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Abstract: Glaucoma, a progressive eye disease, leads to irreversible vision loss due to optic nerve 
damage. This study aims to develop a more explainable and interpretable deep learning-based model for 
the detection and classification of glaucoma, addressing the current limitations in the field. The 
proposed approach utilizes a modified DenseNet-201 architecture, incorporating an additional transition 
layer for enhanced glaucoma classification. A pre-trained Efficient DenseNet is applied, and a 
reweighted cross-entropy loss function is used to handle the class imbalance in the training data. 
Quantum-based Dwarf Mongoose Optimization (QDMOA) is employed to fine-tune the model’s 
parameters, minimizing over fitting and improving generalization on small datasets. Experimental 
results demonstrate that the proposed method effectively detects and classifies two types of glaucoma. 
The use of dense connections with regularization significantly reduces over fitting, and the reweighted 
loss function improves model performance on imbalanced data. The developed deep learning model 
offers improved accuracy in glaucoma detection and classification while addressing the need for more 
interpretable and reliable models in medical applications. This research provides a practical tool for 
automated glaucoma screening, which could support ophthalmologists in early diagnosis and treatment, 
reducing the risk of irreversible vision loss. 

Keywords: EfficientNet; Segmentation; Fundus images; Glaucoma detection; Quantum based dwarf mongoose 
Optimization; Reweighted cross-entropy loss function. 

 
1. Introduction  

Glaucoma, impair or even cause blindness, is the additional leading cause of blindness globally [1]. 
The World Health Organisation (WHO) reports that the sum of persons affected by glaucoma will rise 
in 2040. The quiet thief of sight is the moniker given to glaucoma due to the lack of symptoms it 
exhibits in its early stages. It is worth noting that 90% of cases of glaucoma go undetected until later 
stages. Patients with glaucoma risk permanent blindness due to optic nerve damage if the disease is not 
detected and treated in a timely manner [3]. The development of glaucoma finding devices for early 
diagnosis is of the utmost importance. Damage to the optic nerve, a symptom of glaucoma, can be 
caused by elevated intraocular pressure [4]. Glaucoma causes a progressive narrowing of the pupils 
and, in extreme cases, complete blindness due to optic nerve degeneration. In order to reliably diagnose 
glaucoma and assess vicissitudes in the optic nerve, it is crucial to continuously measure intraocular 
pressure using devices [5]. Both normal and diseased fundus OCT images of glaucoma are shown in 
Figure 1. 
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Figure 1. 
Fundus imageries: (a) Healthy, (b) Glaucomatous. 

 
In clinical diagnosis, ophthalmologists will ask patients to undergo a battery of tests to help them 

determine if they have glaucoma [6]. 
(1) Measurement of intraocular pressure: 10–21 mm Hg is considered normal. The likelihood of 

developing glaucoma increases when the intraocular pressure exceeds 22 mmHg. 
Second, a visual field test can measure how far away objects appear in the eye's field of view. One 

way to express the patient's visual field is with Standard Automated Perimetry (SAP) [7]. A narrowing 
of the peripheral visual field or a fault in the central visual field could indicate glaucoma. 
 

 
Figure 2. 
Example fundus image with the main anatomic parts. 

 
The majority of individuals, whether they have normal optic nerves or faulty ones, will have optic 

disc depressions, according to fundus photography. However, in glaucoma patients, this depression will 
either worsen or exhibit distinct modifications as the disease progresses [8-9]. To check for glaucoma, 
seasoned ophthalmologists use fundus photos.  

The fourth method is optical coherence tomography (OCT), which uses optical principles to non-
invasively analyse the cornea,n a cross-sectional fashion [10-11]. If glaucoma is detected early enough, 
optical coherence tomography (OCT) can provide an objective measurement of the optic nerve fibre 
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layer thickness. In order to keep glaucoma under control, ophthalmologists can review their patients' 
prior OCT pictures to look for abnormalities in the optic nerve. as well as (b) retinas that are not 
operating properly [12]. 

Goniatometry, pachymetry, tonometry, and perimetry are some of the manual techniques used by 
ophthalmologists to diagnose glaucoma [13]. Tonometry involves measuring intraocular pressure 
(IOP), which is a significant indication of the possibility of glaucoma. The iris-cornea angle can be 
measured using gonioscopy. Corneal thickness is measured by pachymetry. Manual evaluation 
techniques for glaucoma identification, however, are laborious, subjective, and time-consuming. 
Additionally, they are highly dependent on the accessibility of ophthalmologists, which may be 
problematic in outlying locations [14]. Consequently, there is a pressing need to create automated 
systems that can detect glaucoma early and effectively. 

Over the past few years, advancements in artificial intellect have been meteoric. Integrating AI 
technology for practical medical treatments is a hot topic in the healthcare industry [15]. Clinical 
practice frequently makes use of computer-aided diagnostic (CAD) techniques for the automatic 
detection of glaucoma. Recent advances in deep learning (DL) algorithms, along with machine learning, 
have greatly improved the diagnostic accuracy of these automated glaucoma finding systems [16]. We 
provide a fully automated system that can efficiently identify early-stage datasets. It is built on deep 
learning architecture. The key findings and improvements from this study are as follows. 

• To help with the diagnosis, a model is built using state-of-the-art deep learning besides transfer 
learning techniques. The archetypal is then fine-tuned using different ways to reduce the 
chances of overfitting. 

• SegNet does the segmentation, which involves extracting impacted regions from complex 
backgrounds using semantic segmentation.  

• To attain a higher diagnostic accuracy, the model is trained besides tested on many datasets of 
glaucomatous retinal pictures. 

• The shortcomings of existing glaucoma screening methods are addressed by developing an end-
to-end learning system. 

Subsequent sections of the article are structured according to the following topics: In Section 2, the 
prior research of other scholars is detailed. The suggested approach is detailed in Section 3. The 
findings of the experiments and the proposed model are detailed in Section 4. A discussion of the results 
is accessible in Section 5, besides a conclusion summarising the important findings is presented in 
Section 6. 
 

2. Related Works 
For the purpose of segmenting optic discs and retinal vessels, Panahi et al. [17] offer a quick 

segmentation method that is built on a novel streamlined U-Net architecture. The suggested approach 
uses a strengthened and altered structure to shorten prediction times without sacrificing performance or 
accuracy, which are on par with existing state-of-the-art systems. On the DRIONS-DB dataset, the 
suggested approach can segment the optic disc in 0.008 seconds, while on the DRIVE dataset, it can 
part the vessels in 0.03 seconds. These findings suggest that the suggested technology, with some 
tweaks, might form the basis of an intelligent medical system that operates in real time and can be 
integrated with standard hardware found in ophthalmology practices. This approach improves 
ophthalmologists' ability to diagnose glaucoma since it can quickly segment the optic disc and retinal 
veins. 

Oguz et al., [18] aimed to aid glaucoma specialists in their diagnosis by developing a model that 
integrates Deep Learning besides Machine Learning with raw fundus pictures. Brand new 
Convolutional Neural Networks (CNN) model is used for deep feature extraction. Many well-known 
classic ML classification algorithms, have made use of deep features. The ACRIMA dataset, which 
contains 705 pictures, was used to assess the hybrid models' capabilities. There will be 80% training 
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data and 20% test data in the dataset. With an AUC of 0.928, an F1 score of 93.75%, and an accuracy of 
92.96%, the CNN-Adaboost hybrid model outperforms all others in the experiment. 

In order to automatically recognise the optic cup in fundus pictures and calculate the VCDR, Gao et 
al., [19] create a strong and precise system that uses deep learning (DL) techniques, particularly the 
YOLOv7 construction. We also tackle the seldom-discussed problem of transferring a DL model trained 
on one populace (say, Europeans) to another for the purpose of VCDR estimation. The REFUGE 
dataset, which includes photos from Chinese patients, was used for fine-tuning after our model was 
trained on 10 publicly accessible datasets. When compared to evaluations conducted by human experts, 
the DL-derived VCDR demonstrated remarkable accuracy, with a Pearson correlation value of 0.91 

(P = 4.12 × 10-412) and a mean absolute error (MAE) of 0.0347. By showing lower MAEs and better 
Dice similarity coefficients, our models outpaced previous methods on the REFUGE dataset. In 
addition, we came up with an optimisation method that can adjust DL outcomes for different 
populations. Clinicians now have a potential tool at their disposal thanks to our innovative methods for 
recognising optic discs and optic cups besides calculating VCDR. This tool improves speed and accuracy 
while drastically reducing the human workload associated with picture evaluation. This automated 
approach is a great tool for glaucoma identification since it can efficiently distinguish among glaucoma 
besides non-glaucoma patients. 

A CNN model for automated glaucoma diagnosis developed by Sharma et al., [20] can be useful for 
a variety of supply chain management network participants. Eye hospitals, other healthcare providers, 
physicians, companies, and so on are all examples of stakeholders. Three convolution layers and one 
flattening layer make up the four learnable layers of the deployed model. Learning the deep features 
with the fewest adjustable parameters was the goal of the customised CNN model. Afterwards, a 
methodology that combines linear discriminant analysis (LDA) with principal component to decrease 
the dimensionality of feature sets. Lastly, an extreme learning machine (ELM) is used to do the 
categorization. The MOD-PSO method is used to optimise the hidden node parameters of ELM. Using 
5-fold stratified cross-validation improved the proposed model's generalised performance. G1020 and 
ORIGA are two industry-standard datasets that the suggested model was tested on. Tests conducted on 
the G1020 besides ORIGA datasets demonstrate that the suggested CAD model achieves 97.80% and 
98.46% accuracy, respectively. Network decision-makers in supply chain management may benefit from 
the tailored CNN model, which outperforms other state-of-the-art representations using a far less 
amount of variables. 

Using four different scan patterns across three different locations, Liu et al., [21] compiled a unique 
dataset called MRMSG-OCT. When compared to the single scan-pattern besides single region-based 
representations, our suggested perfect outperforms them in both the experiments and the visual feature 
maps. In addition, our suggested fusion modules outperform the average fusion strategy. This is 
especially true when it comes to reversing the presentation degradation seen in models with fixed 
weights. It supports the effectiveness of the dynamic region scores that we propose, which can be 
adjusted to different samples. The resulting region contribution ratings further improve the model's 
interpretability and provide a summary of process, which helps ophthalmologists prioritise areas with 
high scores and improves clinical practice competence. 
 

3. Proposed Model 
The segmentation and classification of glaucoma detection is carried out in this research work and it 

is mentioned in Figure 3. 
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Figure 3. 
Workflow of the proposed model. 

 
3.1. Dataset Details 

In order to give a solution that can be used to all cases, this study takes into account three distinct 
datasets of fundus images. All three of these datasets are named RIMONE, ACRIMA, and ORIGA. 
Table 1 delivers an overview of the datasets. Among the relevant research that have made use of these 
datasets, RIM-ONE stands out as the most-cited one. 

 
Table 1. 
Rapid of fundus image datasets. 

Dataset Image 
RIM-ONE 942 
ACRIMA 705 
ORIGA 650 

 
The fundus image collection that is available to the public is called RIM-ONE, which stands for 

Retinal Image database for Evaluation. Monocular and stereoscopic pictures are two of the three 
releases. There are a total of 169 monosporic photos in the initial release, with 51 of those images 
pertaining to glaucoma and 118 to normal eyes. Four hundred fifty monosporic pictures, including two 
hundred glaucomatous and two hundred and fifty normal images, make up the second release. In the 
most recent iteration, 318 monosporic photos were culled from 170 healthy photographs and 148 
images with glaucoma. We got 942 fundus photos in total, with 399 showing glaucomatous lesions and 
543 showing normal ones. Further, a mask of each fundus picture is needed for the segmentation 
method to be implemented. While optic disc masks are exclusive to the RIMONE version 1 dataset, cup 
masks are constant throughout RIM-ONE version 3. In finish the segmentation method, we used 
www.apeer.com to construct masks from the outstanding dataset. Creating the mask is detailed further 
down this page. 

There are 705 fundus photos in the ACRIMA dataset, 396 of which are glaucomatous besides 309 of 
which are normal. The dataset is open to the public. Annotations have been made to every image in the 
ACRIMA glaucoma doctors with a combined eight years of expertise. Also, the ACRIMA database does 
not have optic cup masks or segmented optic disc masks.  

Six hundred and fifty fundus photos, including one hundred eighty-eight images of glaucomatous 
and four hundred and eighty-two images of non-glaucomatous conditions, were retrieved from the 
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Singapore Malay Eye Study (SiMES) and added to the ORIGA database. All of the optic cup and disc 
mask pictures make up the ORIGA dataset.  

At first, we alienated the dataset into three parts: training, testing, besides validation, with each part 
receiving 70% of the total. We maintained the class balance property by using distinct augmentation 
approaches to each subset, taking into account the quantity of photos in the glaucoma and healthy 
classes independently. Tabulated in Table 2 are the total numbers of photos utilised for training, 
testing, and validation for each dataset. 
 

Table 2. 
Summary of training, validation, besides test imageries of used datasets. 

Dataset Training images Validation images Testing images 
RIM-ONE 4512 970 976 
ACRIMA 3193 718 724 
ORIGA 775 228 231 

 
3.2. Image Pre-Processing 

The median filter and CLAHE were the two primary pre-processing methods that we employed. 
One well-known method for improving picture quality and contrast is CLAHE [25]. Nevertheless, the 
median filter method is employed to lessen noise while maintaining the edge characteristics of the 
picture, as noise diminishes image quality. We employed a variety of augmentation strategies to enhance 
the amount of photos for model training, fix data imbalance and overfitting, and handle the other 
concerns. 

 
3.3. Segmentation Using Segnet 

A softmax pixel categorization layer receives data from SegNet's encoders and decoders, as 
described in reference [26]. The suggested network uses 512 × 512-pixel pictures and produces a 
segmentation mask with the same dimensions. Two sets of convolutional, batch-normalization layers, 
followed by a max-pooling layer, make up each encoder. The 3 × 3 filters and 1 × 1 stride were used by 
all convolutional layers, whereas the 2 × 2 max-pooling, 2 × 2 strides, and zero paddings were 
employed by the pooling layers. A total of 64 filters made up the convolutional layers in each of the four 

encoders. After the encoder stacks processed the input picture with dimensions 512 ×  512 ×  3, a set 
of feature maps with dimensions 32 × 32 × 64 were produced. Layers for convolution, BN, and ReLU 
are added to the decoder stack after each set's max-unpooling layer. Both the prior decoder and the 
paired encoder's pooling layer provide feature information that these unpooling layers use. With the 
exception of the last convolutional layer, all of the decoder's convolutional layers have 64 filters, much 
like encoders. This last layer's filter count is directly proportional to the total number of classes. 
Consequently, activations for segmentation with a size of 512 × 512 × 2 were obtained at the conclusion 
of the decoder stacks. After that, the classification and softmax layers get it to use in their classification 
processes. 
 
3.4. Classification Using Efficient Densenet 

To provide a decent flow of information, DenseNet [27] relies on a densely layered design with 
direct connections. Data is added at each layer and then used to build feature maps that are passed on to 
all the levels below it. Every feature map from the current layer is combined with every feature map 
from the layers below it. Compared to traditional convolutional neural networks, DenseNet's fully 
linked layered design uses a lower number of parameters. The suggested design is DenseNet because of 
an additional Dense Block; this is the main reason for utilising EfficientDenseNet instead of the original 
DenseNet. To further improve the model's compactness and decrease the needed computing resources, 
transition layers down-sample the representations obtained from the dense block. 
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Imagine for a moment that the input layer receives an image with the coordinates I_0. There are a total 
of N levels in the design, and each one uses a non-linear function for transformation (F_n()). For cases 

where the feature maps from earlier levels make up the nth layer i.e., 𝐼0, 𝐼1, 𝐼2, … … , 𝐼𝑛−1 comprises of 

𝑁(𝑁 + 1)/2 sum of layers. The output at the nth layer refers by: 

𝐼𝑛 = 𝐹𝑛([𝐼0, 𝐼1, 𝐼2, … … , 𝐼𝑛−1 ]) (1) 

Where 𝐼𝑛 refers to the nth layer, 𝐼0, 𝐼1, 𝐼2, … … , 𝐼𝑛−1 characterize altogether the feature maps of 

layers from 0 to n-1, whereas 𝐹n(. ) characterizes the alteration function for ReLU. 
The three procedures that make up the transition layer are Rectified Linear Units (ReLU), Batch 

Normalisation (BN), and the convolution of a 3 X 3 filter. If there is size variance in the feature maps, 
these methods will not produce the expected results. Consequently, the layers with different sized 
feature maps are down-sampled. Midway through the Dense convolutional blocks are input the 
transition layers with 1 X 1 convolution besides 2 X 2 regular pooling. With a stride of 2, the main 
convolutional layer uses 7 X 7 convolution blocks. The final transition layer follow, and the output layer 
includes the softmax classifier and average global pooling. Using all feature maps, the accurate 
categorization is carried out. Hence, the Z-neuron categorization layer accurately corresponds to Z 
illnesses. 

The dimensionality of the feature maps produced by pooling is decreased. Two methods of pooling 
are available: max and average. Start by obtaining the maximum value from the improved feature map. 
On the other hand, averaging takes the input and multiplies it by each region. The sample matrix and 
filter are the domains of a convolutional function. A convolutional sequence of BN-ReLU elements 
exists at each conv layer. The result is subjected to ReLU after the feature map convolution is 
completed. Therefore, equation 4 represents the nonlinear ReLU function. 

𝑓(𝐼0) = max (0, 𝐼0) (2) 
 
3.4.1. Training 

The suggested glaucoma detection model is trained using a QDMA for learning rate. An MH 
algorithm that mimics DM's natural foraging behaviours was suggested as a possible method for DMO. 
There stages to a DMO, beginning with the introduction phase and continuing through the alpha group 
stage, when guides the exploration of new areas. Once the most recent sleeping mounds (SMs) (i.e., food 
sources) are found in accordance with the older SM, the scout group stage begins. Prior to initialising 
the mongoose population (X), the DMO approach generates a size matrix (n×d) that displays the 
populace size (n) in rows and the issue columns. 

𝑋 =

[
 
 
 
𝑥1,1 𝑥1,2

⋯ 𝑥1,𝑑

𝑥2,1 𝑥2,2
⋯ 𝑥2,𝑑

⋮
𝑥𝑚,1

⋮
𝑥𝑛,2

𝑥𝑖,𝑗

⋯
⋮

𝑥𝑛,𝑑]
 
 
 
 (3) 

The ith population solution contains the constituent (x), which is an element of the jth dimensions. 
As a random integer with a uniform distribution given the problem's bounds (UB) and constraints (LB), 
the value is often determined by Eq. (4). 

𝜒𝑗 =  𝑢𝑛𝑖𝑓𝑟𝑛𝑑 (𝐿𝐵, 𝑈𝐵, 𝐷) (4) 

The next step is to determine the likelihood of each solution by calculating its fitness value (fit), 
which can be stated as Eq. (5): 

𝑎 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1

 (5) 

In Eq. (5), the quantity of mongooses n is advanced by Eq. (6): 

𝑛 =  𝑛 –  𝑏𝑠 (6) 
The female alpha communicates with other groups using a unique sound called a peep, where bs is 

the sum of babysitters. Therefore, in order to update, the DMO uses Eq. (7).  

the 𝑋𝑖 solution charge. 
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𝑋𝑖+1 = 𝑋𝑖 +  𝑝ℎ𝑖 × 𝑝𝑒𝑒𝑝 (7) 

The within [−1, 1] for each iteration are denoted by Phi in Eq. (7). Moreover, the SM can be 
enhanced using Eq. (8). 

𝑠𝑚𝑖 =
𝑓𝑖𝑡𝑖+1−𝑓𝑖𝑡𝑖

𝑚𝑎𝑥{|𝑓𝑖𝑡𝑖+1′𝑓𝑖𝑡𝑖|}
 (8) 

Afterwards calculating the average𝑆𝑀(𝜑), the reckoning can be given as: 

𝜙 =
∑ 𝑠𝑚𝑖

𝑛
𝑖=1

𝑛
 (9) 

While the current SM is ignored in accordance with nomadic culture, the next candidate's food or 
SMs whereabouts is scouted during the scouting step. Foraging and scouting are done at the same time, 
with the sole purpose of visiting scouted places. The babysitters' requirements for swapping are then 
met. Following this, the scouted site for the SMs besides food is guided by a movement vector (M). 

𝑋𝑖+1 = 𝑓(𝑥) = {

𝑋𝑖 − 𝐶𝑃 × 𝑝ℎ𝑖 × 𝑟𝑎𝑛𝑑 × [𝑋𝑖 − 𝑀]

𝜙𝑖+1 > 𝜙𝑖

𝑋𝑖 + 𝐶𝐹 × 𝑝ℎ𝑖 × 𝑟𝑎𝑛𝑑 × [𝑋𝑖 − 𝑀]

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 

Success or failure in developing the comprehensive performance may be used to simulate future 
movements besides the newly bent scouted site (X) based on the mongoose group's performance. 
Equation (12) is used to construct the control function (CF) that governs the mongoose's movement 
(M), as specified in Eq. (11). The parameter allows for fast exploration during the search phase at first, 
but as the iterations proceed, the focus moves from discovering new regions to exploiting fruitful ones. 

𝑀 = ∑
𝑋𝑖×𝑠𝑚𝑖

𝑋𝑖

𝑛
𝑖=1  (11) 

𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑖𝑒𝑟
)
(

2×𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
 (12) 

The alpha group got a glimpse of the young colony when they traded places with babysitters in the 
late evening. What happens in terms of caregiver-to-foraging mongoose ratio depends on population 
size. For the purpose of simulating the exchange operation in the late afternoon or early evening, Eq. 
(13) is simulated. 

𝑝ℎ𝑎𝑠𝑒 = {
𝑆𝑐𝑜𝑢𝑡,                𝐶 < 𝐿
𝐵𝑎𝑏𝑦𝑠𝑖𝑡𝑡𝑖𝑛𝑔,   𝐶 ≥ 𝐿

 (13) 

Every time the counter (C) goes over the exchange principles, all the data collected by the prior 
foraging groups is reset to zero. Beginning with the reconnaissance phase, the alpha continues. To make 
sure the average weight of lowered, we fixed the babysitter's primary weight to 0. Once the supreme 
sum of iterations has been touched and the better outcome has been returned, the DMO procedure 
stops. 
By utilising a quantum-based optimisation (QBO) technique, the QDMO algorithm is derived. A binary 
number can stand in for a selectable or eliminable feature in this work. Every aspect of QBO is described 

by a quantum bit, where q represents the combination of values (0 besides 1), in the form of Q−bit(q). 
The exact model known as Q-bit(q) is constructed using the subsequent formula. 

𝑞 = 𝑎 + 𝑖𝛽 = 𝑒𝑖𝜃, |𝑎|2 + |𝛽|2 (14) 

where the likelihood charge of Q-bit can be 0 besides 1 is characterized as α and β, harmoniously. 

The θ parameter suggests the progressed by tan−1(α/β). 
The primary goalmouth of QBO is to regulate the change in the charge of q, and it could be articulated 
as shadows: 

𝑞(𝑡 + 1) = 𝑞(𝑡) × 𝑅(∆𝜃) = [𝑎(𝑡)𝛽(𝑡)] × 𝑅(∆𝜃) (15) 

𝑅(∆𝜃) = [
cos(∆𝜃) − 𝑠𝑖𝑛(∆𝜃)

𝑠𝑖𝑛(∆𝜃) − cos(∆𝜃)
] (16) 
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In equation (16), the rotational angle of the ith Q-bit of the jth characterized by ∆θ. Using QBO, we 
were able to maximise our capacity to discover the optimal solution by balancing the exploitation and 
investigation of DMA. The next step is to use the training instances to assess the fitness value across all 
populations. Then, the minimal fitness value is used to assign better agents. The operator of the DMO 
algorithm adopts the solution during the exploitation phase. Make sure that everyone keeps going until 
the halting condition is met. Afterwards, the dimensions of the testing set were reduced according to the 
optimal solution, and the various metrics were used to evaluate the implemented QDMO as FS. It all 
starts with creating the N agents that stand in for the populace. The Q-bits and D characteristics are 
current in all solutions. Therefore, in Eq. (16), the answer is given by X_i as shadows: 

𝑋𝑖 = [𝑞𝑖1|𝑞𝑖2]… . |𝑞𝑖𝐷 = [𝜃𝑖1|𝜃𝑖2 …𝜃𝑖𝐷], 𝑖 = 1,2,… ,𝑁 (17) 

A set of superposition’s of likelihood for the feature is convinced or not characterized as 𝑋𝑖 . 

The period of the QDMO is to update encounter the stopping condition. The all unique 𝑋𝑖 Eq. (17) 
to obtain: 

𝐵𝑋𝑖,𝑗 = {
1   𝑖𝑓 𝑟𝑎𝑛𝑑 < |𝛽|2

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (18) 

Where β is strong-minded in Eq. (14). rand∈ [0, 1] represents the sum generated at random. 

Learning the classifiers via matches the one in the second phase 𝐵𝑋𝑖,𝑗 and compute the fitness standards 

that are exposed below: 

𝐹𝑖𝑡𝑖 = 𝜌 × 𝛾 + (1 − 𝜌) × (
|𝐵𝑋𝑖,𝑗|

𝐷
) (19) 

The variable in the preceding equation indicates the total number of features designated. |𝐵𝑋𝑖,𝑗|, and γ 

designate classification using the classifier. ρ ∈ (0, 1) is that which brings the two sections' fitness values 
to a common level. The suggested model's classification efficiency is evaluated by computing the cross-
entropy (CE) loss. Its likelihood may be anything from zero to one. Loss increases as the anticipated 
class deviates from the actual class label. Here is the reckoning for cross-entropy: 

𝐶𝐸 = −∑ 𝑖𝑘𝑙𝑜𝑔(𝑆𝑘)
𝑐
𝑘  (20) 

Where c refers to altogether diseased besides healthy classes, 𝑖𝑘 discusses to truth, and 𝑆𝑘 
characterizes the system scores for each separate class i of c. 
 

4. Results and Discussion 
The trials are conducted on a PC with an Intel Core i5-7200 CPU, 8 GB of RAM, besides a 

processing speed of 2.7 GHz. A specialised user interface (UI) and Jupyter Notebook (Python 3.7) are 
utilised to execute the procedures on Windows 10, a 64-bit operating system. Natural Setting. 
 
4.1. Validation analysis of Projected Segmentation Perfect  

Figure 4 presents the comparative study of proposed segmentation technique in terms of diverse 
metrics. 
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Figure 4. 
Analysis of projected segmentation techniques. 

 
In the analysis of FCM technique attained global accuracy as 0.91 also mean accuracy as 0.89 also 

mean IoU as 0.68 and weighted IoU as 0.89 also the mean score as 0.79 correspondingly. Then the U-
Net technique attained global accuracy as 0.98 also mean accuracy as 0.92 also mean IoU as 0.71 and 
weighted IoU as 0.97 also the mean score as 0.81 correspondingly. Then the SegNet technique attained 
global accuracy as 0.99 also mean accuracy as 0.96 also mean IoU as 0.72 and weighted IoU as 0.98 also 
the mean score as 0.84 correspondingly.   
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Figure 5. 
Graphical description of proposed classifier. 

 
4.2. Validation analysis of Proposed Classifier 

In above figure 5 represent the description of proposed classifier. In the analysis of Overall accuracy 
of 1st training site as 98.97 and 2nd site as  97.59 and 3rd site as 96.03 and also 4th site as  93.28 
and 5th as 95.15 also 6th as 97.24 and 7th as 87.70 also 8th of 95.17 another testing of 9th site as 96.92 also 
10th site as 86.88 correspondingly. Then the F1-score of 1st training site as 98.4 and 2nd site as 97.2 and 
3rd site as 89.5 and 5th as 95.7 also 6th as 98.2 and 7th as 90.9 also 8th of 97.1 another testing of 9th site as 
97.6 also 10th site as 89.8 correspondingly. Then the IoU (%) of 1st training site as 92.31 and 2nd site as 
90.61 and 3rd site as 95.88 and 5th as 99.44 also 6th as 88.49 and 7th as 93.04 also 8th of 99.46 another 
testing of 9th site as 98.43 also 10th site as 97.01 correspondingly.   
 

5. Conclusion 
This paper introduced a outline for glaucoma diagnosis using deep learning, which includes 

segmentation, classification, and explainability. The system was tested on several fundus image datasets. 
Through the use of QDMOA, the suggested classifier is fine-tuned, leading to an improvement in 
classification accuracy. The main impartial of this study was to use explainable ways to deduce the 
underpinning classification model's prediction grounds. As a result, users will have more faith in the 
system and be more comfortable utilising these diagnostic aids. Here, we had a look at the RIM-ONE, 
ACRIMA, and ORIGA fundus image collections. Therefore, a computational model utilising deep 
learning procedures may be utilised as a useful tool to properly diagnose glaucoma eye disorders. 
Ophthalmologists and other medical professionals may now benefit from a dependable glaucoma 
diagnosis system thanks to the suggested approach, which has allowed for more precise mass screening 
for the disease.  
 

Copyright:  
© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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