methods [36–38] can reduce musical noise. However, the reduction of musical noise 
levels is usually traded with the degradation of noise reduction levels. Though they are able to reduce 
the effect of musical noise, iterative approaches [39–41] require more computation and, hence, may not 
be suitable for real-time implementations. 

In mapping-based methods, a particular function is used to map noisy speech to the target clean 
speech. Using a certain amount of training data, the mapping function is then optimized to fit with the 
training data. Currently, mapping-based methods are arguably more dominant for speech enhancement 
with the emergence of deep learning technologies. In deep learning, we can categorize the methods into 
two groups. Neural network architectures are trained in a discriminative manner or a generative 
manner; various architectures, such as deep neural networks (DNNs) [18, 19], auto-encoders (AEs) 
[21], recurrent neural networks [22], convolutional neural networks (CNNs) [23, 24], and generative 
adversarial networks (GANs) [25–27, 42], have been implemented. 

For secured communications, the encryption process produces decrypted speech with degraded 
quality due to the randomization process. Most studies aim to improve the quality of decrypted speech 
by designing encryption methods that preserve the speech quality and intelligibility [6, 7, 9, 10]. Only a 
few studies have attempted to use speech enhancement to improve the quality of decrypted speech. Most 
studies in this area require multiple microphones or multi-channel communications. For this, 
beamforming and its variants are often proposed. For instance, in [43], distributed beamforming was 
shown to improve homomorphic encryption, while joint beamforming is proposed in [44]. 

Very few studies have attempted to implement enhancements for single microphone/single-channel 
secured communications. In our previous studies, we applied and proposed masking-based methods and 
found their limitations when dealing with distortions that were produced by encryption processes [3]. 
Only slight improvements in speech quality were gained because most masking-based methods assume 
noise to be present for all periods of the speech signals, so the estimation and the update of noise signals 
were performed during non-speech periods of the speech signals. However, this is not the case for 
speech in the encryption process. Since encryption is performed when speech is present, the energy of 
noise is usually low during non-speech periods, but it drastically increases when speech starts. 
Therefore, most noise estimators are not suitable, since they usually assume that noise changes slowly 
[15–17]. 

Applying mapping-based methods, such as those using deep learning, may be more effective for such 
conditions. This is because networks may able to learn complex relations between distorted and clean 
signals, which cannot be achieved with traditional approaches. Thus, the networks can regenerate clean 
signals given distorted ones when enough data are provided in the training process. In this study, we 
explored the use of deep learning to enhance the quality of the speech signals from the encryption 
process and then propose gated convolutional neural networks (GCNNs) for enhancing the quality of 
speech signals. 

 
3. Proposed Method 

Let us denote Ψ_θ as the mapping function with θ as its sets of parameters so that :  
ℱ(X̂)  =  Ψθℱ(Υ)  (1) 

where F is a feature operator of speech signals. X ̂ is the target speech (estimate clean speech), and Υ 

is noisy speech. Ψ_θ is implemented using deep learning architectures such as DNNs [18, 19], auto-
encoders (AEs) [21], convolutional neural networks (CNNs) [23, 24], and GANs [25, 26]. Regarding 
the operating domains, the mapping can be performed in either the time [24–26, 42] or spectral 
(frequency) domain [18, 19, 21]. The representation of speech in the spectral domain is better at 
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showing the changes in each frequency component in time, so information such as harmonics and the 
energy of each phoneme may be more discriminative. However, enhancements in the spectral domain 
often ignore the phase and cross-term, which are very important for speech enhancement in some 
studies [45, 46]. This would not be the case when conducting enhancement in the time domain, as no 
phase information is required. In addition, the large capacity of deep learning allows complex relations 
between speech parts to be modeled in the time domain and lets networks learn important features on 
their own. For this reason, we employ our deep learning methods in the time domain for this study. 

SEGAN is an example of a speech enhancement method that also performs enhancement in the time 
domain. Due to its effectiveness, it has been widely used, and many variants thereof have been proposed 
in the literature [26, 42, 47]. SEGAN works by applying a GAN, a generative model, as its core. The 
GAN comprises two networks: a generator (G) and a discriminator (D). G aims to learn an effective 
mapping to imitate the distributions of the real data so that new data samples (fake data samples) that 
are similar to the real ones can be produced. Meanwhile, D is a binary classifier for differentiating 
between real and fake samples. 

Let x denotes samples from a certain distribution (unknown). To learn that distribution, a prior 
distribution defined as pz(z) is fed to G, and G maps it to the data space. G and D learn in an adversarial 
manner as follows (Minmax game objective): 

min
𝐺

max
𝐷

 𝔼𝐱~𝐩data(𝐱)[log 𝐷(𝐱)] + 𝔼𝐳~𝐩𝐳(𝐳)[1 − log 𝐷 (𝐺(𝑧))]  (2) 

In SEGAN, G enhances speech signals, i.e., given noisy speech; it maps the enhanced speech (xˆ = 
G(y)) instead of random noise, as a typical GAN would. G is built by adopting U-Net architectures [48]. 
It is an auto-encoder with skip connections between paired encoders and decoders. 
 

 
Figure 1.  
A block diagram of the proposed method.  

 
The method includes padding to ensure that the data and gating mechanism are of the same length. 

A gated linear unit is used as a gating mechanism by applying ⊗, the element-wise product between the 
output of the convolutional layers and its sigmoid function.  

Recurrent networks and their variants, such as LSTM and BiLSTM, are often applied to many 
types of sequence data, such as text, video, and speech. For sequence data, contextual information may 
be needed to predict the next sequence. Since speech data are time-dependent, contextual information 
may also be beneficial for speech enhancement. Interestingly, many speech enhancement methods 
employ CNNs instead [23–26]. This is because of the contextual information, albeit limited, is obtained 
with stacked CNNs. Since CNNs are highly parallelizable, unlike LSTM and BiLSTM, they are much 
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more efficient. In CNNs, the computation of all input data can be performed in a simultaneous manner, 
unlike in recurrent networks, where the output of the current step depends on the previous hidden state, 
making them unsuitable for parallelization. Adding a gating mechanism as in [32] may be beneficial for 
speech enhancement without sacrificing the parallelization capabilities. By applying the element-wise 
product of the output from a convolutional layer to the output of the sigmoid function, the gating 
mechanism can control how much of it passes, similarly to LSTM. 

How a GCNN works is illustrated in Fig. 1. Here, we dealt with raw speech data; therefore, 1D 
convolutional layers were used. To ensure that all of the speech data had the same length, zero-padding 

was applied. Let us denote F ∈ RT×m as a feature map that is the input for the GCNN with a size of T 

(time dimension) and m (the channel size). Let A = F ∗ W + a and B = F ∗ U + b be the outputs of 
convolutional layers so that the hidden layer HL can be written as follows: 

H𝐿(F) = A ⨂ 𝜎(B) (3) 

where W ∈ Rk×m×n, U ∈ Rk×m×n, a ∈ Rn, and b ∈ Rn are the parameters of the convolutional layers, σ is 

the sigmoid activation function, and ⊗ performs element-wise matrix multiplication. As a result, we can 

see that the output of a GCNN is a linear projection of F ∗ W + a that is modulated by σ(F ∗ U + b). 
This mechanism is called a gated linear unit (GLU) (Dauphin et al, 2017). By applying element-wise 
multiplication, information from A is controlled. For instance, when the output of the sigmoid function 
is 0, nothing is passed; in other words, it is forgotten, whereas when it is to be 1, all is passed. This is 
similar to the forget mechanism in LSTM. When GCNNs are stacked on top of F, the final layers are 

the composition of HL ◦ HL-1... ◦ H1 ◦ H0(F), thus capturing the contextual information of speech data. 
 

 
Figure 2.  
A block diagram of a gated convolutional layer. 
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Table 1.  
The architectures of the auto-encoder for various depths of GCNN layers (N) and their kernels. 

Name N Kernels 
Prop1024 11 [16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 1024] 
Prop512 10 [16, 32, 32, 64, 64, 128, 128, 256, 256, 512] 
Prop256 9 [16, 32, 32, 64, 64, 128, 128, 256, 256] 
Prop128 7 [16, 32, 32, 64, 64, 128, 128] 
Prop64 5 [16, 32, 32, 64, 64] 
Prop32 3 [16, 32, 32{] 

 
We employed GCNNs with the auto-encoder architecture illustrated in Fig. 2. A UNet architecture 

[48], which is often implemented for speech enhancement [25, 49], was adopted. We employed the 
GCNN on only the encoder of the auto-encoder. We replaced each convolutional layer with a GCNN. 
We varied the number of layers of encoders to 3, 5, 7, 9, 10, and 11 and used the corresponding kernel 
sizes. We also used skip connections in the autoencoder. The details of various architectures that we 
evaluated are shown in Table 1. N refers to the number of GCNN layers at the encoder. 
 

 
Figure 3. 
Data creation process: (a) the process of creating the dataset; (b) the actual setup conditions. 

 

4. Experimental Setup 
This study was part of a project for developing secured communications through handtalk devices. 

We generated a dataset for this purpose from subsets of an Indonesian speech corpus [50]. This dataset 
was collected from 20 speakers that read around 390 phonetically balanced sentences. We selected 50 
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utterances from each speaker in the dataset for a total o f1000 utterances. The process of creating the 
experimental dataset is shown in Fig. 3.  

We could not create a dataset for the whole set due to time constraints and the limited resources of 
the project.  

All of the selected utterances were encrypted before they were sent through handtalk devices. Then, 
the encrypted data received by a hand-talk device at another end were decrypted. For the hand-talk 
devices, we used Yaesu Model FT3DR, while a laptop with an 11th Generation Intel Core i-72 and 16 
GB of memory was used to perform encryption, play the recordings of the encrypted speech from one 
end, and then to record the speech received from the hand-talk device. Meanwhile, a method from [51] 
was used for encryption. It was based on shuffling the data using the chaotic permutation of multiple 
circular shrinking and expanding methods. For details of the methods, the reader can refer to [51]. 
Samples of the decrypted speech are shown in Fig. 4. It was clear that most distortions occurred when 
speech was present, and when speech was absent, the distortions were minimal. This was different from 
the usual problems in speech enhancement, where it is assumed that noise or distortions are present all 
the time (during speech and non-speech periods). 

To train all of the deep learning architectures, we used the same configurations to split the training 
and testing data. For training, we used data from 16 speakers (800 utterances), and the rest (4 speakers 
with 200 utterances) were used for testing. as good predictors for the MOS of the signal distortion, the 
background noise interference, and the overall effect, respectively. The MOS values ranged between 1 
and 5, where 1 was the lowest quality and 5 was the highest; the CSIG, CBAK, and COVL also had the 
same range. 

We used two objective metrics to evaluate our method. They were the perceptual evaluation of 
speech quality (PESQ) [52] and short-time objective intelligibility (STOI). For the PESQ scores, the 
values ranged between –0.5 and 4.5, with higher scores indicating a better quality, while a higher STOI 
score indicated higher quality. Due to funding limitations, the mean opinion score (MOS) from 
subjective listening tests could not be included in this study. Instead, we used the signal distortion 
(CSIG), the MOS predictor of background noise intrusiveness (CBAK), and the MOS predictor of 
overall signal quality (COVL) [53], which can be considered as good predictors for the MOS of the 
signal distortion, the background noise interference, and the overall effect, respectively. The MOS 
values ranged between 1 and 5, where 1 was the lowest quality and 5 was the highest; the CSIG, CBAK, 
and COVL also had the same range. 

For comparison, we implemented several masking-based and mapping-based speech enhancement 
methods. For masking-based methods, we implemented spectral subtraction (SS) [54], the Karhurnen–
Loeve transform (KLT) [55], the log minimum-mean-squared-error (MMSE) [56], and coupled SS and 
Wiener filtering (SS+WF) [3]. For mapping-based methods, several deep-learning-based speech 
enhancement methods were implemented. They were the CNN-based auto-encoder (CNN-AE) [57], 
speech-enhancement-based GAN (SEGAN) [25], SEGAN with relativistic loss (RSGAN) [26], and 
equilibrium recurrent neural networks (ERNNs) [58]. 
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Figure 4. 
Samples of decrypted speech (waveform and the spectrogram) in comparison with clean speech. 
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Figure 5.  
Performance of the GCNN when the kernel size and number of layers were varied. 

 

5. Results and Discussions 
In Figure 5 and Figure 6 the performance of the proposed method with various depths is displayed. 

One can see that, while increasing the depth of the network may improve its performance, the deepest 
networks do not necessarily have the best performance. We noticed that the proposed method with a 
deeper network had less speech distortion, as indicated by the higher CSIG scores. However, the overall 
quality seemed to be lower. The PESQ, STOI, and COVL scores tended to be lower for Prop256, 
Prop512, and Prop1024. These metrics are often deemed more suitable for indicating quality and 
intelligibility [53] than the signal-to-noise ratio and distance-based metrics. Based on this 
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consideration, Prop64 or Prop128 may be the optimal configuration for maintaining speech with good 
quality and intelligibility. 

 
Figure 6.  
Samples of the spectrograms of enhanced decrypted speech from various speech enhancement methods. As a reference, the 
spectrograms of the clean speech and original decrypted speech are also included ((a) and (b), respectively). 
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In Table 2, the proposed method is compared with other reference methods. It is clear that all 
traditional methods, such as KLT, SS, MMSE, and MBAND, failed to significantly remove the 
distortions from the decrypted speech. Their metrics only slightly improved, and in many cases, they 
were worse than when no enhancement was applied. This was not surprising, as we found similar 
results in our previous study [3]. Most smoothing-based methods can only deal with noise that changes 
slowly. This was not the case for our problem, where encryption was conducted when speech was 
present. Therefore, the distortions mostly occurred when speech was present, whereas they were nearly 
non-existent when speech was absent. As a consequence, the traditional speech enhancement methods 
failed to reduce the distortions, and little improvement could be achieved (see Figs. 3 and 6 for a 
comparison of the spectrogram of decrypted speech without enhancement and the spectrogram of 
decrypted speech after speech enhancement; not many of the artifacts from the encryption process were 
removed). 
 
Table 2.  
Comparison of the proposed methods with other methods. The best results are printed in bold. The results without a gating 
mechanism (denoted as NG) are also presented. 

Methods PESQ STOI CSIG CBAK COVL 

No enh, 1.66± 0.35 0.75 ± 0.26 2.12 ± 0.75 1.98 ± 0.34 1.84 ± 0.58 

KLT 1.69± 0.37 0.74 ± 0.27 1.95 ± 0.70 1.95 ± 0.29 1.75 ± 0.53 

MMSE 1.65 ± 0.36 0.74 ± 0.27 2.03 ± 0.72 1.97 ± 0.36 1.79 ± 0.55 

MBAND 1.64 ± 0.35 0.73 ± 0.27 2.02 ± 0.71 1.83 ± 0.27 1.77 ± 0.53 

SS 1.69± 0.36 0.74 ± 0.27 2.03 ± 0.67 1.95 ± 0.38 1.80± 0.52 

SS+WF 1.71 ± 0.41 0.74 ± 0.27 2.07 ± 0.68 1.97 ± 0.39 1.83 ± 0.52 

SEGAN 2.20 ± 0.50 0.73 ± 0.29 2.71 ± 0.93 2.41 ± 0.77 2.38 ± 0.76 

RSGAN 2.56 ± 0.82 0.77 ± 0.32 3.18 ± 1.04 3.12 ± 1.09 2.83 ± 1.02 

ISEGAN 2.34 ± 0.56 0.74 ± 0.29 2.65 ± 0.96 2.41 ± 0.82 2.41 ± 0.81 

WGAN 1.33 ± 0.34 0.43 ± 0.23 2.41 ± 0.49 2.49 ± 0.60 1.82 ± 0.38 

ERNN 2.78 ± 0.91 0.77 ± 0.31 3.25 ± 1.31 2.76 ± 0.54 3.00 ± 1.14 

CNN-AE 2.71 ± 0.75 0.78 ± 0.33 3.07 ± 1.12 3.23 ± 1.21 2.87 ± 1.00 

Prop64 (NG) 2.73 ± 0.80 0.78 ± 0.32 3.20 ± 1.13 3.29 ± 1.10 2.94 ± 1.04 

Prop64 2.74 ± 0.80 0.78 ± 0.32 3.29 ± 1.13 3.36 ± 1.10 2.99 ± 1.04 

Prop128 (NG) 2.69 ± 0.73 0.78 ± 0.34 3.17 ± 1.10 3.16 ± 1.10 2.89 ± 0.99 

Prop128 2.76 ± 0.83 0.77 ± 0.34 3.20 ± 1.04 3.32 ± 1.10 2.95 ± 1.01 

Prop256 (NG) 2.81 ± 0.81 0.79 ± 0.33 3.21 ± 1.21 3.08 ± 1.14 2.98 ± 1.07 

Prop256 2.70 ± 0.77 0.77 ± 0.35 3.12 ± 1.17 3.03 ± 1.11 2.88 ± 1.03 
 
Meanwhile, the deep learning methods performed significantly better than the smoothing based 

methods. For most methods, all of the metrics generally improved, confirming that the speech quality 
and intelligibility were improved in comparison with the original decrypted speech. The spectrogram of 
the speech that was enhanced using deep learning (see Fig. 6) showed that these methods were able to 
learn how to recreate enhanced speech that was quite close to clean speech. We also noticed that not all 
GAN-based methods performed well in our evaluation. WGAN appeared to be unable to regenerate the 
enhanced speech well. We also noticed that non-GAN-based deep learning methods (ERNN, CNN-AE, 
and the proposed method) were mostly better than than the GAN-based methods (SEGAN, WGAN, 
RSGAN, and ISGAN). This may have been related to the stability of GAN methods. Since the generator 
networks of GANs never see the actual clean data, the learning trajectory of a GAN may be 
unpredictable, and this may cause instability [25, 59] 

Compared with the CNN, i.e., CNN-AE and the proposed architecture without a gating mechanism 
(denoted in Table 2 with NG), the GCNN was better in terms of most of the evaluation metrics. Better 
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PESQ, STOI, CSIG, CBAK, and COVL scores were obtained compared with those of the CNN. 
Compared with the ERNN, which was a variant of a recurrent neural network (RNN), the proposed 
method was only worse in terms of the PESQ score. It yielded better scores for other metrics. Our 
method outperformed all of the referenced GAN-based methods. Note that, unlike in the CNN, the 
changes were only applied to the CNN of the encoder, and the results showed better overall 
performance, which suggested that adding a gating mechanism to a CNN may improve the speech 
enhancement system. 

We noticed that the standard deviations of our proposed methods were larger than those of 
traditional methods (see Table 2). The results were similar for all proposed methods (Prop32 to 
Prop1024). Larger standard deviations were also found for almost all other deep learning-based methods 
that we evaluated. This indicated the large variations in the quality of the decrypted speech for some 
test data. This might have been due to the small variations in the training data, which could have made 
the models prone to overfitting. 
 

6. Conclusions and Future Works 
In this study, we evaluated several deep learning methods for enhancing distorted decrypted speech 

from secure communication and proposed the addition of a gating mechanism to a CNN for speech 
enhancement. Encryption processes that include the randomization of speech components may cause 
distortions in the decrypted speech. However, traditional speech enhancement methods, which usually 
employ smoothing rules to the distorted speech, may fail to deal with this because the distortion 
conditions differ from the usual assumptions made by most traditional methods. Deeplearning-based 
methods, on the other hand, are effective in doing so. Deep learning methods are able to learn a mapping 
function for the distorted speech to generate clean speech estimates given the distorted samples. Our 
experiments confirm this. Deep-learning-based speech enhancement achieved better quality metrics 
than those of traditional methods. Furthermore, our proposed method was generally better than CNN-
based methods. However, we need to emphasize the limitation of our study. The methods have not been 
evaluated by subjective listening test, which is considered the actual measure of speech quality and 
intelligibility. While the results on several metrics that show good relation on subjective listening tests 
indicate the proposed method could improve the speech quality, it is not necessarily indicate the actual 
quality of speech signals. 

We must note, however, that while deep learning clearly produced better enhanced speech than that 
of smoothing-based methods, much needs to be done in this area. Our results indicate that not all deep 
learning approaches are effective in this task. This may be related to the limited data availability. 
Furthermore, deep learning-based speech enhancement methods require both the data of the distorted 
speech and the clean reference data. These data are often unavailable in realistic conditions. Deep 
learning methods also usually require much more computation to train networks and larger storage for 
models. This often makes it difficult to implement such methods for off-line and embedded systems. 
Therefore, exploring lightweight models is planned in our future work. Our study focus on distortions 
due to encryption process in hand-talk communications. The effectiveness for other tasks could also be 
explored such as for dealing with sudden noise or rapidly changing noise, which are still tasks for speech 
recognition. 
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