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Abstract: Rice diseases such as bacterial leaf blight, brown spot, and blast pose significant threats to 
global food security by reducing crop yields, making early and accurate detection crucial. This study 
aims to improve automated segmentation of rice leaf diseases using advanced deep learning techniques, 
specifically U-Net with MobileNetV2, DeepLabV3+ with EfficientNetB4, and U-Net with 
EfficientNetB7 integrated with attention gates. The models were evaluated on a dataset of diseased rice 
leaves for segmentation accuracy, computational efficiency, and robustness in real-world conditions. 
Results show that the U-Net with EfficientNetB7 and attention gates outperforms the other models, 
particularly for complex leaf images, achieving superior accuracy and generalization. This research 
provides a practical, real-time solution for early disease detection in rice, contributing to precision 
agriculture by helping reduce crop losses and optimize the use of agrochemicals, ultimately promoting 
sustainable crop management. 

Keywords: Attention mechanisms, Computational efficiency, Crop management, Deep learning, DeepLabV3+, Disease 
detection, Image segmentation, MobileNetV2, Precision agriculture, Rice leaf diseases, U-Net, Efficient Net. 

 
1. Background  

Rice is a staple food for a significant portion of the global population, especially in Asia. Rice 
diseases, such as bacterial leaf blight, brown spot, and blast, pose severe threats to crop yields, impacting 
food security and farmers' livelihoods. Early and accurate detection of these diseases is crucial for 
effective management and prevention of crop loss. While numerous methods have been developed for 
rice leaf disease detection, challenges such as segmentation accuracy, handling complex backgrounds, 
and the need for large, labelled datasets persist. 

Image segmentation is a vital technique in the field of computer vision and image processing, 
particularly for agricultural applications. It involves partitioning an image into different segments or 
regions, each representing a specific part of the image, such as the background, healthy plant tissue, or 
diseased regions. In the context of leaf disease detection, segmentation is the process of isolating and 
identifying the diseased areas on a leaf from the healthy areas and the background. 
 
1.1. Problems Addressed 

Accurate Disease Localization: Image segmentation allows for precise localization of diseased 
regions on leaves, distinguishing between healthy and infected tissues. This precision is crucial for early 
detection and accurate diagnosis of plant diseases. 

Handling Complex Backgrounds: In field conditions, leaf images often have complex backgrounds, 
such as soil, other plants, and varying lighting conditions. Segmentation techniques can effectively 
separate the leaf from the background, ensuring that the analysis focuses solely on the leaf's surface. 

Quantification of Disease Severity: By segmenting the diseased areas, it is possible to quantify the 
extent of the infection, providing valuable information on the severity of the disease. This data can help 
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in determining the appropriate level of intervention needed. 
Automated Monitoring and Early Detection: Automated segmentation allows for continuous 

monitoring of crops using imaging devices, such as drones or cameras installed in fields. Early detection 
of diseases through such automated systems can prevent the spread of the disease and reduce crop 
losses. 

Improving Decision-Making: Segmentation helps in providing precise data that can be used to make 
informed decisions regarding the timing and type of interventions, such as pesticide application, to 
manage the disease effectively. 

Introduction to Techniques: Several advanced techniques have been developed for leaf disease image 
segmentation, leveraging the power of machine learning, deep learning, and image processing 
algorithms. Traditional methods, such as thresholding and edge detection, have been supplemented by 
more sophisticated approaches like: 

• K-Means Clustering and Superpixel Segmentation: These methods group pixels with similar 
features, allowing for better differentiation between diseased and healthy regions. 

• Deep Learning Models: Convolutional neural networks (CNNs) and other deep learning 
architectures have revolutionized image segmentation. These models can learn complex 
patterns and features from large datasets, improving the accuracy of disease detection even in 
challenging conditions. 

• Hybrid Techniques: Combining different segmentation methods, such as using both color and 
texture analysis, can enhance the robustness of the segmentation process, particularly in diverse 
field conditions. 

 

2. Literature Survey on Rice Diseases Image Segmentation 
The identification and segmentation of rice diseases using image processing and deep learning 

techniques have been a significant focus in agricultural research over the past decade. This survey 
summarizes key studies, focusing on methods used, findings, and their contributions to the field. 
 
2.1. Key Findings from Major Papers 

Automatic Rice Leaf Disease Segmentation: A study proposed an algorithm for automatic detection 
and segmentation of bacterial leaf blight and brown spot in rice leaves under varying environmental 
conditions. The method demonstrated robust performance in diverse conditions [1]. 

Image Processing Techniques Survey: A comprehensive survey reviewed various image 
segmentation and classification techniques for diagnosing rice plant diseases. It highlighted 
achievements and limitations in the field, suggesting future research directions [2]. 

Deep Learning for Rice Disease Detection: An approach combining deep learning with level set 
methods was proposed to improve the detection and classification of rice diseases. The method achieved 
high accuracy even with limited labeled data [3]. 

Bi-Level Thresholding for Disease Diagnosis: A portable tool using bi-level thresholding was 
developed to predict rice diseases. The method achieved better accuracy than traditional methods by 
effectively segmenting regions of interest [4]. 

Lesion Segmentation with Random Forest: This study presented a method combining superpixel 
segmentation and random forest classifiers to segment lesions from rice leaf blast images, achieving 
good segmentation performance [5]. 

Comparison of Segmentation Methods: Various image segmentation algorithms were compared to 
identify the most effective method for segmenting diseased rice leaves, emphasizing the need for a 
unique segmentation method [6]. 

Machine Vision for Disease Spots Extraction: A method based on machine vision was developed to 
segment and extract disease spots in rice leaves. The technique involved gray-level transformation 
followed by segmentation [7]. 

Detection Using SVM and Random Forest: An automated method for detecting rice diseases using 
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SVM and Random Forest classifiers was proposed. The method showed superior performance in 
identifying diseases compared to traditional approaches [8]. 

Copy Paste and Semantic Segmentation: A lightweight network using copy paste and semantic 
segmentation was introduced for accurate disease region segmentation and severity assessment in rice 
leaves [9]. 

Texture and Deep Features for Disease Detection: A deep learning model using SegNet for 
segmentation and deep recurrent neural networks (Deep RNN) for detection was proposed. The model 
achieved high accuracy and specificity [10]. 

Transfer Learning with CNN: A CNN-based model using transfer learning was developed for 
predicting rice leaf diseases, achieving 95.67% accuracy [11]. 

Otsu’s Method for Segmentation: A method using Otsu’s thresholding for segmentation combined 
with Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG) achieved 94.6% 
accuracy for rice disease classification [12]. 

Fusion of FCM-KM and Faster R-CNN: A fusion method using FCM-KM clustering and Faster R-
CNN for rapid detection of rice diseases demonstrated high accuracy and reduced detection time [13]. 

Deep CNN for Disease Identification: A CNN-based method achieved 95.48% accuracy in 
identifying 10 common rice diseases, significantly outperforming traditional machine learning models 
[14]. 

Attention Networks for Rice Disease Detection: Lightweight attention networks based on 
MobileNet-V2 achieved 99.67% accuracy in identifying rice plant diseases [15]. 

Backpropagation Neural Network: A method using backpropagation neural networks for detecting 
three common rice diseases achieved 100% accuracy [16]. 

Survey on Rice Disease Detection: A survey reviewed various image processing and machine 
learning techniques for detecting rice diseases, highlighting strengths and limitations [17]. 

Rice-Fusion Framework: A multimodality data fusion framework combining agro-meteorological 
data and image features achieved 95.31% accuracy for rice disease diagnosis [18]. 
 
2.2. Image Analysis for Disease Detection 

An image processing method for classifying rice diseases based on leaf and lesion attributes was 
evaluated using a publicly available database [19]. 

Automated System for Disease Monitoring: An automated system using image processing for 
identifying four common rice diseases achieved high classification accuracy with k-NN and Minimum 
Distance Classifier (MDC) [(Joshi & Jadhav, 2016)] [20]. 
 

3. Research Problem & Objectives 
Despite advances in image segmentation and deep learning, existing methods for rice leaf disease 

detection face several limitations: 

• Segmentation Accuracy: Accurately segmenting diseased regions in rice leaves remains 
challenging due to the complex and varying backgrounds in field images, which often resemble 
the color and texture of the leaves. 

• Data Scarcity: Deep learning models typically require large, annotated datasets for training. 
However, such datasets are often limited, particularly for rice diseases. 

• Model Generalization: Models trained on controlled environments may not generalize well to 
real-world field conditions, where lighting, shadows, and occlusions vary significantly. 

• Computation Efficiency: Real-time application of these models in the field requires 
computationally efficient algorithms that can process images quickly and accurately on 
resource-limited devices. 
 

3.1. Objective 
The primary objective of this research is to develop a robust, efficient, and accurate method for the 
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segmentation and classification of rice leaf diseases that can overcome the limitations of current 
approaches. This includes: 

1. Enhancing Segmentation Accuracy: Developing advanced segmentation techniques that 
effectively differentiate between diseased and healthy regions in complex field images. 

2. Data Augmentation and Synthetic Data Generation: Utilizing data augmentation techniques 
and synthetic data generation (e.g., copy-paste techniques) to expand the training dataset and 
improve model robustness. 

3. Model Generalization: Implementing and testing models in diverse real-world conditions to 
ensure generalization across different environmental settings. 

4. Computation Efficiency: Optimizing the model to run efficiently on portable devices for real-
time disease detection in the field. 
 

3.2. Expected Outcomes 

• A novel segmentation algorithm that significantly improves the accuracy of disease region 
detection in rice leaf images. 

• A deep learning model that generalizes well across different field conditions, ensuring reliable 
performance in real-world applications. 

• An efficient, portable system for real-time rice disease detection, aiding farmers in timely and 
accurate disease management. 
 

Impact: This research will contribute to the field of precision agriculture by providing a reliable and 
practical tool for early disease detection in rice crops. The outcomes could lead to improved crop 
management practices, reduced losses, and enhanced food security. 
    

4. Materials and Methods 
The dataset Rice Leaf Disease with Segmentation Labels [21], is designed for the task of image 

segmentation, specifically targeting the identification and segmentation of rice leaf diseases. The dataset 
is a curated collection derived from three publicly available datasets, specifically filtered and annotated 
to focus on three types of rice leaf diseases: rice bacterial blight, rice blast, and brown spot. For each 
disease category, the dataset includes 150 original images of diseased rice leaves, as well as their 
corresponding segmentation masks that provide semantic information essentially labelling the diseased 
areas in the images. 
The dataset consists of two main components: 
 
4.1. Contents 

Images: The dataset contains RGB images of rice leaves captured in different conditions. These 
images showcase leaves affected by various diseases, including but not limited to bacterial blight, brown 
spot, and blast. The images typically have different resolutions, though they may be normalized or 
resized for consistent input into machine learning models. 
 
4.2. Segmentation Masks 
Each image has an associated segmentation mask that labels the pixels in the image as either part of a 
diseased area or a healthy area. The masks are usually in grayscale, where one pixel value (e.g., 0) might 
represent healthy leaf tissue, and another pixel value (e.g., 1) represents diseased tissue. 
 
 
 
 
 
 

https://www.kaggle.com/datasets/slygirl/rice-leaf-disease-with-segmentation-labels
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Figure.1. 
(A)Bacterial blight. 
 

 
Figure 1. 
(B) Brown spot. 
 

 
Figure 1. 
(C) Blast. 



798 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 793-813, 2024 
DOI: 10.55214/25768484.v8i6.2167 
© 2024 by the authors; licensee Learning Gate 

 

 
5. Data Preparation 

In this data preparation process, the goal was to effectively prepare a small dataset of rice blast 
images and their corresponding masks for training a deep learning model in image segmentation. The 
steps involved were crucial for ensuring that the dataset was ready for model training, especially 
considering the limited number of images available. 
 
5.1. Loading and Preprocessing Images and Masks 

• Image and Mask Loading: Images and masks were loaded from specified directories. Each image 
was resized to a target size of 128x128 pixels to standardize the input dimensions for the model. 
Masks were converted to grayscale and reshaped to match the image dimensions. 

• Splitting Data into Training and Validation Set: The dataset was split into training and validation 
sets, with 20% of the data allocated to validation. This split helps in monitoring the model's 
performance on unseen data during training, which is essential for assessing its generalization 
ability. 

 
5.2. Data Augmentation 

To artificially expand the training dataset and make the model more robust to variations, several 
data augmentation techniques were applied. The image augmentation process involved several 
transformations to enhance the dataset's variability and robustness. Images were rotated randomly 
within a 10-degree range to account for variations in orientation. Shifting transformations were applied 
to both the width and height, allowing for displacements of up to 10% in either direction. Additionally, a 
shearing transformation within a 10% range was introduced to simulate distortions in the images. 
Zooming was also performed, with images being randomly zoomed in or out by up to 10%. To further 
diversify the dataset, horizontal flipping was employed. Lastly, when these transformations caused 
pixels to move beyond the image boundaries, the missing areas were filled using the nearest fill mode, 
ensuring continuity in the augmented images.4. Batch Generation for Training. 

• Batch Size: The images and masks were processed in batches of 8, which balances the memory 
requirements and the convergence speed during training. 

• Generator Setup: Two separate ImageDataGenerator objects were used, one for images and one 
for masks, both applying the same augmentation transformations to ensure that the 
corresponding image and mask pairs remain aligned. The generators were then zipped together to 
create batches of augmented images and their corresponding masks for training. 

Validation Data Preparation For validation, the images and masks were not augmented. This 
ensures that the validation set remains a reliable measure of how well the model is likely to perform on 
unseen, real-world data without artificial alterations. 
 

6. Proposed Architectures 
Algorithm: U-Net with MobileNetV2 Encoder and Pix2Pix Decoder [22] [23] 

1. Input Initialization: 
o Define the input size for the model as (128, 128, 3). 

2. Encoder (Feature Extraction): 
o Load the MobileNetV2 model pre-trained on ImageNet with 

include_top=False to exclude the final fully connected layer. 
o Set the input shape to match the specified input size. 
o Identify key layers from MobileNetV2 to use as skip connections: 

▪ Block_1_expand_relu (output size: 64x64) 
▪ Block_3_expand_relu (output size: 32x32) 
▪ Block_6_expand_relu (output size: 16x16) 
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▪ Block_13_expand_relu (output size: 8x8) 
▪ block_16_project (output size: 4x4) 

• Extract the outputs of these layers to form the encoder's outputs. 
3. Define the Upsampling Path (Decoder): 

• Create an upsampling path using the Pix2Pix upsampling technique: 
▪ Apply 4 upsampling layers: 

1. Upsample to transition from 4x4 to 8x8. 
2. Upsample to transition from 8x8 to 16x16. 
3. Upsample to transition from 16x16 to 32x32. 
4. Upsample to transition from 32x32 to 64x64. 

• Each upsampling layer increases the spatial resolution while reducing the 
number of feature channels. 

4. Forward Pass through the Encoder: 

• Pass the input through the encoder to extract features at multiple scales. 

• Save the outputs from the specified layers for later use in skip connections. 
5. Forward Pass through the Decoder: 

• Initialize the decoder with the last output from the encoder (smallest 
resolution). 

• Sequentially pass through each upsampling layer in the decoder: 
▪ Concatenate the upsampled output with the corresponding encoder 

output from the skip connections. 
6. Final Output Layer: 

• Apply a Conv2DTranspose layer with a stride of 2 to double the spatial 
resolution from 64x64 to 128x128. 

• Use a sigmoid activation function on the final output to predict pixel-wise 
probabilities for binary segmentation. 

7. Model Compilation: 

• Compile the model with the Adam optimizer. 

• Use binary_crossentropy as the loss function, appropriate for binary 
segmentation tasks. 

• Include accuracy as a metric to monitor during training. 
8. Model Summary: 

• Print a summary of the model architecture, showing the layers and their 
output shapes. 

 
This algorithm describes a U-Net architecture for image segmentation that efficiently combines the 

lightweight MobileNetV2 as an encoder with a Pix2Pix-inspired upsampling decoder. The model is 
optimized for binary segmentation tasks and is designed to handle inputs with a resolution of 128x128 
pixels. The final output is a segmentation mask with the same spatial resolution as the input image. This 
model leverages the efficiency of MobileNetV2 for feature extraction while employing a U-Net architecture 
with skip connections to retain spatial details during upsampling. By combining the strengths of both 
architectures, it creates a powerful tool for segmenting images, particularly useful in agricultural 
applications like identifying diseased areas in rice leaves. This segmentation model can help in early disease 
detection, potentially saving crops from severe damage and aiding in precision agriculture. 
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                                    (a)                                                         (b) 
Figure 2. 
(a) U-Net with MobileNetV2 Encoder and Pix2Pix Decoder (b) Simple DeepLabV3+ Architecture Using 

EfficientNetB4. 

 
6.1. Algorithm: Simple DeepLabV3+ Architecture Using EfficientNetB4 

The function simple_deeplabv3plus(input_shape=(128, 128, 3), classes=1) defines a segmentation model 
inspired by the DeepLabV3+ architecture. This model combines the EfficientNetB4 architecture as a feature 
extractor with an upsampling path designed to produce high-resolution segmentation maps. Below is a 
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detailed explanation of how this model works, along with the technical details and its potential 
applications.[24][25] 
 
6.1.1. EfficientNetB4 as the Base Model (Encoder): 

• EfficientNetB4 is part of the EfficientNet family of models, which are designed to 
achieve high accuracy while being computationally efficient. These models scale 
width, depth, and resolution systematically to optimize performance. 

• In this function, EfficientNetB4 serves as the encoder, extracting features from the 
input image at different levels of abstraction. This model is pre-trained on the 
ImageNet dataset, providing a strong starting point for feature extraction. 

base_model = EfficientNetB4(input_shape=input_shape, include_top=False, 
weights='imagenet') 

• input_shape=input_shape: The input size is specified as 128x128 pixels with 3 
color channels (RGB). 

• include_top=False: This excludes the fully connected layers, as they are not needed 
for the segmentation task. 

• weights='imagenet': Pre-trained weights are loaded to leverage the learned 
features from the ImageNet dataset. 

• Output Shape: The output from EfficientNetB4 will be a feature map of size (None, 
4, 4, 1792), where 1792 is the number of feature channels. 

 
6.1.2. Upsampling Path (Decoder): 

• The upsampling path is designed to progressively restore the spatial dimensions of 
the feature maps back to the original input size (128x128 pixels) while reducing the 
number of channels. 

• Upsampling Layers: The model uses UpSampling2D layers to increase the spatial 
resolution of the feature maps. Each upsampling step doubles the resolution. 

• 4x4 to 8x8 Upsampling: 

• UpSampling2D((2, 2)) increases the resolution from 4x4 to 8x8. 

• Conv2D(512, (3, 3), padding='same', activation='relu') applies a 
convolution with 512 filters, preserving the resolution but refining the 
features. 

• BatchNormalization() normalizes the outputs to stabilize and accelerate the 
training process. 

• 8x8 to 16x16 Upsampling: 

• Resolution is increased to 16x16, and the number of filters is reduced to 
256. 

• 16x16 to 32x32 Upsampling: 

• Resolution is increased to 32x32, with 128 filters. 

• 32x32 to 64x64 Upsampling: 

• 64x64 to 128x128 Upsampling: 

• Finally, the resolution is restored to the original input size of 128x128, 
with 32 filters. 

 
6.1.3. Final Convolutional Layer 

• After upsampling, a final convolutional layer is used to produce the desired number 
of output channels. For segmentation tasks, this often corresponds to the number 
of classes. 

• Conv2D(classes, (1, 1), padding='same') applies a 1x1 convolution to reduce the 
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number of channels to the number of classes. In this case, classes=1, so the output 
is a single-channel feature map. 

• Sigmoid Activation: 
o The sigmoid activation function is used to produce output values between 0 

and 1, which is suitable for binary segmentation tasks. 
 
6.1.4. Model Compilation 

• The model is compiled by connecting the input of the EfficientNetB4 encoder to 
the output of the upsampling decoder. 

• This returns a Keras model that takes an input image of size 128x128 and produces 
a segmentation map of the same size. 
 

6.2. Technical Summary and Use Cases 
1. EfficientNetB4: EfficientNetB4 is chosen as the backbone for its balance between 

performance and computational efficiency. It extracts rich features from input images 
while maintaining a relatively small model size. 

2. Upsampling Path: The upsampling path progressively restores the spatial resolution of 
the feature maps, using Conv2D layers to refine the features at each step. 
BatchNormalization is applied after each convolution to improve training stability and 
model performance. 

3. Final Output: The final convolution layer reduces the feature maps to a single channel, and the 
sigmoid activation function produces a probability map, indicating the presence or absence of a 
specific class (e.g., diseased region) in each pixel. 

 

7. Proposed Efficient Architecture-U-Net with EfficientNetB7 and Attention Gates- 
The proposed model, UnetEfficientNetB7WithAttention, combines several advanced deep learning 

techniques to create a powerful architecture for image segmentation tasks. Below is a comprehensive 
breakdown of the model's components, how they work together, and the significance of each 
element.[26][27]. 
 
7.1. EfficientNetB7 as the Backbone (Encoder) 

The model utilizes EfficientNetB7 as the backbone for feature extraction. EfficientNetB7 is part of 
the EfficientNet family, which is known for achieving state-of-the-art accuracy with fewer parameters 
by scaling up the network width, depth, and resolution in a balanced manner. 

• Input_shape=input_shape: Specifies the input size (128x128x3), where 3 corresponds to the RGB 
channels. 

• Include_top=False: Excludes the fully connected layers at the top of the network, as these are not 
needed for segmentation. 

• Weights='imagenet': Uses pre-trained weights from ImageNet, which helps in leveraging features 
learned from a large and diverse dataset. 

 
7.2. Skip Connections 
Skip connections are extracted from specific layers of EfficientNetB7. These connections allow the 
model to retain and reuse high-resolution spatial information, which is crucial for accurate 
segmentation. 

• These layers are selected because they represent different stages of down sampling and feature 
extraction, each providing a different level of detail. 

 
7.3. Decoder Path with Attention Gates 
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The decoder path is designed to up sample the feature maps back to the original image size while 
integrating the skip connections. Attention gates are introduced at each skip connection to focus on the 
most relevant features. 
 
7.3.1. Attention Gates 
Attention gates are used to refine the skip connections by focusing on the most relevant spatial features 
before concatenating them with the decoder features. This helps in improving the segmentation 
accuracy by highlighting important regions in the feature maps. 

• Theta_x and phi_g: These are feature transformations of the input x (skip connection) and 
gating signal g (decoder feature) respectively, which are then added together. 

• Upsampled_theta_x: Upsamples the transformed skip connection to match the size of the 
gating signal. 

• Psi: A sigmoid activation is applied to create an attention map, which is then used to weight the 
original skip connection features. 

• Final Multiplication: The original skip connection features are multiplied by the attention 
map, effectively focusing on the most relevant features. 

 
7.3.2. Decoder Operations 

The decoder upsamples the features step-by-step, concatenating the attention-refined skip 
connections at each stage to recover spatial resolution. 

• Conv2D Layers: These layers refine the upsampled features by applying convolutions. 

• BatchNormalization: Stabilizes and accelerates training by normalizing the output of each 
convolutional layer. 

• UpSampling2D: Doubles the spatial dimensions of the feature maps. 
This process is repeated for each skip connection until the feature map is upsampled back to the original 
input size. 
 
7.4. Final Output Layer 

The final layer uses a 1x1 convolution to reduce the feature map to the desired number of output 
classes and applies a sigmoid activation for binary segmentation. 

• Conv2D(num_classes, (1, 1)): Reduces the channel dimension to num_classes (typically 1 for 
binary segmentation). 

• Activation('sigmoid'): Outputs a probability map indicating the likelihood of each pixel 
belonging to the target class. 

 
7.5. Model Compilation 

The model is then compiled into a Keras model with inputs from the EfficientNetB7 encoder and 
outputs from the final upsamling layer. 
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Figure 3. 
U-Net with efficientNetB7 and attention gates. 
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this model represents a significant advancement in the field of image segmentation, particularly for 
applications like medical imaging, remote sensing, and precision agriculture. Here’s why: 

1. Use of EfficientNetB7: Leveraging EfficientNetB7 as the backbone provides a powerful and 
efficient feature extractor, offering state-of-the-art performance with fewer parameters. 

2. Attention Gates: The integration of attention gates at each skip connection is a novel approach 
to focus on the most relevant features, improving the model's ability to differentiate between 
important and less important information in the feature maps. 

3. Advanced Decoder: The combination of upsampling layers, convolutional layers, and attention 
gates in the decoder path ensures that the model can accurately reconstruct high-resolution 
segmentation maps. 

4. Generalization: The use of EfficientNetB7 with attention mechanisms can generalize well to 
various segmentation tasks, making it a versatile tool for different applications. 

5. State-of-the-Art Performance: Given the architecture’s components and their combination, this 
model is likely to achieve high accuracy in segmentation tasks while being computationally 
efficient, which is crucial for real-time applications. 

 

8. Results & Discussions 
8.1. MODEL-I U-Net Model with MobileNetV2 Encoder 

Based on the training results of the MobileNetV2 model, here's a summary of the model's 
performance over 100 epochs on blast rice diseases images that include 150 images of true mask and 
actual image: 
 
8.1.1. Training and Validation Performance 

• Initial Performance: 

• The model began with a relatively strong starting point in terms of accuracy and loss. 
The first epoch achieved an accuracy of 79.8% and a loss of 0.1487, with validation 
accuracy at 77.7% and validation loss at 0.1955. 

• Fluctuations: 

• Throughout the training process, both training and validation accuracy exhibited 
fluctuations. For instance, training accuracy ranged between 70% and 80%, while 
validation accuracy varied similarly, occasionally dipping into the 70% range before 
recovering. 

• Loss values also fluctuated, with periods where the training loss decreased, followed by 
increases, indicating potential challenges in learning stability. 

• Midway Improvements: 

• Around epoch 14, the model reached a notable improvement, with validation accuracy 
peaking at 81.5% and validation loss dropping to 0.1722, indicating better 
generalization at that point. 

• Overfitting Signs: 

• From the later epochs (around epoch 40 onwards), there are signs of overfitting. The 
validation loss occasionally increased while training accuracy remained relatively high, 
suggesting that the model was becoming too specialized to the training data. 

• Particularly, validation loss values increased significantly in some epochs, for example, 
during epoch 38 (loss = 0.4128), showing poor generalization in those phases. 

• Final Performance: 

• By the end of the training, the model managed to achieve a decent performance with 
validation accuracy reaching as high as 88.25% in epoch 43. However, there were 
considerable variations in validation loss, suggesting that while the model could reach 
high accuracy, its predictive stability was inconsistent. 
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Figure 4. 
Blast (Original image, predicted mask, true mask) model-I. 

 

• Final Training Accuracy: The model achieved a final accuracy of 78.95% on the training data, 
with a corresponding loss of 0.1909. 

• Final Validation Performance: 

• Validation Loss: The model's overall validation loss was 0.2052, which indicates the 
average difference between the predicted and actual outputs on the validation set. 

• Validation Accuracy: The model's overall validation accuracy was 75.95%, reflecting its 
ability to generalize to unseen data. 

The MobileNetV2 model demonstrated a decent overall performance with a training accuracy of 
78.95% and a validation accuracy of 75.95%. The slightly higher training accuracy compared to 
validation accuracy suggests some overfitting, but the model performed reasonably well on the 
validation set, indicating good generalization with some room for improvement. 

 

 
Figure 5. 
Loss and accuracy graph. 
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8.2. MODEL-II of the Simple DeepLabV3+ Architecture Using EfficientNetB4 
8.2.1. Initial Observations 

1. Epoch 1: The model starts with an accuracy of 48.09% on the training set and 61.79% on the 
validation set, with corresponding loss values of 0.7419 and 0.8259, respectively. 

2. Overfitting Concerns: Early in the training (around Epoch 2 to Epoch 4), the validation loss 
increases significantly (up to 2.0053) while the validation accuracy drops, indicating possible 
overfitting. 
 

8.2.2. Mid Training Observations 
3. Improvement Phase: By Epoch 7, the model shows substantial improvement, with a validation 

accuracy of 85.9% and a reduced loss of 0.3456. This suggests that the model is learning to 
generalize better. 

4. Fluctuations: Throughout the training, the validation accuracy fluctuates. For example, around 
Epoch 21, there is a dip in performance with a validation accuracy of 77.74% and an increase in 
loss to 0.3079. 

 
8.2.3. Final Observations 

5. Final Epochs: By Epoch 47, the model reaches a validation accuracy of 84.91% with a validation 
loss of 0.1500, indicating strong performance. 
 

 
Figure 6. 
Loss and accuracy graph. 
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Figure 7. 
Blast (Original Image, Predicted Mask, True Mask) Model-II. 

 
The model shows a general trend of improving accuracy and reducing loss on both the training and 

validation datasets, with some fluctuations. The final validation accuracy of 84.91% suggests that the 
model is performing quite well, though there may still be room for fine-tuning to minimize fluctuations 
and further improve performance. 
 
8.3. MODEL III -Results of Proposed Unet Efficient NetB7With Attention Model 

The training log of the UnetEfficientNetB7WithAttention model reveals several insights into its 
performance over the course of 48 epochs: 
 
8.3.1. Accuracy and Loss Trends 

• Training Accuracy: The model's accuracy improved significantly from 0.5361 in the first epoch 
to values exceeding 0.8 by epoch 43. This indicates that the model is learning effectively over 
time. 

• Validation Accuracy: Similarly, validation accuracy also showed an upward trend, peaking 
around 0.8431 in epoch 44. However, there were fluctuations, such as a drop in epoch 21 
(0.2946), which might suggest overfitting or noisy validation data. 

• Training Loss: The loss consistently decreased, signifying that the model is getting better at 
minimizing errors during training. 

• Validation Loss: The validation loss was more volatile, with significant spikes (e.g., epoch 2 at 
6.9256 and epoch 28 at 5.5382). This could indicate overfitting, where the model performs well 
on training data but struggles with unseen data. 
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Figure 8. 
Blast (Original Image, Predicted Mask, True Mask) Model-III. 

 
8.4. Model Performance Over Time 

• Early Improvement: From epoch 1 to epoch 8, both training and validation accuracies increased 
steadily, and losses decreased, indicating effective learning. 

• Mid Training: Around epochs 20-30, there were some fluctuations in validation metrics, with 
notable drops in accuracy and spikes in loss, suggesting possible overfitting or encountering 
difficult validation batches. 

• Later Epochs: Despite fluctuations, the model continued to improve overall, reaching a high 
validation accuracy of 0.8432 in epoch 48 with a corresponding decrease in validation loss to 
0.1261, indicating good generalization by the end of the recorded epochs. 

 



810 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 793-813, 2024 
DOI: 10.55214/25768484.v8i6.2167 
© 2024 by the authors; licensee Learning Gate 

 

 
Figure 9. 
Loss and accuracy graph. 

 
Here is a comparative table summarizing the results of the three image segmentation models: 

 
Table 1. 
Comparative summary of proposed models. 

Model 
Validation 
loss 

Validation 
accuracy Efficiency Complexity 

Segmentation 
quality 

U-Net with 
MobileNetV2 0.2052 0.7595 

Highest 
efficiency; ideal 
for real-time 
use 

Moderate; 
lightweight 
and fast 

Good for simpler 
tasks; may struggle 
with complex details 

DeepLabV3+ 
with 
EfficientNetB4 0.2342 0.7879 

Moderate 
efficiency; 
balanced 
performance 

Higher than 
MobileNetV2; 
efficient and 
powerful 

Superior to 
MobileNetV2; 
handles complex 
boundaries well 

U-Net with 
EfficientNetB7 
and Attention 
Gates 0.172 0.8028 

Lowest 
efficiency; high 
computational 
cost 

Highest; most 
powerful and 
complex 

Best-in-class; excels 
at fine details and 
complex 
segmentation 
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This table provides a clear comparison of the three models based on their validation results, 
efficiency, complexity, and segmentation quality 
 

9. Conclusions and Future Plans 
This analysis focuses on three advanced models for image segmentation, evaluating their 

architecture, efficiency, prediction accuracy, segmentation performance, and comparative results after 
100 epochs of training. The models are: 

1. U-Net with MobileNetV2 
2. DeepLabV3+ with EfficientNetB4 
3. U-Net with EfficientNetB7 and Attention Gates 

 
9.1. Model Architecture and Components 

• U-Net with MobileNetV2: 

• Encoder: MobileNetV2, optimized for efficiency. 

• Decoder: Standard U-Net decoder with skip connections. 

• Complexity: Moderate, with a focus on lightweight and fast performance. 

• Key Features: Efficient for mobile and resource-constrained environments, but may 
sacrifice some accuracy. 

• DeepLabV3+ with EfficientNetB4: 

• Encoder: EfficientNetB4, designed for a balance between performance and efficiency. 

• Decoder: Convolutional upsampling layers. 

• Complexity: Higher than U-Net with MobileNetV2, balancing feature extraction and 
efficiency. 

• Key Features: Strong backbone and optimized for accurate segmentation. 

• U-Net with EfficientNetB7 and Attention Gates: 

• Encoder: EfficientNetB7, the most powerful of the three. 

• Decoder: U-Net-style upsampling with attention gates. 

• Complexity: Highest, with attention mechanisms to enhance feature focus. 

• Key Features: High accuracy due to attention gates, but at the cost of increased 
computational requirements. 

 
9.2. Efficiency (Computational Cost and Speed) 

• U-Net with MobileNetV2: 

• Efficiency: Highest due to the lightweight backbone, ideal for real-time and resource-
constrained applications. 

• Computational Cost: Low, making it suitable for scenarios where computational 
resources are limited. 

• DeepLabV3+ with EfficientNetB4: 

• Efficiency: Moderate, balancing performance with computational cost. 

• Computational Cost: Moderate, making it feasible for more demanding applications. 

• U-Net with EfficientNetB7 and Attention Gates: 

• Efficiency: Lowest due to the complexity of the model. 

• Computational Cost: High, making it less ideal for real-time applications unless on high-
performance hardware. 

 
9.3. Prediction Accuracy 

• U-Net with MobileNetV2: 

• Accuracy: Good, particularly in simpler tasks or where efficiency is prioritized. 
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• Validation Accuracy: 0.7595 

• DeepLabV3+ with EfficientNetB4: 

• Accuracy: Higher accuracy than MobileNetV2, suitable for more complex tasks. 

• Validation Accuracy: 0.7879 

• U-Net with EfficientNetB7 and Attention Gates: 

• Accuracy: Highest accuracy due to attention gates and advanced feature extraction. 

• Validation Accuracy: 0.8028 
4. Segmentation Performance 

• U-Net with MobileNetV2: 

• Segmentation Quality: Good, but may struggle with fine details in complex images. 

• Validation Loss: 0.2052 

• DeepLabV3+ with EfficientNetB4: 

• Segmentation Quality: Superior to MobileNetV2, with better handling of complex 
boundaries. 

• Validation Loss: 0.2342 

• U-Net with EfficientNetB7 and Attention Gates: 

• Segmentation Quality: Best-in-class, excelling in distinguishing subtle details. 

• Validation Loss: 0.1720 
  
9.4. Comparison with Earlier Work 

The three models discussed represent significant advancements over earlier image segmentation 
models that typically relied on simpler backbones like VGG or ResNet. These earlier models often 
required a trade-off between accuracy and computational efficiency. 

• Advancements: 
o EfficientNet Integration: Offers a strong balance between accuracy and resource use. 
o Attention Mechanisms: In U-Net with EfficientNetB7, attention gates enhance 

segmentation quality by focusing on relevant features. 
 

10. Conclusion and Recommendations 
• Best for Efficiency: U-Net with MobileNetV2 is recommended for scenarios where efficiency 

and computational cost are paramount, such as mobile applications. 

• Best for Balance: DeepLabV3+ with EfficientNetB4 provides a good compromise between 
accuracy and efficiency, making it suitable for general-purpose applications. 

• Best for Accuracy: U-Net with EfficientNetB7 and Attention Gates is ideal for high-stakes, 
precision-critical tasks, although it demands more computational resources. 

Overall, these models demonstrate impressive capabilities in modern image segmentation tasks, 
each excelling in different aspects depending on the specific requirements of the application. The choice 
of model should align with the balance of accuracy, efficiency, and computational resources available. 

Challenges and Future Directions: While significant progress has been made in the field of image 
segmentation for leaf diseases, challenges remain. The variability in environmental conditions, the 
presence of noise in images, and the need for large, annotated datasets for training deep learning models 
are ongoing concerns. Future research is likely to focus on developing more generalized models that can 
perform well across different conditions, improving the computational efficiency of these models, and 
integrating segmentation techniques with other data sources, such as meteorological data, to enhance 
disease prediction and management. 
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