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Abstract: The stability of the bcc FM of Fe, the magnetic moments, electronic structure, and optical 
properties have calculated for the cases of bcc and fcc Fe, for non-magnetic (NM), ferromagnetic (FM), 
and antiferromagnetic (AFM) states, using the full-potential linearized augmented plane wave method 
(FP-LAPW) with the generalized gradient approximation (GGA) and GGA+U within the framework of 
density functional theory (DFT), as implemented in the WIEN2k code. The magnetic moments increase 
when significant correlations are taken into account. The Density of State (DOS) changes significantly 
with the FM state but not much with the NM or AFM states, which is consistent with Iota's findings. 

The optical properties results obtained for the interband dielectric function ε(), variation in the 

energy-loss spectrum L(), absorption coefficient α(), refractive index n(), reflectivity R(), and 

optical absorption σ(), are comparable with other studies. Our findings are in good agreement with 
earlier experimental and theoretical Findings. 

Keywords: DFT, Electronic structure, Fe, GGA & GGA+U, Optical properties, Stability. 

 
1. Introduction  

In solid-state physics, one of the most fundamental concerns is the stability, optical, and magnetic 
properties of 3d transition elements. For a better understanding of the nature of these metals' electronic, 
optical, and magnetic characteristics in ambient settings, a great deal of theoretical and experimental 
research has been conducted (1–5). For elemental bcc vanadium, chromium, manganese, and iron, the 
transition from nonmagnetic to ferromagnetic behavior has been investigated (4) through the analysis of 
self-consistent parameter-free total-energy band-structure calculations in the local spin-density 
approximation using a fixed-spin-moment technique. In our earlier work (5), we used the Vienna ab 
initio Simulation Package (VASP) to investigate the stability of ferromagnetism in Fe, Co, and Ni metals 
at high pressure with GGA and GGA+U. Using XAS and XMCD spectroscopies, R. Torchio et al. (6) 
investigated the characteristics of materials at high pressure. Examining the relationship between 
structure and magnetism in 3D metals enables the replication of the physical environments of 
unreachable areas of Earth and planets. In addition, density functional theory (DFT) first-principles 
simulations were used to examine the magnetic, structural, and energetic features of bulk Fe and Cr (7). 
Additionally, the Fermi-surface, optical, and photoemission properties of copper have been described 
using self-consistent band theory (8). A review has been done on the magnetic characteristics of Fe, Co, 
and Ni transition-metal nanowire arrays made via electro-deposition (1). 

In this work, we have used the WIEN2k code to perform GGA and GGA+U computations to 
investigate the stability, DOS, magnetic, and optical properties of bcc and fcc Fe (9). A theory type that 
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can reconcile the itinerant- and localized-electron models of a ferromagnetic metal is discussed in the 
context of iron magnetism (10). Through the computation of the total electronic band-structure energy 
for four distinct spin configurations, the magnetism in iron at high temperature is examined (11). 

From experimental perspective, the characteristics of 3d transition metals have been extensively 
studied through a variety of methodologies from an experimental perspective. Boulard, E. et al. (12) 
experimentally demonstrated stability of Fe-rich carbonates at temperatures of 1450-3600 K and 
pressures of 40 to 105 GPa, which correspond to depths of approximately 1000–2400 km in the Earth's 
lower mantle. Additionally, metallography, electron-probe microanalysis (EPMA), x-ray diffraction 
(XRD), and differential thermal analysis (DTA) were used to redetermine the phase diagram of the 
binary Fe-Zr system across the complete composition range (13). Furthermore, thermal analysis was 
used to conduct experimental research on the Fe-Pr and Fe-Nd alloys (14). In the binary systems of Fe-
Pr and Fe-Nd, the temperatures of the invariant reactions and liquidus were measured. Using 
spectroscopic ellipsometry, the optical and magneto-optical characteristics of Fe nanoparticles 
embedded in amorphous Al2O3 with diameters ranging from 2 to 8 nm are investigated as a function of 
their size and shape (15). 

Moreover, the growth of a single crystal from a melt using a modified vertical gradient freeze 
approach, followed by high-temperature treatment to remove free charge carriers, was also described as 
a methodology for producing high-quality single-crystal active elements for a Fe:CdTe laser (16). The 
general equivalence of the classical magneto-optical formalism dielectric tensor! and the resonant atomic 
scattering factor in the electric dipole approximation is demonstrated in describing pure charge 
contributions as well as first- and second-order magnetic contributions, while the properties of Fe are 
taken into consideration across its 2p core levels (17). 

From theoretical perspective, Tiago M. L. et al (18) examine, the evolution of the magnetic moment 
in iron clusters with 20–400 atoms, using numerical calculations from fundamental principles based on 
real-space pseudopotentials and density-functional theory. As the clusters get closer to the bulk limit, 
they discovered an overall drop in magnetic moment. Additionally, computer simulation is used to study 
the finite-temperature magnetic characteristics of iron thin films across a wide temperature range, up to 
the ferromagnetic-paramagnetic phase transition (19). Using a novel form of synchrotron radiation 
three-dimensional x-ray microscopy, K Schlage et al. (20) have tracked the self-assembly of a magnetic 
antidot array during Fe sputter deposition onto a highly ordered, nanostructured polymer template. 
Additionally, the magnetism and phase transition of iron under pressure are studied by Zeng, Z. et al. 
(21) utilizing the spin-polarized generalized gradient approximation within the plane-wave 
pseudopotential density functional theory. They discovered that the body-centered-cubic (bcc) 
ferromagnetic ground state of iron exists. 

In terms of optical characteristics, JH Weaver et al. (22) investigated the metallic elements' optical 
characteristics in 3d, 4d, and 5d transition metals. The effects of iron (II) and iron (III) on the ultraviolet 
and visible (UV-vis) absorption and fluorescence of solutions comprising two assessments of dissolved 
organic matter (DOM) fractions and two surface water samples have been reported by Brett A. Poulin 
et al. (23).  Moreover, the energy values and wave functions found by the APW approach in the energy 

range of 0–40 eV are used to calculate the complex dielectric function ε(0, ω) and energy-loss function-

Im[ε(0, ω)-1] of the 3d transition metals (V, Cr, Fe, and Ni) within RPA (24). 
Conversely, the structural, electrical, magnetic, and optical characteristics of the Fe6 cluster 

adsorbed on the surface of a boron nitride sheet are investigated through the application of ab initio 
density functional theory (25). They discovered that there are tiny magnetic moments in the boron and 
nitrogen atoms of the boron nitride sheet surrounding the Fe cluster. In a different study, S. Dadashi et 
al. (26) investigated the effect of pure iron by creating iron oxide nanoparticles in deionized water and 
acetone using pulsed laser ablation. During ablation, the pure iron target was manually rotated. 
Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible spectroscopy were used 
to analyze the particle size and shape, crystal structure, and optical properties of the nanoparticles, 
respectively. 



415 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 413-430, 2024 
DOI: 10.55214/25768484.v8i6.2093 
© 2024 by the authors; licensee Learning Gate 

 

 

2. Methods 
The full-potential linearized augmented plane wave (FP-LAPW) approach (27, 28) was utilized for 

all calculations in this work. It is based on density functional theory (DFT) (29, 30), and it is 
implemented in the WIEN2k computational package code (9, 31, 32). Ground state energy, optical 
properties, and the DOS for different Iron (Fe) states per formula unit for each of the bcc and fcc phases 
in NM, FM, and AFM states were calculated using FP-LAPW. We utilized a (1×1×1) supercell with 
space group (47_Pmmm) for fcc and a (1×1×1) supercell with space group (221_Pm_3m) for bcc in 
order to perform AFM calculations. 

For each case, the parameterization technique developed by Perdew-Burke-Ernzerhof (PBE) (33, 34) 
included the exchange correlation interaction under Generalized Gradient Approximation (GGA). In 
the atomic sphere, the wave function is expanded into atomic-like functions (radial functions times 
spherical harmonics), and in the interstitial area, it takes the form of a plane wave basis. The 
experimental band gap is known to be underestimated by the GGA-PBE for strongly correlated 
systems (35). 

We use a rotationally invariant version of DFT+U, as suggested by Dudarev et al. (36, 37), to 
account for the electronic correlation. Here, the on-site Coulomb interaction energy and the exchange 
energy are denoted by the parameters U and J, respectively. Due to the fact that only the difference 
between U and J is deemed significant, the parameters U and J were not employed independently. 
Reference (38) provides the GGA+U's details. We utilize (U-J) = 2.3 eV, given from (5, 39), in GGA+U 
calculations for our bcc and fcc Fe, where the exchange energy parameter is set to the standard value of 
J=1 eV. Brillouin zone sampling makes use of the Monkhorst-Pack technique (40). The irreducible 
Brillouin zone has 1000 k points, and given a well-converged set of findings, RMT×Kmax=8.00, where Kmax 
is the plane wave cut-off. Gmax, whose value is assumed to be 12.00, indicates the magnitude of the 
highest wave vector in charge density. In subsequent iterations, the cut-off energy and charge 
convergence criterion is up to 0.0001e charge (41). Blochl corrections were applied while utilizing the 
linear tetrahedron approach for integration across the Brillion zone in total energy and DOS 
computations (42, 43). 

The Murnaghan equations of state (EOS) (44 – 46) were fitted to the computed total energy per 
unit cell as a function of unit cell volume to get the equilibrium volume Vo, the zero-pressure bulk 
modulus Bo and its pressure derivatives B'o, and the magnetic moments of the states. 
 

3. Results and Discussion 
3.1. Strucure and Magnetic Properties 

The computed total energy (atomic energy) for the bcc and fcc of Fe metal for the NM, FM, and 
AM phases with the GGA and GGA+U, respectively, is displayed as a function of volume in Figuer 1. 
We deduced from this figure that the ground state of the Fe atom is ferromagnetic bcc for both GGA 
and GGA+U computations. Our findings corroborated those of other work (3, 5, 47). The GGA and 
GGA+U computations indicate that. For each phase, Table 1 displays the calculated equilibrium atomic 
energy E, lattice constant a, and atomic volume Vo at equilibrium volume. We confirmed from this table 
that the ground state of the Fe is an FM bcc structure, as anticipated by our GGA and GGA+U 
computations, accurately forecasted that the Fe's ground state has an FM bcc structure in line with the 
conclusions of previous studies (48, 49). 
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Figure 1.  
(Online colour) Calculated total energies as a function of the atomic volume for Fe with Murnaghan EOS; solid symbols for bcc 
and open symbols for fcc, square for NM, Triangle for FM and star for AFM with (a) GGA and (b) GGA+U. 

 
Table 1 showed that the atomic volumes for Fe's bcc and fcc alter oscillatorily when strong 

correlations are taken into account. This table also makes it evident that, when compared to other 
earlier work (50 – 52), such as our earlier study (5) on the stability of ferromagnetism in Fe, Co, and Ni 
metals at high pressure with GGA and GGA+U, our results are fairly plausible. 
 

Table 1.  
Displays the computed values of the lattice constant a, atomic volume V0, and atomic energy E for the NM, FM, 
and AFM states in the bcc and fcc Fe phases with Murnaghan EOS, respectively, together with the findings of 
earlier calculations and experimental data (the GGA+U calculations' results are in parenthesis). 

Metal a (A°) Vo(Å3) E (Ry) Reference 

bcc Fe NM 
2.754(2.751) 10.44(10.41) 

-2545.5658 
(-2545.5658) 

This work 

2.76 10.52 -2545.5754 (50) 

bcc Fe FM 2.827(2.828) 11.29(11.31) 
-2545.6003 

(-2545.6016) 
This work 

 2.84 11.40 -2545.6107 (50) 
 2.83 11.33  (53) 
Exp 2.87 11.82  (51) 
Exp 2.866 11.78  (54) 

bcc Fe AFM 2.796(2.807) 10.92(11.05) 
-2545.5634 

(-2545.5754) 
This work 

fcc Fe NM 3.4564(3.4563) 10.32(10.32) 
-2545.5919 

(-2545.5920) 
This work 

 3.45 10.30 -2545.5908 (50) 

fcc Fe FM 3.649(3.646) 12.14(12.12) 
-2545.5943 

(-2545.5941) 
This work 

 3.63 11.97 -2545.5902 (50) 
 3.447 10.24  (50) 

fcc Fe AFM 3.505(3.511) 10.76(10.82) 
-2545.6000 

(-2545.6001) 
This work 
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 3.376 10.13 -2541.2000 (55) 
 

Table 2 lists the ground-state parameters, known experimental data, and prior all-electron 
computations, together with the zero-pressure bulk modulus B0, its pressure derivative B'0, equilibrium 
volume V0, and the magnetic moments (µ). Table 2 demonstrates that the magnetic moments rise with 
the inclusion of strong correlations. Furthermore, as can be observed from this table, the GGA 
computations produce findings that are rather realistic when compared to other results (53, 56 – 58). As 
a result, the GGA results exhibit improved agreement with experiments and other theoretical 
investigations, which is a significant advance above previous DFT results. 
 

Table 2.  
Displays the computed values of the atomic volume V0, bulk modulus B0, bulk modulus pressure derivative B'0, and 
the magnetic moments (µ) for the NM, FM, and AFM states of bcc and fcc Fe, respectively, as well as previous 
calculated results and experimental data (the GGA+U calculations' results are in parenthesis). 

Metal a (A°) Vo(Å3) E (Ry) B0 (GPa) B0ʼ M (µB) Reference 

bcc Fe NM 
DFT 

GGA 
(GGA+U) 

10.44 
(10.41) 

259.9 
(235.8) 

4.02 
(2.61) 

 
This work 

DFT GGA 10.18 267   (53) 

bcc Fe FM DFT 
GGA 

(GGA+U) 
11.29 

(11.31) 
196.7 

(199.9) 
5.19 

(6.59) 
2.23 

(2.44) 
This work 

 FLAPW GGA 11.94 182  2.13 (59) 

 DFT 
GGA 

(GGA+U) 
11.33 

(12.32) 
  

2.18 
(2.73) 

(60) 

 LCAO GGA 11.94 174  2.20 (61) 
 LAPW GGA 11.70 169  2.32 (62) 
 DFT LDU+U 12.58 212  2.60 [63] 

 DFT 
GGA 

(GGA+U) 
11.80 

(10.87) 
168.8 

(168.3) 
3.68 

(4.40) 
2.23 

(2.76) 
[5] 

 DFT  11.44 177.9 5.09  (52) 
 PAW  11.46 188  2.21 (64) 
  Exp 11.80 168  2.22 (56) 
  Exp 11.78 172 5.00  (54) 

bcc Fe AFM DFT 
GGA 

(GGA+U) 
10.92 

(11.05) 
155.7 
(194) 

6.62 
(8.93) 

-0.75 
(-0.14) 

This work 

 PAW GGA 10.58 166  1.22 (53) 

fcc Fe NM DFT 
GGA 

(GGA+U) 
10.32 

(10.32) 
293.2 

(293.9) 
4.47 

(4.84) 
 

This work 

 DFT GGA 10.30 282   (53) 

fcc Fe FM DFT 
GGA 

(GGA+U) 
12.14 

(12.12) 
192.8 

(176.5) 
5.83 

(4.00) 
2.71 

(2.67) 
This work 

 FLAPW GGA    2.637 (57) 
 DFT GGA 10.27 282   (53) 

fcc Fe AFM DFT 
GGA 

(GGA+U) 
10.76 

(10.82) 
238.4 

(209.3) 
9.47 

(4.22) 
-0.074 
(0.167) 

This work 

 DFT GGA 10.39 198  1.23 (53) 
  Exp 10.63   0.70 (65) (58) 
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3.2. Electronic Properties 
As illustrated in Figuers 2 and 3, we report the total densities of states (TDOS) and partial densities 

of states (PDOS) for various phases of NM, FM, and AFM using GGA and GGA+U calculations, 
respectively, to explore the effect of states on the electronic structure, which explains energy levels of 
bcc and fcc Fe. The computations have been recorded between -7 and 7 eV of energy. The vertical 
dotted line in our calculated DOS denotes the Fermi level or energy. Figure 2 shows that, for both GGA 
and GGA+U computations, the DOS changes significantly with the FM state but not much with the 
NM or AFM states, which is consistent with Iota's experiments (1) and pertinent theoretical research 
(5, 24). Additionally, we can observe that for AFM bcc Fe, the DOS at the Fermi level is maximum; 
conversely, for fcc Fe, it turns highest for NM instances. Table 3 shows that for both GGA and 
GGA+U computations, the DOS at Fermi level is smaller for FM bcc and fcc. The Stoner requirement 
for an itinerant is known to be N(EF)I>1, where I is the Stoner parameter and N(EF) is the DOS at the 
Fermi level (EF) for both GGA and GGA+U computations. The condition is evidently met for both bcc 
and fcc NM and AFM states, but N(EF)I<1 indicates a stable state in the FM case. Additionally, Figure 
2 revealed that the eg level is the primary contributor to the Fermi level of NM and AFM. Furthermore, 
it can be comprehended by taking into account the addition of U and J, which results in contributions to 
the Stoner parameter, I (38). 
 

Table 3.  
Displays the computed values of DOS at Fermi energy EF for NM, FM, and AFM states of 
bcc and fcc Fe by GGA and GGA+U (the GGA+U calculations' results are in parenthesis). 

Case bcc fcc 
NM 2.426(2.527) 2.860(4.180) 
FM 0.798(0.289) 0.214(0.113) 
AFM 2.936(3.344) 1.842(1.942) 

 

 
Figure 2.  
(Online colour) Calculated TDOS of NM, FM and AFM states for Fe, red for NM, blue for FM and green for AFM, (a) bcc, (b) 
fcc, [A] GGA and [B] GGA+U. 

 
Figures 3 and 4 displayed the PDOS of tot, s, and d orbitals for NM, FM, and AFM states for bcc 

and fcc Fe with GGA and GGA+U, respectively. One antiferromagnetic state eliminates the instability 
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caused by the high density of states at the Fermi energy; this outcome is in great agreement with that 
stated in Ref (66). 
 

 
Figure 3.  
(Online colour) Calculated PDOS for bcc Fe, red for total, green for s and blue for d DOS, (a) NM, (b) FM, (c) AFM, [A] GGA 
and [B] GGA+U. 

 

 
Figure 4.  
(Online colour) Calculated PDOS for fcc Fe, Red for total, Green for s and Blue for d DOS, (a) NM, (b) FM, (c) AFM, [A] 
GGA and [B] GGA+U. 

 
Table 4 illustrates how the band layers with the highest energy levels for PDOS are positioned in 

each of our situations. The level Fe:3d is the primary source of these pecks. Additionally, it is evident 
from Figures 3 and 4 that the d orbital produces the greatest density of state. We see that, for the cases 
under investigation, Fe d-states contribute to the valence band maximum (VBM) with the least effect for 
Fe s and f-states, which is consistent with the findings of Cococcioni M et al. (63). 
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Table 4.  
Displays the computed position of the highest level in energy of the band layers for NM, FM and AFM 
states of bcc and fcc Fe by GGA and GGA+U, (the GGA+U calculations' results are in parenthesis). 

Case bcc fcc 
NM 0.249,4.563 (0.233,3.978) 0.933,3.530 (0.933,3.593) 
FM -0.848,2.510 (-0.585,1.853) -1.821,4.259 (-3.912,1.936) 
AFM -0.322,3.068 (0.981,2.775) 1.126,4.687 (0.175,4.785) 

 
Furthermore, PDOS plots illustrate the p-d hybridization. By contrasting the distribution of DOS 

under GGA and GGA+U, it is clear that the Hubbard term alters the local position of states. As can be 
shown in Table 4 and Figuer 5 at the maximum energy level of the band layers, the addition of U caused 
a downward shift of the Fe states, which lessens the hybridization of the Fe 3d. For NM and AFM, the 
impurity states close to the Fermi level essentially stay the same, while the FM calculation appears to be 
different, with the lowest energy at the Fermi level for both GGA and GGA+U. The data shown in 
Figure 2 indicates that the DOS at EF is maximum for bcc AFM and fcc NM, and minimum for bcc and 
fcc FM, respectively. 
 

 
Figure 5.  
(Online colour) Calculated DOS at EF of bcc square and fcc tringle solid symbols for GGA and open 
symbols for GGA+U. 

 

3.3. Optical Properties 
Among the most significant characteristics of materials that have been studied are their optical 

properties (24). The band structures that the inter/intra-band transitions describe have a close 
relationship with the optical properties. The optical response of a material is thought to be the 

interaction of the incident photon with the atoms, and it is represented by the dielectric function (). 

When a crystal has a cubic symmetry structure, it is said to be isotropic (ɛ=εxx=ɛyy=ɛzz). It is known that 
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the interband dielectric function can be used to determine the physical characteristics of solids and to 
characterize the optical response of the medium at all photon energy. It is a complex function that is 
given as (67). 

𝜀(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔)                                        [1] 

Where ω is the incident photon frequency, that described the absorptive behavior by the real part 

1() and imaginary one 2() of the complex dielectric function, which are directly related to the 
electronic band structure. Furthermore, and are subject to the Kramers-Kronig relation (68). 

𝜀1(𝜔) = 1 +
2

𝜋
𝑃 ∫

𝜔′𝜀2(𝜔′)

(𝜔′2−𝜔2)
𝑑𝜔′∞

0
                                       [2] 

𝜀2(𝜔) =
2𝜔

𝜋
𝑃 ∫

𝜀1(𝜔′)−1

(𝜔′2−𝜔2)
𝑑𝜔′∞

0
                                            [3] 

Here, P represents the Cauchy integral's principle value. Upon determining 1() and 2(), all other 

optical parameters can be easily calculated; such as the absorption coefficient α(ω), refractive indices 

n(ω), and energy loss function L(ω) (69 – 71). 

The interband dielectric function () calculated by FP-LAPW for NM, FM, and AFM states of bcc 

and fcc Fe for real part 1() and imaginary part 2() are displayed at Figures 6 and 7. In these figures, 

the values of the 1() and 2() for our cases are computed between 0 and 13 eV with GGA and 

GGA+U, respectively. Also, from these figures, we found that the behavior of our 1() and 2() is in 
good agreement with previous studies (72, 73). Again from figures 6 and 7, one can see that all peaks 
changed oscillatory with increasing energy with different numbers of peaks for any case, which is in line 
with the findings of earlier studies (24, 74). 
 

 
Figure 6.  
(Online colour) Calculated the dielectric function of NM, FM and AFM states, between 0 and 13 eV for Fe (a) bcc, (b) fcc, [A] 

Real part 1() and [B] Imaginary part 2() with GGA. 
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Figure 7.  
(Online colour) Calculated the dielectric function of NM, FM and AFM states, between 0 and 13 eV for Fe (a) bcc, (b) fcc, [A] 

Real part 1() and [B] Imaginary part 2(), with GGA+U. 

 
The optical absorption coefficient and energy loss function were determined by first computing the 

imaginary and real parts of the dielectric function of Figures 6 and 7. The electron energy loss-spectrum 

L() graph for the NM, FM, and AFM states with both GGA and GGA+U calculations as a function of 
photon energy is shown in Figure 8. An essential factor in defining elastic and non-scattering electron 
scattering (zero energy loss) is the energy loss function. According to (73), the electron excitations are 
mostly responsible for the energy losses at intermediate energies 0 –13 eV it is defined by: 

𝐿(𝜔) = 𝜀2(𝜔)/[𝜀1
2(𝜔) + 𝜔2

2(𝜔)]                                 [4] 
For both the GGA and GGA+U calculations, the two significant groups of peaks occur in the 

energy range 4.00–13.00 eV; for the GGA and GGA+U calculations, the first group of peaks occurs at 
5.00–7.00 eV and 4.00–9.00 eV, while for the second group, it occurs at 7.00–11.50 eV and 9.00–13.00 
eV. For both GGA and GGA+U, the locations of the primary peaks in the energy range for the first and 
second groups are given in Table 5 (the GGA+U calculations are in [] square parenthesis). These 
figures and the graph's behavior match those of earlier studies (74). We have seen that the valley in 
optical conductivity, which represents electron scattering at that energy range, and the peaks in the 
energy loss function match. Our findings are in good accord with those of the earlier study (75). 
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Figure 8.  

(Online colour) Calculated energy loss function L(ω) of NM, FM and AFM states, between 0 and 13 eV for Fe (a) bcc, (b) fcc, 
[A] GGA and [B] GGA+U. 

 
Table 5.  
Displays the computed positions of the first and second peaks points of energy loss function for NM, FM and AFM 
states of bcc and fcc Fe by GGA and GGA+U, respectively. (the GGA+U calculations are in [] square parenthesis). 

 Case bcc fcc 

First peak 
NM (5.912,0.291) [5.295,0.244] (5.912,0.310) [5.912,0.320] 
FM (6.442,0.240) [7.766,0.432] (6.177,0.229) [6.442,0.300] 
AFM (5.691,0.108) [5.546,0.088] (5.825,0.127) [5.912,0.117] 

Second peak 
NM (9.622,0.566) [10.145,0.854] (9.397,0.514) [9.397,0.524] 
FM (9.221,0.484) [9.883,0.510] (8.294,0.341) [8.338,0.443] 
AFM (10.807,0.525) [8.911,0.400] (9.131,0.310) [8.911,0.290] 

 

Figure 9 shows the absorption coefficient α() for Fe crystals in bcc and fcc phases, calculated using 
Eq. [5], for NM, FM, and AFM using both GGA and GGA+U computations. The values range from 0 
to 13 eV. The results for GGA+U are in parenthesis. Based on this figure, Table 6 lists the optical 
absorption active sites for NM, FM, and AFM with GGA and GGA+U, respectively. Table 6 and this 
figure's results demonstrate that, when using GGA calculations, the activation points for both bcc and 
fcc are higher. Additionally, Figure 9 demonstrates that, for both GGA and GGA+U computations, 
absorption rises with energy, which is consistent with findings from earlier study (74). 

𝛼(𝜔) = √2𝜔 [√𝜀1
2(𝜔) + 𝜀2

2(𝜔) − 𝜀1(𝜔)]
1 2⁄

                      (5) 
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Figure 9.  

(Online colour) Calculated absorption coefficient α(ω) for Fe NM, FM and AFM states between 0 and 13 eV (a) bcc, (b) fcc, 
[A] GGA and [B] GGA+U. 

 
Table 6.  

Displays the computed activated points of absorption coefficient α(ω) for Fe NM, 
FM and AFM states between 0 and 13 eV for bcc and fcc with GGA and 
GGA+U, (the GGA+U calculations' results are in parenthesis). 

Case bcc fcc 
NM 1.326 (1.237) 1.413 (1.368) 
FM 2.251 (1.106) 1.854 (1.502) 
AFM 1.016 (0.930) 0.930 (0.796) 

 

The refractive index n(ω) is expressed in terms of 1() and 2(), according to the relation. 

n(ω) = {
ε1(ω)

2
+

√ε1
2(ω)+ε2

2(ω)

2
}

1 2⁄

                               (6) 

Figure 10 shows the variations in the refractive index n(ω) as a function of energy for the NM, FM, 
and AFM states of bcc and fcc Fe with GGA and GGA+U from 0 to 13 eV. A dimensionless number 
known as an optical medium's refractive index explains how a beam travel through it. According to the 

relation n(ω) = √εr of Mark Fox (76), there exists a link between the line morphologies of n(ω) spectra 

and those of ɛ1(ω). We can see from this figure that our findings agree with those of earlier work (15). 
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Figure 10.  

(Online colour) Calculated the refractive index n(ω) for NM, FM and AFM states between 0 and 13 eV (a) bcc, (b) fcc, [A] 
GGA and [B] GGA+U. 

 
The portion of energy that is reflected at the material interface is described by the reflection 

coefficient R(ω). It is provided by 

R(ω) = |
√ε(ω)−1

√ε(ω)+1
|

2

                                        (7) 

Figure 11 displays the variation in reflectivity R(ω) as a function of energy for NM, FM, and AFM 
of bcc and fcc Fe with GGA and GGA+U calculations at different states. This figure demonstrated how 
our findings behaved in line with previous research (73). 
 

 
Figure 11. 

(Online colour) Calculated reflectivity R(ω) for NM, FM and AFM states between 0 and 13 eV (a) bcc, (b) fcc, [A] GGA and 
[B] GGA+U. 

 

Figures 12 and 13 display, respectively, the computed real portion σ1(ω) and imaginary one σ2(ω) of 

optical conductivity σ(ω) as a function of photon energy for NM, FM, and AFM states of bcc and fcc Fe 
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with GGA and GGA+U. For all frequencies, the frequency-dependent dielectric function ɛ(ω) is related 

to the real part of the optical conductivity Re[σ(ω)]. Our findings are consistent with earlier research 
(73). 
 

 
Figure 12.  
(Online colour) The variation of optical conductivity for NM, FM and AFM states between 0 and 13 eV (a) bcc, (b) fcc, [A] 

real part σ1(ω) and [B] imaginary part σ2(ω) with GGA. 

 

 
Figure 13. 
(Online colour) The variation of optical conductivity for NM, FM and AFM states between 0 and 13 eV (a) bcc, (b) fcc, [A] 

real part σ1(ω) and [B] imaginary part σ2(ω) with GGA+U. 

 

4. Conclusions 
In summary, this study's conclusions are as follows: 
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(1) Ferromagnetic bcc is determined to be the stable ground state for the Fe atom in both GGA and 
GGA+U simulations. Our findings are consistent with other research (3, 5, 47, 59, 77), which is 
strongly related to the crystal structure. 

(2) For the NM, FM, and AFM states of bcc and fcc Fe with GGA and GGA+U calculations, the 
equilibrium atomic volume Vo, lattice constant a, and atomic energy E at equilibrium volume 
clearly demonstrate that our results are pretty realistic when compared with other results of prior 
studies (50 – 52). 

(3) Our study cases for both GGA and GGA+U calculations show that the zero-pressure bulk 
modulus B0, its pressure derivative B'0, and the magnetic moments (µ) agree well with 
experimental data and previous all-electron calculations (5, 54, 56), with the magnetic moment per 
unit cell increasing upon including strong correlations. In comparison to other outcomes, the 
GGA also yields results that are rather plausible (53, 56 – 58). Improved agreement with 
experiments and other theoretical investigations is seen from our GGA results, which 
significantly outperform previous DFT results. 

(4) For all GGA and GGA+U computations, the DOS varies significantly with the FM state but not 
much with the NM or AFM states. This is consistent with IoTa's findings (1) and related 
theoretical work (5, 24). For our PDOS calculations using GGA and GGA+U for the NM, FM, 
and AFM states for bcc and fcc Fe. An antiferromagnetic state eliminates the instability caused by 
the high density of states at the Fermi energy; this outcome is in excellent agreement with that 
stated in Ref (66). 

(5) The optical properties obtained for bcc and fcc Fe for NM, FM, and AFM states with GGA and 
GGA+U are similar to those of previous studies (15, 73). These results include the interband 

dielectric function (), variation in the energy-loss spectrum L(), absorption coefficient α(), 

refractive index n(), reflectivity R(), and optical absorption σ(). 
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