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Abstract: In this study, we estimated the volatility of the KOSPI index returns and analyzed volatility 
trends. The data used in the study consisted of monthly observations from January 2005 to December 
2022, and the KOSPI index raw data was transformed into log returns. The volatility estimation model 
used the AR(m)-GARCH(p,q) model, which combines the autoregressive error model and the GARCH 
model that explains the persistence of volatility at low orders. The goodness of fit of the model was 
confirmed using the Portmanteau Q-test and LM-test. Applying the autoregressive error model revealed 
significant autocorrelation in the log returns of the KOSPI index at lags 3 and 6. Residual analysis 
indicated that the residuals followed white noise, but the squared residuals exhibited heteroscedasticity. 
Therefore, after fitting the autoregressive error model, we applied the GARCH model and conducted 
residual analysis, finding both the residuals and squared residuals significant at a 5% significance level. 
The volatility forecasting results indicated a continuous increase in volatility. The findings of this study 
are expected to provide important implications for policymakers responsible for risk management in the 
Korean stock market. 
Keywords: AR(m)-GARCH(p,q) model, Autoregressive error model, GARCH model, Q-test and LM-test t. Return rate. 

 
1. Introduction  

Recent uncertainties in the global economy, coupled with the proliferation of advanced financial 
technologies and algorithmic trading, have led to increased volatility in international financial markets. 
Key factors contributing to heightened market volatility include US interest rate hikes, political 
instability, trade wars, regulatory constraints on major financial institutions' risk investments, as well as 
potential shifts to a tightening monetary policy in China and fiscal crises in Europe. These global issues 
significantly impact various domestic industries such as financial markets, financial industries, export 
industries, real estate markets, and more, including the domestic financial market sectors, which involve 
foreign exchange, stock, bond, and short-term capital markets. Particularly, sustained US dollar strength 
expands financial market volatility, increasing uncertainty in both domestic and international stock 
indices, interest rates, exchange rates, and other factors. This acceleration of the safe asset preference by 
investors can result in significant declines in stock indices and bond prices. It also affects domestic real 
economies, thereby reducing consumer and investor confidence and hindering economic growth rates. 
The volatility of financial asset returns, such as derivatives, stocks, futures, exchange rates, etc., is a crucial 
element in financial trading, encompassing risk management, derivative valuation, and portfolio selection. 

The stock market connects investors like enterprises, individuals, and institutions, through the 
securities issued by businesses to raise industrial capital within a country's national economy, enabling 
efficient distribution of capital. The expansion of stock market volatility can weaken the transmission of 
information regarding corporate value, resulting in misguided decision-making by enterprises, 
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individuals, and government officials [1]. Factors influencing stock return volatility include 
governmental legislation, collective bargaining agreements, and policy decisions impacting the economy, 
as well as inflation, consumer spending indicators, and GDP indicators potentially influencing market 
performance. Furthermore, enhanced governmental regulation in specific industries and the performance 
of individual businesses, such as the launch of innovative products meeting consumer satisfaction, also 
affect volatility [2]. Volatility serves as an anticipated indicator of financial asset uncertainty and price 
fluctuations. The increase in stock market volatility serves as a destabilizing factor due to changes in 
political and economic performance, as well as corporate activities. Managing volatility is crucial for the 
stability and growth of the national economy, considering it as a key means of corporate financing and a 
representative savings method for households. Stock returns reflect the intrinsic value of companies and 
are therefore utilized as a significant indicator in financial markets. Therefore, this study aims to examine 
the volatility trends of the composite stock index using the AR(m)-GARCH(p,q) model, which combines 
autoregressive error and GARCH(p,q) models. 

 

2. Prior Research 
The volatility of financial assets is associated with risk premiums and plays a crucial role in the 

decision-making of financial participants in financial transactions. Estimating volatility in financial 
markets has been studied extensively over the years, with a variety of research models developed. 
Considering the current expansion of financial market volatility due to factors such as intensified inflation, 
accelerated monetary tightening, and increased risk of economic downturns, volatility estimation remains 
a significant issue. Various existing research models for volatility estimation include: 

Engle and Rangel (2008) proposed the spline-GARCH model, which allows for long-term forecasting 
of volatility using financial market data from 48 countries and provides estimates for expected volatility 
in newly opened markets [3]. Conrad, Loch, and Rittler (2014) analyzed long-term correlations between 
oil and US stock returns using the DCC-MIDAS model [4]. 

Chauvet et al. (2012) analyzed whether the symmetric characteristics of financial market volatility are 
useful for predicting real economic conditions and argued that stock volatility measures and common 
factors improve the macroeconomic forecasting of financial indicators in the short term [5]. Conrad and 
Loch (2014) used the GARCH-MIDAD model to analyze the relationship between stock market risk and 
the macroeconomic environment and confirmed that the ability to predict long-term volatility of stock 
prices was improved[6]. Asgharian, Hou, and Javed (2013) demonstrated that extracting common factors 
from various financial and macroeconomic variables and incorporating them into the GARCH-MIDAS 
model improves its predictive ability [7]. Seung Hee Lee and Hee Joon Han (2016) analyzed the volatility 
of KOSPI index returns using a semiparametric single-index volatility model combining GARCH models 
explaining short-term fluctuations and single-index models explaining long-term volatility fluctuations, 
demonstrating that the long-term volatility of the Korean stock market is best explained when using the 
housing price index [8]. Young Im Lee and Jin Lee (2017) showed that the GARCH-MIDAS model 
effectively explains domestic stock market volatility by reflecting not only domestic macroeconomic 
variables but also international variables such as overseas prices, oil prices, and production [9]. Do Kyun 
Chun (2017) compared and analyzed the volatility of exchange rates such as USD-KRW, JPY-KRW, 
EUR-KRW, and GBP-KRW using stochastic volatility models and GARCH(1,1) models to explain 
exchange rate volatility [10]. And Conrad and Kleen (2020) argued that the mixed-frequency GARCH 
model has significant explanatory power for long-memory processes and types of long autocorrelation 
similar to volatility processes such as squared returns [11]. 
 
 

3. Research Model 
3.1. Data Transformation 

 The data consists of monthly data of the composite stock index from January 2005 to December 2022. 
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In this study, to estimate the volatility of the composite stock index, we transformed the original data by 

taking the natural logarithm to use relative changes. Specifically, at time 𝑡 , if the value of the composite 

stock index is 𝑃𝑡, the formula for calculating returns is given by Equation (1). 
 

𝑍𝑡 = 𝑙𝑜𝑔 (
𝑃𝑡

𝑃𝑡−1

) (1) 

 

where, the logarithmic return of the composite stock index at time [𝑡 − 1, 𝑡] derived from Equation (1) is 
referred to as log-return. 

 
3.2. AR(m)-GARCH(p,q) Model 

The AR(m)-GARCH(p,q) model combines an autoregressive model of order m for the errors and a 
model where the variance of the errors follows a GARCH(p,q) process, and is expressed as follows. 

 

   𝑍𝑡 = 𝑥𝑡
′  𝛽 + 𝜀𝑡 

 

                             𝜀𝑡 = −𝜙1 𝜀𝑡−1 − ⋯ − 𝜙𝑚𝜀𝑡−𝑚 + 𝜈𝑡 
 

𝜈𝑡 = 𝜎𝑡  𝑢𝑡  ,   𝑢𝑡~𝑖. 𝑖. 𝑑  𝑁(0,1)  
 

                           𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜈𝑡−𝑖

𝑞
𝑖=1 + ⋯ + ∑ 𝛽𝑗 𝜎𝑡−𝑗

2𝑝
𝑗=1  

(2) 

 

where, (Equation 2) must satisfy 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, ∑ 𝛼𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 < 1. 

An autoregressive error model utilizes local information when there is autocorrelation among error 
terms, allowing for more accurate estimation and prediction. The GARCH(p,q) model, on the other hand, 
uses the squares of all past residuals to explain variance, enabling estimation of volatility over long lags 
with fewer parameters. 

 
3.3. Heteroscedasticity Test 

Statistical tests such as the Portmanteau Q-test and the Lagrange multiplier test (LM-test) are 
employed to test for the presence of autocorrelation among squared errors. The statistic for the 
Portmanteau Q-test is as follows [12], 

 

𝑄 = 𝑇(𝑇 + 2) ∑
𝐶𝑜𝑟𝑟(𝜈𝑡

2̂,𝜈𝑡−𝑖
2̂ )

(𝑇 − 𝑖)

𝑞

𝑖=1

 (3) 

 
and the statistics for Lagrange multiplier test is as follows [13]. 

 

𝐿𝑀 =
𝑇 𝑊′  𝑍(𝑍′𝑍)−1 𝑍′  𝑊

𝑊′  𝑊
 (4) 

 

4. Research Results 
4.1. Volatility of Log Returns and Heteroskedasticity Test 

 It was observed that the squared data of the KOSPI index's log returns exhibit a clustering and 
persistence phenomenon of volatility, where once volatility increases, it tends to remain high for a period, 
and similarly, once it decreases, it stays low for a certain duration Figure 1. 
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Figure 1. Volatility of squared log returns. 

 
The Portmanteau Q-test results for the squared log returns of the KOSPI index show that the p -

values of the chi-square statistics are smaller than the significance level at all lags (lag 1 to lag 30). This 
indicates that the squared log returns of the KOSPI index exhibit significant autocorrelation in variance, 
suggesting that they are not independent Table 1. 

 
Table 1. Portmanteau Q-test of squared log returns. 

To lags Chi-square Pr > ChiSq Autocorrelation coefficient 
6 14.11 0.0285 0.010 0.057 0.054 0.104 0.142 0.062 
12 37.90 0.0002 -0.019 0.073 0.308 -0.053 0.044 -0.008 
18 45.09 0.0004 -0.018 0.072 0.077 -0.079 0.101 0.053 
24 46.16 0.0042 0.004 0.023 0.020 0.027 0.043 -0.030 
30 50.82 0.0102 0.014 0.088 0.032 0.031 0.084 0.044 

 
Furthermore, heteroskedasticity testing of the KOSPI index's log return data using the Portmanteau 

Q-test and the Lagrange multiplier test indicates that conditional heteroskedasticity is present from lag 
5 onwards in the Portmanteau Q-test and from lag 6 onwards in the Lagrange multiplier test Table 2. 
 

Table 2. Heteroscedasticity test of log returns. 

Order Q  Pr > Q LM  Pr > LM 
1 0.3601 0.5484 1.3854 0.5796 
2 1.6216 0.4445 3.0364 0.4969 
3 2.7409 0.4333 4.2241 0.5218 
4 5.4209 0.2468 5.1208 0.3625 
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5 11.8788 0.0635 8.2247 0.0937 
6 20.0082 0.0028 10.2041 0.0193 
7 20.0326 0.0055 16.2311 0.0290 
8 22.2291 0.0045 18.5124 0.0408 
9 45.1552 <.0001 21.3645 0.0001 
10 45.9518 <.0001 22.0142 <.0001 
11 46.5010 <.0001 22.5716 <.0001 
12 46.5207 <.0001 23.8715 0.0001 

 
4.2. Autoregressive Error Model 

The AR order of the autoregressive error model was determined to be 𝑇1/3 , and significant 

parameters estimated by backward elimination showed 𝜙3, 𝜙6 to be significant at the 5% significance level 
(Table 3). 

 
Table 3. Estimation of parameters for the AR (3,6) model. 

AR (3,6) model parameter estimates 
Variable Estimate S. E t -value Pr >|t| 
Intercept 0.0004024 0.000136 2.01 0.0224 
AR3 -0.1423 0.0680 -2.21 0.0366 
AR6 0.1484 0.0695 2.13 0.0339 

 
Therefore, the autoregressive error model estimated using Table 3 can be represented as follows. 

 

𝑙𝑛 𝑍𝑡 = 0.0004024 + 𝜀𝑡 
 

                                        𝜀𝑡 = 0.1423 𝜀𝑡−3 − 0.1484𝜀𝑡−6 

(5) 

 
4.3. Conditional Heteroskedasticity Model 

After fitting the autoregressive error model in Section 3.2, the Portmanteau Q-test results for the 
residuals and squared residuals at all lags indicate that while the residuals show no significant 
autocorrelation at the 5% significance level, the squared residuals exhibit significant autocorrelation 
(Table 4). 

 
Table 4. Portmanteau Q-test for residuals and squared residuals. 

AR (3,6) model residual analysis 

Residual 
To lags Chi-square Pr > ChiSq Autocorrelation coefficient 
6 1.38 0.9668 -0.031 0.025 0.001 0.060 -0.030 -0.010 
12 5.28 0.9478 0.099 -0.043 0.006 -0.045 0.017 -0.057 
18 13.82 0.7407 -0.054 -0.129 0.042 -0.082 -0.072 -0.056 
24 17.31 0.8352 0.032 0.045 -0.027 0.072 -0.040 0.061 
30 26.44 0.6523 -0.120 -0.137 0.026 0.018 0.014 -0.051 
Residual squared 
To lags Chi-square Pr > ChiSq Autocorrelation coefficient 
6 13.34 0.0379 0.013 0.051 0.110 0.106 0.123 0.137 
12 36.27 0.0003 -0.006 0.079 0.298 -0.065 0.042 0.002 
18 41.92 0.0011 -0.014 0.067 0.037 0.089 0.085 0.053 
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24 42.59 0.0111 0.004 0.006 -0.006 0.016 0.025 0.042 
30 45.61 0.0338 0.010 0.078 0.025 0.014 0.066 0.027 

 
In the AR (3,6) model, the fact that the residual square does not follow white noise means that 

heteroscedasticity exists. When heteroscedasticity exists, the volatility estimation model mainly used in 
reality is the low-order GARCH (1,1). Therefore, in this study, the AR (3,6)-GARCH (1,1) model was 
applied to estimate the model, and as a result of the estimation, all parameters were found to be significant 
at the significance level of 5% (Table 5). 
 

Table 5. Parameter estimation of AR (3,6)-GARCH (1,1) model. 

AR (3,6)-GARCH (1,1) Model Parameter Estimates 
Variable Estimate S. E t -Value Pr >|t| 
Intercept 0.000513 0.000197 2.19 0.0201 
AR3 -0.1123 0.0324 -5.09 <.0001 
AR6 -0.0632 0.0212 -2.13 0.0216 
ARCH0 0.0000496 0.0000333 1.49 0.1368 
ARCH1 0.0812 0.0483 2.30 0.0216 
GARCH1 0.8523 0.0477 18.49 <.0001 

 
4.4. Diagnosis of AR (3,6)-GARCH (1,1) Model 

After fitting the AR (3,6)-GARCH (1,1) model, the Portmanteau Q-tests for residuals and squared 
residuals showed no significant autocorrelation at a 5% significance level across all lags Table 6. 
 
Table 6. Portmanteau Q-tests for residuals and squared residuals. 

AR (3,6)-GARCH (1,1) Model Residual Analysis 

Residual 

To lags 
Chi-
square 

Pr > chisq Autocorrelation coefficient 

6 0.38 0.9990 -0.017 0.017 -0.008 0.003 0.033 -0.003 
12 4.35 0.9763 0.088 -0.022 0.010 0.026 -0.006 -0.091 
18 12.65 0.8122 -0.075 -0.105 0.044 -0.068 -0.081 -0.075 
24 17.50 0.8265 -0.043 0.076 -0.051 0.020 -0.037 0.090 
30 24.15 0.7651 -0.091 -0.133 -0.016 0.011 0.002 -0.027 

Residual squared 

To Lags 
Chi-
Square 

Pr > ChiSq Autocorrelation Coefficient 

6 1.96 0.9230 -0.072 -0.042 0.032 -0.016 0.027 0.003 
12 13.29 0.3484 -0.040 0.087 0.166 -0.112 -0.023 -0.018 
18 24.50 0.1394 -0.069 0.013 -0.019 -0.080 0.189 0.020 
24 26.57 0.3247 -0.009 -0.034 -0.032 0.017 -0.036 -0.069 
30 28.25 0.5573 0.051 0.053 -0.036 -0.007 0.003 -0.007 

 
Using Table 5, the final estimated form of the AR (3,6)-GARCH (1,1) model is represented as follows. 
 

                             𝑙𝑛𝑍𝑡 = 0.000513 + 𝜀𝑡 
 

                                 𝜀𝑡 = 0.1123𝜀𝑡−3 + 0.0632𝜀𝑡−6 
  

(6) 
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                                𝜎𝑡
2 = 0.0000496 + 0.0812𝜈𝑡−1 + 0.8523𝜎𝑡−1

2  
 

4.5. Forecasting Volatility Using AR (3,6)-GARCH (1,1) Model 
The one-step ahead forecast of volatility and multi-step ahead forecasts of volatility for the forecasting 

period based on the AR (3,6)-GARCH (1,1) model are shown in (Fig. 2). It is observed that volatility 
increases gradually from January 2023 to December 2023. 
 

 
Figure 2. Volatility Forecasting by AR (3,6)-GARCH (1,1) Model. 

 

5. Conclusion 
There are various models for predicting the volatility of financial assets' returns. In this study, we 

used the AR(m)-GARCH(p,q) model to forecast monthly volatility of KOSPI index returns in order to 
understand the trend in volatility. Analysis using data from 2005 to 2022 revealed the following: 

The squared log returns of the KOSPI index exhibited clustering and persistence in volatility, 
confirmed by Portmanteau Q-tests showing significant autocorrelation from lag 5 onwards, and Lagrange 
multiplier tests indicating heteroscedasticity from lag 6 onwards. To estimate KOSPI index volatility, we 
applied the autoregressive conditional heteroskedasticity model after employing backward elimination, 
revealing significant parameters at the 5% significance level for lags 3 and 6. Testing the independence of 
residuals using the AR (3,6) model showed that residuals followed white noise, although squared residuals 
exhibited autocorrelation. Adding the GARCH (1,1) model to the AR (3,6) model resulted in all 
parameters being significant, and both residuals and squared residuals following white noise. Therefore, 
the final model for KOSPI index return volatility was determined as AR(3,6)-GARCH (1,1), allowing for 
forecasts of volatility during the fitting period and the forecasting period.  

Given the current uncertainty in the global economy leading to increased stock market volatility, this 
study emphasizes the importance of risk management practices, strategic diversification in investments, 
and adjustments in macroeconomic and financial regulatory policies for policymakers and financial market 
participants. For more refined predictions of KOSPI index return volatility, future research could explore 
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models such as EGARCH, QGARCH, TGARCH, PGARCH, as well as mixed-frequency GARCH models, 
SVM models, and AI-GARCH(1,1) models. These remain as future research topics. 
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