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Abstract: Climate change, characterized by long-term shifts in global or regional weather patterns, is a 
consequence of natural processes and human activities. These shifts encompass al-terations in 
temperature, precipitation, wind patterns, and other climatic variables, all of which exert direct influence 
on crop growth, development, and overall agricultural productivity. Comprehending the intricate 
relationship between climate change and crop production is par-amount for formulating strategies to 
counteract adverse effects and adapt to evolving conditions. This study focuses on assessing the impact 
of climate variability on wheat yield in Bloemfontein wheat farms through rigorous time series analysis. 
The research involved the application of various time series models, including SARIMA, ARIMA, 
Facebook Prophet, LSTM, VAR, and Multiple Linear Regression. The investigation began with 
forecasting temperature patterns using SARIMA and Facebook Prophet models. SARIMA 
outperformed Facebook Prophet in this context, as evidenced by lower RMSE and MSE metrics. 
Subsequently, the study delved into predicting rainfall and precipitation, employing ARIMA and LSTM 
models. In this case, LSTM demonstrated superior predictive capabilities. Finally, wheat production 
yield was analyzed using VAR and Multiple Linear Regression, with VAR yielding more accurate 
predictions. The findings of this study hold profound implications for policymakers, farmers, and 
stakeholders deeply invested in agriculture and food security. By shedding light on the repercussions of 
climate change on crop production through the application of time series analysis, this project aspires to 
contribute to developing sustainable agricultural practices, robust farming systems and proactive 
policies de-signed to mitigate the adverse effects of climate change on global food production. 
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1. Introduction  

Climate change poses a formidable challenge to global agricultural systems, with discernible 
impacts on crop production and food security. In the context of shifting climatic patterns, investigating 
the effects of climate variability on agricultural yields has garnered substantial scholarly attention [1, 2, 
3]. A comprehensive study was conducted to analyse the intricate relationships between temperature 
anomalies and crop yield fluctuations [1]. Their findings underscored the vulnerability of crops to 
abnormal temperature spikes, emphasizing the need for localized investigations to grasp the region-
specific impacts of climate variability. In parallel, [4] explored the correlation between precipitation 
patterns and crop productivity, revealing the susceptibility of rain-fed agriculture to irregular rainfall 
regimes. Extending this discourse, the current study delves into the repercussions of climate variability 
on wheat yield in Bloemfontein wheat farms. Like many others, the Bloemfontein region confronts the 
challenge of altering climate conditions that can disrupt agricultural practices and ultimately influence 
crop production. Understanding the nexus between climate variations and wheat yield within this 
context is pivotal for devising targeted adaptation strategies. [3] contributed to this body of research 
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by examining the potential interaction between climate factors and crop yield stability. Using advanced 
modeling techniques, they showcased the intricate ways temperature, precipitation, and variations 
impact yield fluctuations, offering insights into predicting future yield trends. Building on such 
advancements, this study employs a similar methodology to analyze the historical climate data of 
Bloemfontein and its implications for wheat farming. Amidst growing concerns about food security and 
the sustainability of agricultural systems, this study fills a crucial research gap by shedding light on how 
climate variability influences wheat yield in a localized agricultural setting. The insights gained from 
this investigation hold implications for farmers, policymakers, and stakeholders striving to enhance the 
resilience of agricultural systems in the face of changing climatic conditions. [4], advanced the field by 
investigating the direct impacts of climate variability on crop yields and the secondary effects on soil 
quality and nutrient availability. Their study highlighted the intricate interactions between climate, soil 
health, and agricultural productivity. This holistic perspective underscores the need for integrated 
approaches considering biophysical and ecological factors when assessing climate-yield relationships. 

The present study aims to bridge the gap between climate science and agricultural practices by 
focusing on Bloemfontein’s wheat farms. The unique characteristics of the Bloemfontein region, 
including its semi-arid climate and reliance on rain-fed agriculture, make it an ideal case study for 
understanding the localized consequences of climate variability on wheat yield [1]. By amalgamating 
insights from [5] and similar research, this study takes a multi-dimensional approach that considers 
climate variables and their cascading impacts on the overall agricultural ecosystem. [6] enriched the 
discourse by examining potential mitigation strategies to alleviate the adverse impacts of climate 
variability on crop yield. They explored the efficacy of precision agriculture techniques and modified 
cropping calendars to adapt to changing climate conditions. Such proactive strategies could prove 
essential for Bloemfontein’s wheat farmers, who must grapple with uncertain precipitation patterns and 
temperature fluctuations. To gain a comprehensive understanding of the impact of climate change on 
crop production, this study aims to employ machine learning algorithms as powerful tools for analysis. 
The intricate relationship between climatic factors and agricultural productivity will be explored by 
leveraging historical climate data and crop production records. Machine learning techniques allow us to 
identify the most influential climate variables, develop predictive models, and assess the potential 
impacts of climate change on crop yields. By integrating insights from previous studies, such as those by 
[7] and [8], [9], and [10], the aim is to build upon existing knowledge and provide a robust 
assessment of the effects of climate change on crop production. The analysis will contribute to the 
ongoing efforts in formulating strategies to mitigate the negative impacts of climate change and ensure 
global food security 

This investigation contributes to the expanding body of knowledge elucidating the intricate 
interplay between climate variability and agricultural productivity. By grounding our study in the 
specific context of Bloemfontein’s wheat farms and drawing on the insights of pioneering researchers 
such as [3] and [6], we aim to provide a nuanced understanding of the challenges and opportunities 
presented by climate variability. Ultimately, these findings can empower stakeholders to make informed 
decisions that enhance the resilience and sustainability of wheat farming in Bloemfontein. 
 

2. Materials and Methods 
2.1. Time Series Analysis for Agricultural Data  

Time series analysis serves as a powerful tool for investigating the temporal dynamics of 
agricultural data, enabling the identification of patterns, trends, and underlying relationships. In the 
context of our study on climate variability’s impact on wheat yield in Bloemfontein wheat farms, time 
series analysis provides a structured framework to uncover insights from historical weather and crop 
yield data. Time series data consists of observations collected at successive time points, creating a 
sequential data sequence. Applying time series analysis to agricultural data involves exploring temporal 
dependencies and extracting meaningful information. Key concepts include trend analysis, seasonality 
detection, and the identification of irregular fluctuations. 
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One crucial aspect of time series analysis is seasonal decomposition, which disentangles a time series 
into its constituent components: trend, seasonality, and residual (noise). This process enables the 
extraction of underlying patterns and their variations over time. In the context of Bloemfontein wheat 
farms, understanding the seasonal patterns of climate variables and their impact on wheat yield can 
provide valuable insights for crop management. 
 
2.1.1. ARIMA 
Models are a staple in time series analysis, particularly for capturing non-seasonal trends and irregular 
fluctuations. These models encompass autoregressive (AR) terms that account for the dependence on 
past observations, integrated (I) terms to address non-stationarity, and moving average (MA) terms to 
model residual variations. ARIMA models provide a valuable tool for understanding the time-dependent 
relationships between climate variables and wheat yield. 
 
2.1.2. Seasonal ARIMA (SARIMA) 
Seasonal ARIMA (SARIMA) models extend the ARIMA framework to account for seasonality for data 
exhibiting seasonal patterns, such as climate variables impacted by yearly cycles. These models include 
additional terms to capture seasonal dependencies, making them particularly relevant for our study’s 
focus on Bloemfontein’s wheat yield data influenced by climate variability and annual agricultural 
cycles. 
 
2.1.3. Long Short-Term Memory (LSTM) 

Modern advancements in machine learning have introduced LSTM  networks, which are well-suited 
for capturing complex temporal dependencies in time series data. LSTMs are a recurrent neural 
network that can model long-range interactions and capture intricate patterns. Their application to 
agricultural data offers the potential to uncover nonlinear relationships between climate variables and 
wheat yield. Time series analysis methodologies provide a systematic approach to unravel the dynamics 
of climate variability’s impact on wheat yield. By applying techniques such as ARIMA, SARIMA, and 
LSTM to the available data, we aim to derive actionable insights that contribute to understanding the 
multifaceted interactions between climate patterns and agricultural productivity. 

Time series analysis methods offer a structured approach to deciphering the intricate temporal 
dynamics of climate variables and wheat yield in the context of Bloemfontein wheat farms. The 
subsequent sections of our study will apply these techniques to the data, providing a deeper 
understanding of climate variability’s implications for local agriculture. 
 
2.2. Considerations for Bloemfontein Wheat Farms 

As we delve deeper into the investigation of climate variability’s impact on wheat yield in 
Bloemfontein wheat farms, it is essential to consider various factors that significantly shape the region's 
agricultural landscape. These considerations encompass the area's unique characteristics and the 
challenges farmers face in adapting to changing climate patterns. 
 
2.2.1. Semi-Arid Climate 

Bloemfontein’s semi-arid climate introduces distinct challenges for wheat farming. With limited and 
erratic rainfall, water availability is a critical factor influencing crop growth and yield. Effective water 
management strategies, including efficient irrigation techniques and water conservation measures, are 
imperative for mitigating the risks associated with drought and water stress during crucial growth 
stages [1, 8]. 
 
2.2.2. Soil Health and Fertility 

The health and fertility of soils in Bloemfontein wheat farms significantly impact crop productivity. 
Soil characteristics, such as texture, organic matter content, and nutrient levels, influence wheat’s ability 
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to access essential nutrients and moisture. Maintaining soil health through proper management 
practices, including crop rotation and nutrient supplementation, is crucial for sustaining optimal yields 
[3, 6].  
 
2.2.3. Crop Varieties and Resilience 

The choice of wheat varieties can significantly influence a farm’s resilience to climate variability. 
Selecting climate-resilient and drought-tolerant wheat cultivars ensures stable yields under fluctuating 
climatic conditions. Furthermore, diversifying crop varieties can enhance a farm’s adaptability to 
changing climate patterns and reduce vulnerability to yield losses [4, 7]. 
 
2.2.4. Adaptive Agricultural Practices 
Farmers in Bloemfontein must adopt adaptive agricultural practices that align with the region’s climate 
patterns. Adjusting planting and harvesting schedules, implementing water-efficient irrigation methods, 
and optimizing fertilizer application can mitigate the effects of climate variability on wheat yield. 
Adaptive practices also include monitoring weather forecasts and adjusting management strategies 
accordingly [5, 11]. 
 
2.2.5. Integrated Pest Management  

Managing pests and diseases is vital for preserving crop health and yield. Bloemfontein’s climate 
variability can impact pest lifecycles and disease prevalence. Implementing integrated pest management 
strategies that combine biological, cultural, and chemical control methods can minimize pest and 
disease-related yield losses [12]. 
 
2.2.6. Community Engagement and Knowledge Sharing    

Collaboration and knowledge sharing within the agricultural community are crucial in building 
resilience to climate variability. Farmers, researchers, and agricultural extension services can 
collaborate to disseminate climate-smart practices, share experiences, and develop localized strategies 
for mitigating climate-related risks. 
 
2.2.7. Policy and Support 

Government policies, subsidies, and support programs can facilitate the adoption of climate-resilient 
practices among wheat farmers. Policy initiatives that promote sustainable water management, provide 
access to advanced agricultural technologies and offer financial incentives can enhance the resilience of 
Bloemfontein wheat farms. Understanding these considerations is integral to the success of our 
investigation. By recognizing the unique challenges Bloemfontein wheat farms face and the strategies 
employed to address them, we can contextualize our analysis and develop practical insights for local 
farmers. The subsequent sections of our study will incorporate these considerations as we analyze 
climate and yield data [13]. 

These considerations provide a holistic view of the various aspects that need to be considered when 
investigating the impact of climate variability on wheat yield in Bloemfontein wheat farms. Integrate 
these considerations into your study to provide a comprehensive understanding of the challenges and 
opportunities in the region's agricultural landscape. 
 
2.3. Data Selection and Understanding 

The climate data for this study was sourced from Meteostat, a comprehensive weather database 
renowned for its accurate and reliable historical climate information. The dataset encompasses a range 
of climatic variables crucial for analyzing the impact of climate variability on wheat yield in 
Bloemfontein. These variables include temperature (minimum and maximum), precipitation, humidity, 
and other relevant parameters. Meteostat compiles weather information from various weather stations 
located in and around Bloemfontein. These stations record meteorological parameters at regular 
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intervals, typically hourly or daily, providing a comprehensive temporal perspective on climate 
variability. Data was collected for an extended period to capture long-term trends, anomalies, and 
potential cyclical patterns that may influence wheat yield. Wheat yield information was obtained from 
the Department of Agriculture in the Free State province, providing accurate and comprehensive 
records of wheat productivity in the Bloemfontein region. The yield data encompass a series of yearly 
records detailing the amount of wheat harvested in metric tons per hectare. The Department of 
Agriculture’s records were obtained through formal requests and collaboration. The dataset contains 
historical data on wheat yield for a substantial period, aligning with the temporal scope of the climate 
data. The yield records are crucial for establishing correlations between climate variability and wheat 
yield fluctuations. Understanding the complexities and intricacies of the climate and yield data is pivotal 
to uncovering meaningful insights. Detailed statistical and exploratory analyses will be conducted to 
identify trends, anomalies, and potential relationships. Correlation analyses between climate variables 
and wheat yield will be employed to quantify the degree of impact that climate variability exerts on 
agricultural productivity. 

Preparing and converting data are basic steps before data modeling [14]. Clean data is produced as 
a consequence of data pre-processing and transformation [15]. In Python, the following data 
preprocessing and transformation procedures will be applied. First, locate and handle missing values 
and outliers. The data will then be converted using standardization in the second phase to guarantee 
that each observation is on the same scale. Rigorous preprocessing and quality control measures were 
applied to ensure the reliability and consistency of the climate data. This involved removing outliers, 
filling missing data points through interpolation, and cross-validating records against neighboring 
stations. Data cleaning procedures were carried out meticulously to minimize the impact of data gaps or 
inconsistencies on subsequent analyses. 

 
2.4. Modelling 

The Prepared and converted data will be analyzed using a regression algorithm, namely Multiple 
Linear Regression and time series algorithms such as ARIMA, SARIMA, vector Auto-Regressive 
(VAR), Long Short Term Memory (LSTM), and Facebook Prophet. Autoregressive Integrated Moving 
Average (ARIMA) and Seasonal ARIMA (SARIMA) models are widely used in time series analysis to 
capture temporal patterns and forecast future values. These models are well-suited for understanding 
the relationships between climate variability and wheat yield fluctuations. Facebook Prophet is a robust 
forecasting tool that handles seasonal effects, holidays, and trend changes. This model will allow us to 
capture the climate variability’s impact on wheat yield and any additional calendar-related patterns. The 
Vector Autoregression (VAR) model is particularly useful for examining the dynamic interactions 
between multiple time series variables. In this case, we can analyze how different climate variables 
interact with each other and collectively influence wheat yield. Long Short-Term Memory (LSTM) 
networks are powerful tools for handling sequences and patterns in time series data. Applying an LSTM 
model to climate and yield data can unveil complex nonlinear relationships that traditional methods 
might miss. Multiple Linear Regression is a baseline model for assessing the direct linear relationships 
between climate variables and wheat yield. By considering multiple predictor variables, we can quantify 
the individual contributions of different climate factors to yield fluctuations.[7]. The data structure and 
model flow diagrams are shown in Figure 1 and Figure 2 As shown in Figure 1, the dataset consists of 
two sources: the weather dataset and wheat production data. Figure 2 shows the flow of the project and 
how it will be compiled using the programming language Python. 
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Figure 1. 
Data structure. 

 

 
Figure 2. 
Model flow diagram. 

 
2.4.1. ARIMA 

In ARIMA, the abbreviation “AR” stands for “autoregressive,” meaning the model relies on the 
dependent relationship between an observation and its previous values. The number of preceding inputs 
used to predict the next value is called order and is usually referred to as p. ARIMA models are based on 
the idea that past values of a time series can be used to predict future value. The model has three main 
components: 

• Autoregression (AR): The AR component uses past time series values to predict future 
values. It is called auto-regression because it regresses the variable against itself. 

• Integrated (I): The “I” in ARIMA represents the difference in the time series to achieve 
stationarity. The time series’ statistical properties, such as its mean, variance, and auto-
correlation, remain constant over time. 
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• Moving Average (MA): The MA component uses past errors (the difference between actual 
and predicted values) to predict future values. 

The general formula for an ARIMA(p, d, q) model is shown in Equation 1: 

y(t) = c + ϕ(1)y(t − 1) + . . . + ϕ(p)y(t − p) + e(t) + θ(1)e(t − 1) + . . . + θ(q)e(t − q)    Equation 1 
Where: 

• y(t) is the value of the time series at time t 

• c is a constant term 

• ϕ(1),  . . , ϕ(p) are the AR coefficients of the model, with p denoting the number of lags used 
in the auto-regression 

• e(t) is the error term at time t 

• θ(1), . . . , θ(q) are the MA coefficients of the model, with q denoting the number of lags used 
in the moving average 

• d is the degree of differencing needed to make the time series stationary 
To fit an ARIMA model, you would typically estimate the values of p, d, and q based on the 

properties of the chronological data under examination using statistical tests or visual inspection. Once 
you have estimated these values, you can estimate the model parameters (phi and theta coefficients) 
using maximum likelihood estimation or another optimization technique. Some of the algorithms, such 
as mean squared error, root mean squared error, and Akaike information criterion, can be used to 
evaluate the performance of an ARIMA model. These measures indicate how well the model fits the 
observed data and can be generalized to new data. 
 
2.4.2. Regression Model 

Regression models are widely used in analyzing the relationship between dependent variables and 
one or more independent variables. They can be applied to evaluate the impact of climate change on 
crop production by examining the dependence of crop yield on climate variables. 

• Multiple Linear Regression (MLR) is a statistical method that models the intricate 
relationship between a dependent variable and two or more independent variables. This 
extends the fundamental concept of simple linear regression, which examines the connection 
between two variables, to scenarios where the outcome’s variability is influenced by multiple 
predictors simultaneously. Multiple Linear Regression will be employed to assess the impact 
of various climate variables on wheat yield. 

The Multiple Linear Regression model can be represented Equation 2: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀    (2) 

 Where: 

• y is the dependent variable. 

• 𝑥1, 𝑥2, … . 𝑥𝑝 are the independent variables 

• 𝛽0, 𝛽1, 𝛽2, 𝛽𝑝 The coefficients represent the relationship between the independent and dependent 

variables. 

• var epsilon is the error term, representing the unexplained variability. 
The goodness of fit of the Multiple Linear Regression model can be evaluated using metrics like the 

coefficient of determination (𝑅2) and the adjusted 𝑅2 . These metrics indicate the proportion of variance 
in the dependent variable explained by the independent variables. 
 
2.4.3. Facebook Prophet 

Facebook Prophet is a versatile time series forecasting tool developed by Facebook’s Core Data 
Science team. It is specifically designed to handle a wide range of time series data, making it particularly 
valuable for capturing climate-driven variations in wheat yield. Prophet is equipped with several 
features that make it suitable for your analysis: 
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• Flexible Handling of Seasonality: Prophet can effectively model various seasonal patterns, 
including daily, weekly, and yearly cycles, as well as holidays that influence yield patterns. 

• Accounting for Holidays: The model can account for holidays or significant events that 
impact wheat yield. This is particularly useful in capturing climate-related holidays like 
heatwaves or periods of water scarcity. 

• Trend Modeling: Prophet captures both short-term and long-term trends, allowing you to 
assess the impact of climate variability while considering the broader context of yield 
fluctuations. 

• Automatic Handling of Missing Data: Prophet can automatically handle missing data points 
and outliers, reducing the need for extensive data preprocessing. 

 
2.4.4. Vector Autoregression (VAR) 

Vector Autoregression (VAR) is a statistical method used to analyze the relationships between 
multiple time series variables. In the study, VAR will be employed to explore how different climate 
variables interact with each other and collectively influence wheat yield. VAR extends the concept of 
univariate autoregression to multiple variables. Instead of modeling each variable separately, VAR 
models the joint behavior of all variables in the system. This approach is particularly valuable when 
examining how temperature, precipitation, and other climate factors interact and contribute to yield 
fluctuations. VAR is based on the assumption that each variable in the system is influenced by its past 
values and the past values of all other variables. This captures the dynamic relationships and potential 
feedback loops between climate variables and wheat yield. By considering these interdependencies, VAR 
offers a more comprehensive understanding of the system’s behavior. Selecting the appropriate lag order 
is a crucial step in VAR modeling. The lag order determines how many previous time steps are used to 
predict the current values of the variables. Techniques like the Akaike Information Criterion (AIC) or 
Bayesian Information Criterion (BIC) can guide the selection of an optimal lag order that balances 
model complexity and predictive accuracy. Interpreting VAR outputs involves analyzing the coefficients 
of lagged variables in the system. Positive or negative coefficients indicate the direction and magnitude 
of the influence between variables. Additionally, analyzing the IRFs and FEVD plots provides insights 
into the dynamic interactions and the relative importance of climate variables in affecting wheat yield. 
 
2.4.5. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

SARIMA is an extension of the ARIMA model that incorporates seasonal components. It considers 
the autoregressive and moving average components and the seasonal differences in the data. This makes 
SARIMA well-suited for capturing the seasonal variations driven by climate factors. SARIMA models 
consist of three main components: autoregressive (AR), integrated (I), and moving average (MA). The 
seasonal aspect introduces additional parameters denoted as P, D, and Q, representing the seasonal 
autoregressive, integrated, and moving average components represented in Equation 3. 

(1 − ϕ1𝐵 − ϕ1𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑦𝑡 = (1 + 𝜃1𝐵 + Θ1𝐵𝑠)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝜀𝑡   (3) 
Selecting the appropriate order of p, d, q, P, D, and Q involves analyzing the autocorrelation and 

partial autocorrelation plots. Additionally, the decomposition of the time series into its seasonal, trend, 
and residual components aids in understanding the data characteristics and seasonality. Once the 
SARIMA model is fitted to the data, it can be used for forecasting. The model captures the seasonal 
patterns driven by climate variability and the temporal dynamics influencing wheat yield. Forecasts 
generated by the SARIMA model provide insights into how climate fluctuations affect yield over 
different periods. Interpreting SARIMA outputs involves analyzing the coefficients of the 
autoregressive and moving average terms and the seasonal components. The fitted model’s residuals 
should be examined for autocorrelation and normality to ensure the model adequately captures the 
underlying patterns. 
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2.4.6. Long Short-Term Memory (LSTM) 
Long Short-Term Memory (LSTM) neural networks are a specialized type of recurrent neural 

network (RNN) designed to capture long-range dependencies and patterns in time series data. LSTM 
networks are particularly effective in capturing temporal relationships in sequences of data. Unlike 
traditional feedforward neural networks, LSTMs have internal memory cells and gating mechanisms, 
allowing them to store and retrieve information selectively over long intervals. LSTM models consist of 
layers of LSTM units, each with multiple memory cells and gates. Proper tuning of hyperparameters is 
essential for optimal model performance. LSTMs inherently account for sequential patterns in the data, 
which is crucial for capturing the dynamics of climate variability and their influence on wheat yield. The 
network learns to recognize short-term fluctuations, long-term trends, and recurring patterns driven by 
climate factors. LSTM networks consist of multiple memory cells (or units) that have gating 
mechanisms to control the flow of information. These gates include the forget gate, input gate, and 
output gate, which work together to manage the cell’s state and output. Here’s an overview of the key 
equations shown in Equations 4-10: 

i. Forget Gate: This gate determines which information from the cell’s previous state should be 
discarded. 

i. 𝑓𝑡 =  𝜎(𝑊𝑓 ∗ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓             (4) 

ii. Input Gate: This gate decides which new information should be stored in the cell’s state. 

i. 𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖)              (5) 
iii. Candidate New State: This equation calculates the candidate values that could be added to the 

cell’s state. 

i. C˜𝑡 = tanh (𝑊𝐶 ∗ [ℎ𝑡−1,𝑥𝑡] + 𝑏𝐶     (6) 
iv. Cell State Update: The current cell state is updated by combining the results from the forget 

gate, input gate, and candidate new state. 

i. 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ C˜ 𝑡                  (8) 
v. Output Gate: This gate determines the output based on the updated cell state. 

i. 𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)          (9) 
vi. Hidden State Update: The current hidden state is calculated by passing the updated cell state 

through the output gate. 

i. ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)                        (10) 
 

3. Results  
In this pivotal section, we embark on a journey through the empirical outcomes of the study. The 

diligent application of advanced modeling techniques has enabled us to forecast temperature patterns, 
rainfall variations, and wheat production levels within the dynamic agricultural landscape of 
Bloemfontein. The cornerstone of the study was the utilization of cutting-edge predictive models, each 
tailored to address a specific facet of the complex relationship between climate variables and wheat 
production. Our arsenal included Facebook Prophet and SARIMA for temperature forecasts, ARIMA 
and LSTM for rainfall predictions, and VAR and Multiple Linear Regression models for wheat 
production estimations. 

In this comprehensive presentation of results, we will systematically dissect the outcomes of each 
modeling endeavor. From the fluctuations in temperature and precipitation to the intricacies of wheat 
yield forecasts, we delve into the empirical data discerningly. As we navigate this terrain, we aim to 
decipher the implications of our findings, particularly in the context of climate change’s inevitable 
influence on agricultural sustainability. To gain insight into the evolving temperature dynamics within 
Bloemfontein, we harnessed the predictive capabilities of two robust models: Facebook Prophet and 
SARIMA. This section provides a comprehensive overview of our temperature prediction results, 
offering a lens through which to view the precision and nuances of our models. TABLE 1 and TABLE 2 
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present the component of the SARIMA model result for the average temperature. The interpretations of 
these components is covered below. 
 
3.1. Temperature  
3.1.1. SARIMA Results 
 

 Table 1. 
 SARIMA model results for temperature (tavg). 

 
 

Table 2. 
SARIMA model results for temperature (tavg). 

 
3.2. The Interpretations of the Results for Table 1 and Table 2: 

i. Dep. Variable (Dependent Variable: tavg): This indicates that the analysis is focused on the 
variable "tavg," which represents average temperature. 

ii. No. Observations (Number of Observations: 361): This shows that 361 data points or 
observations are included in the analysis. These observations represent measurements of the 
variable (average temperature) taken over time. 

iii. Model (SARIMAX(2, 0, 3)x(1, 0, [1, 2], 12)): This indicates the specific SARIMA model that 
has been applied to the data. SARIMA stands for Seasonal AutoRegressive Integrated Moving 
Average. The numbers in parentheses represent the model’s order: 

a. (2, 0, 3): Represents the non-seasonal part of the SARIMA model. 
b. (1, 0, [1, 2], 12): Represents the seasonal part of the model, with a seasonal order of (1, 

0, [1, 2]) and a seasonal period of 12 (likely indicating a yearly seasonality). 
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iv. Log Likelihood (-660.594): The log likelihood measures how well the model fits the data. A 
higher log-likelihood value indicates a better fit. In this case, the negative value suggests that 
the model provides a better fit than a null model with no predictors. 

v. AIC (Akaike Information Criterion: 1339.188): The AIC measures the model’s goodness of fit 
while penalizing for complexity. Lower AIC values indicate a better trade-off between model fit 
and complexity. An AIC of 1339.188 suggests that the SARIMA model provides an excellent fit 
to the data while considering its complexity. 

vi. BIC (Bayesian Information Criterion: 1374.188): Similar to AIC, the BIC also measures model 
fit while penalizing for complexity. Like the AIC, lower BIC values suggest a better trade-off. A 
BIC value of 1374.188 indicates that the SARIMA model reasonably fits the data while 
penalizing complexity. 

vii. Sample (01-31-1990 - 01-31-2020): This indicates the period covered by the analysis, from 
January 31, 1990, to January 31, 2020. 

viii. HQIC (Hannan-Quinn Information Criterion: 1353.103): The HQIC is another model selection 
criterion considering goodness of fit and complexity. It can help in comparing models, and 
lower values are preferred. 

Our journey into temperature forecasting begins with a quantitative assessment of our models’ 
performance. To gauge the accuracy of our predictions, we turn to key performance metrics, namely the 
MSE and RMSE. The SARIMA model achieved an MSE of 7.36 and RMSE of 2.71; the lower the MSE 
and RMSE, the more reliable the model is. The Monthly Predictions and Yearly Predictions from the 
SARIMA model are shown in Figure 3 and Figure 4. Table 3 shows the temperature data for between 
the year 2022 and 2023 recorded on the last day of each month. Looking at months such as June and 
July this checks out as during those months, it is winter in South Africa so the temperatures tend to be 
very low. 
 

Table 3. 
Temperature data for 2022-2023. 
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Figure 3. 
Monthly temperature predictions. 

 
3.1.2. Facebook Prophet Results 

The Facebook Prophet model achieved stellar results in temperature forecasting, achieving a Root 
Mean Squared Error of 3.54 and a Mean Squared Error of 12.51. These values depict that the model is 
also reliable. Yearly Temperature Predictions and the actual temperature versus the predicted from the 
Facebook Prophet model are shown in Figure 3 and Figure 4. TABLE 4 shows Facebook Prophet 
temperature forecast results and the terms ds, yhat, yhat_lower, and yhat_upper are components of the 
output from its predictive model.  
 

 
Figure 4. 
Yearly temperature predictions. 
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Table 4. 
Facebook prophet forecast results. 

 
 

From Table 4 ds, represents the date column in the input DataFrame that Prophet uses to make its 
forecasts, yhat is the predicted value, yhat_lower and yhat_upper represent the lower and upper bounds 
of the uncertainty interval for the forecast, respectively. They provide a range within which the actual 
value is expected to lie with a certain probability. When we look at June and July we can see the 
temperatures are also low as this is a winter period. The yhat_lower and yhat_upper provide reliable 
results. 

These visual aids unveil the cyclical patterns and seasonal variations within the temperature data 
and provide a canvas upon which deviations between predictions and observations become evident. In 
these deviations, we uncover the challenges and opportunities presented by climate change, as reflected 
in the dynamic temperature landscape of Bloemfontein. In conclusion, the SARIMA model is way more 
effective than Facebook Prophet regarding temperature forecasting based on the RMSE and MSE. 

 

 
Figure 5. 
Yearly temperature predictions. 
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Figure 6. 
Actual vs predicted temperature. 

 
3.2. Precipitation 
3.2.1. ARIMA Results 

To illuminate the intricacies of precipitation variations and their implications for wheat production, 
we harnessed the power of two distinct forecasting approaches: ARIMA and LSTM. The ARIMA model 
achieved an RMSE of 46.6 and an MSE of 2173.1. These may seem high, but they are perfectly normal 
regarding precipitation. Yearly precipitation predictions from the ARIMA model are shown in Figure 7. 

 
 

Table 5. 
ADF test results. 
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Figure 7. 
Yearly precipitations predictions. 

 
The findings presented in TABLE 5 stem from the Augmented Dickey-Fuller (ADF) test, a widely 

utilized tool in time series analysis for detecting the presence of a unit root within a time series dataset. 
This test is crucial in determining whether a given time series exhibits characteristics of stationarity or 
nonstationarity. To shed light on the significance of the ADF test results, let us delve into an 
explanation of its fundamental components from TABLE 5: 

i. ADF Statistic: -5.741029316952197. The ADF statistic is a test statistic computed during 
the ADF test. It represents how much the time series needs to be differenced (i.e., how many 
lag differences are required) to become stationary. The ADF statistic is -5.741, which is 
highly negative. This suggests that the time series is likely stationary, as a more negative 
ADF statistic indicates stronger evidence against the presence of a unit root. 

ii. P-value: 6.275099685404499e-07. The p-value is associated with the ADF statistic and is 
used to assess the statistical significance of the test. It measures the probability of obtaining 
an ADF statistic as extreme as the one observed if the null hypothesis were true (null 
hypothesis: the time series has a unit root, i.e., is non-stationary). The extremely low p-value 
(approximately 6.275e-07, which is close to zero) suggests strong evidence against the null 
hypothesis of a unit root. This further supports the conclusion that the time series is 
stationary. 

iii. Since the ADF statistic (-5.741) is significantly more negative than these critical values, it 
suggests strong evidence against the presence of a unit root, indicating that the time series 
is likely stationary. 

 
3.2.2. LSTM Results 

The LSTM model was trained for 400 epochs using the sequential model, one Density layer, and the 
Adam optimizer. The model achieved an RMSE of 41.06 and MSE of 1942.2. Again, these may seem 
high, but in the case of precipitation prediction, they are normal. Yearly precipitation predictions and 
the monthly precipitation prediction from the LSTM model are shown in Figures 8 and 9. 
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Figure 8. 
Yearly precipitation predictions. 

 
One study [16] encompassed an in-depth analysis of monthly precipitation data, spanning from 

1967 to 2017, and an examination of annual precipitation using Grey Theory methods. Additionally, 
they harnessed advanced modeling techniques, including Wavelet Transformation, ARIMA, and LSTM, 
to unravel the intricacies of these time series. The outcomes of these analyses are summarized below in 
TABLE 6 which shows the precipitation prediction results for RMSE in three different station using the 
ARIMA and LSTM models: 

 
Table 6. 
 Precipitation prediction RMSE. 

 
 

 
Figure 9. 
Monthly precipitations prediction. 
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3.3. Wheat Production 
3.3.1. Vector Autoregression  

Armed with the formidable Vector Autoregression (VAR) and Multiple Linear Regression tools, we 
ventured into wheat production forecasting. These meticulously crafted and fine-tuned models were 
tasked with unraveling the intricate web of factors that govern wheat yields in the face of shifting 
climatic patterns. First, we looked at the relationship between temperature and precipitations to 
determine whether they affect one another. That relationship is shown in Figure 10. For the VAR 
model, it achieved an MSE of 12.56 and an RMSE of 16.7. These numbers are not low thus, this shows 
the model is not that reliable. 
 

Table 7. 
VAR model results. 

 
 
Table 7 shows the results of different VAR (Vector Auto Regressive) model specifications, with each 

row corresponding to a different model order and here is the interpretation of the table. 
i. Order: This column indicates the order in which the VAR model is considered. In time 

series analysis, the order of a VAR model represents how many lagged values of each 
variable are included. For example, a VAR(1) model has only one lag, while a VAR(2) model 
consists of two lags. 

ii. AIC (Akaike Information Criterion): AIC measures a model’s goodness of fit while 
penalizing for model complexity. Lower AIC values are better, as they indicate a better 
trade-off between model fit and complexity. In the table, some models have negative AIC 
values, suggesting they are likely suitable fits for the data. The asterisk (*) next to -10.26 
indicates this model has the lowest AIC among the ones presented. 

iii. BIC (Bayesian Information Criterion): Similar to AIC, BIC measures model fit while 
penalizing complexity. Like AIC, lower BIC values are preferred. On the table, the models 
with lower BIC values, denoted by asterisks (*), indicate a better trade-off between model fit 
and complexity. 

iv. FPE (Final Prediction Error): The FPE measures the model's prediction error. It is used in 
model selection, but unlike AIC and BIC, there is no clear guideline regarding the 
magnitude of FPE values. Typically, lower FPE values are considered better. 

v. HQIC (Hannan-Quinn Information Criterion) is another model selection criterion that, like 
AIC and BIC, considers goodness of fit and model complexity. Lower HQIC values are 
preferred. Models with asterisks (*) suggest a better trade-off between model fit and 
complexity. 

Based on these results, The model with order 1 appears to have the lowest AIC, BIC, and HQIC 
values, indicating that it is a good fit for the data while being relatively simple. This model is marked 
with asterisks. As the order of the VAR model increases beyond 1, the AIC, BIC, and HQIC values 
generally increase, suggesting that the models become less favorable regarding model fit and 
complexity tradeoff. The results indicate that a VAR(1) model performs well according to AIC, BIC, and 
HQIC criteria. 
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Figure 10. 
Temperature and precipitation trend. 

 
In addition, certain variables were explored, including the production yield and the area, production 

and precipitations- and then production and temperature. Temperature and Production Trend and 
Production + Area and Production + Precipitation Trend are shown in Figure 11 and Figure 12. 
 

 
Figure 11. 
Temperature and production trend. 
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Figure 12. 
Production + area and production + precipitation trend. 

 
3.3.2. Multiple Linear Regression 

The independent variables for the multiple linear regression are precipitation and production, while 
the dependent variable is temperature. The model was trained, and from the evaluation, the MSE was 
81613.5, and the RMSE was 89808.4. This shows that the multiple linear regression performed less 
better than VAR. 
 

Table 8. 
Wheat yield prediction - testing (2021). 

 
 
Table 8 compares wheat yield predictions and actual real yields for two different years, 2010 and 

2021. The model is not far off, as seen from the predicted wheat yield and the real values. In conclusion, 
six models were explored, and two models were allocated for each task. In terms of Temperature 
forecasting, SARIMA, and Facebook Prophet were used, and from the results, SARIMA performed 
better than Prophet as it could make reliable predictions. For Precipitation/Rainfall prediction, ARIMA 
and LSTM were explored, and LSTM was more reliable than ARIMA. So, for rainfall forecasting, 
LSTM was the model that produced better results. Lastly, for Wheat Production Yield, two models 
were utilized: Multiple linear regression and VAR. In this case, VAR performed better as the MSE and 
RMSE values are reliable. The implications of our wheat production predictions extend beyond data 
analysis. They reach the heart of Bloemfontein’s farming community and the broader agricultural 
landscape. These results can potentially guide decision-making processes, shape policies, and inform 
adaptive strategies in a changing climate. As we traverse this landscape of data and agriculture, we 
consider the resilience and adaptability of local farmers and stakeholders. The results serve as a 
compass, pointing toward potential challenges and opportunities in sustaining wheat cultivation amidst 
climatic uncertainties. They underscore the importance of proactive measures, from crop diversification 
to resource management, in safeguarding agricultural livelihoods. 
 

4. Discussion 
The study’s initial step involved a meticulous analysis of historical climate data that included 

temperature and precipitation. In the first component, the project undertook the task of temperature 
forecasting in the Bloemfontein region. Applying two distinct time series forecasting techniques, 
SARIMA (Seasonal AutoRegressive Integrated Moving Average) and Prophet, achieved this. SARIMA, 
known for capturing seasonal patterns, was deployed to model the temporal temperature variations. 
Meanwhile, the Prophet provided a complementary perspective with its capacity to handle holiday 
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effects and special events. Utilizing these methods, the project successfully projected temperature trends 
identified seasonality, and recognized extreme temperature events relevant to the region. The second 
component of the project focused on forecasting precipitation in Bloemfontein. This was a critical facet 
as rainfall patterns profoundly impact agricultural outcomes. To accomplish this, the study employed 
ARIMA and LSTM. ARIMA, a conventional yet powerful tool, was used to capture temporal variations 
in precipitation. LSTM, a specialized deep learning architecture for time series data, added a layer of 
sophistication by addressing the temporal dependencies and complexities inherent in precipitation data. 
The study’s ability to forecast rainfall, a challenging task due to its inherent variability, holds significant 
implications for agricultural planning and resilience. 

In tandem, the study delved into historical wheat yield data. This examination thoroughly 
investigates the variability of wheat yield over time in direct response to climate conditions. It goes 
beyond simple observation, seeking to uncover the intricate relationships between climate fluctuations 
and agricultural output. Wheat production is intricately linked to climate variables, and understanding 
this relationship is vital for agricultural sustainability. The project utilized VAR (Vector 
Autoregression) and Multiple Linear Regression to model the interplay between climate variables and 
wheat yield. VAR facilitated examining dynamic interactions between multiple time series variables, 
offering insights into how climate factors influence wheat production. On the other hand, Multiple 
Linear Regression provided a clear and interpretable model of the linear relationships between climate 
parameters and wheat yield. These techniques enabled the project to predict wheat yield and shed light 
on the nuanced interactions that underlie this vital aspect of agriculture. 

The study employed an arsenal of time series analysis techniques to bridge the gap between climate 
variables and wheat yield. From traditional methods like ARIMA and SARIMA to the more modern 
Facebook Prophet, these models meticulously capture the temporal dynamics of climate and agricultural 
data. They provide historical insights and a foundation for forecasting future interactions between 
climate and wheat yield. In conclusion, integrating time series analysis techniques, machine learning 
models, and statistical approaches has highlighted the dynamic relationship between climate variability 
and wheat yield production in Bloemfontein Wheat Farms. By quantifying these relationships, we hope 
to support sustainable agricultural practices and contribute to a resilient food production system in the 
face of changing climatic conditions. This research is a cornerstone for enhancing climate resilience and 
fostering sustainable agriculture in the face of evolving climatic conditions. As Bloemfontein’s 
agricultural community looks to the future, this study stands as a beacon of knowledge and guidance, 
helping to navigate the challenges and opportunities climate change presents. 
 

5. Conclusions 
This study delved into the intricate relationship between climate variability and wheat yield 

production in Bloemfontein Wheat Farms through comprehensive time series analysis. To assess the 
impact of climate variability, we employed a variety of forecasting models and statistical techniques. For 
temperature forecasting, we utilized SARIMA and Facebook Prophet. These models demonstrated their 
effectiveness in capturing temperature patterns and exhibited promising performance in predicting 
future temperature anomalies. Our analysis underscored the importance of understanding temperature 
fluctuations as a key determinant of wheat yield variability. Precipitation prediction was conducted 
using two distinct approaches: ARIMA and LSTM. The latter, is a deep learning architecture, emerged 
as the superior choice, showcasing its ability to capture intricate precipitation patterns and providing 
valuable insights into the predictability of rainfall regimes. Lastly, we employed Multiple Linear 
Regression and Vector Autoregression (VAR) models for wheat yield production prediction. While 
Multiple Linear Regression revealed valuable relationships between wheat yield and various climate 
variables, VAR outperformed in capturing the dynamic interplay between climate factors and wheat 
yield fluctuations. The outcomes from this research constitute a significant advancement in our 
comprehension of climate variability’s impact on wheat yield within Bloemfontein Wheat Farms. The 
insights gleaned through this study hold substantial potential as a valuable reservoir of knowledge for 
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the local farming community, policymakers, and stakeholders. These insights can be instrumental in 
formulating adaptive strategies to confront the evolving climate landscape and ensure the resilience of 
food security. This study underscores the pressing need for proactive measures to ameliorate the 
potential adverse consequences of climate change on wheat production. Furthermore, future research 
initiatives may further enhance these models by incorporating additional climate variables and 
expanding the dataset’s temporal scope, thereby fostering a comprehensive understanding of the long-
term implications of climate on agriculture in this region. The study methodically achieves its 
objectives, culminating in a comprehensive understanding of the complex interplay between climate 
variables and wheat yield in the Bloemfontein region. 
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