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Abstract: Polygenic Risk Score (PRS) is a computational tech- nique that uses various genomic data to 
simultaneously analyze an individ- ual’s genetic risk for particular illnesses or traits. However, the 
traditional PRS computation has a few weaknesses, including its limited capacity to account for just a 
portion of trait variance, susceptibility to overfitting, and insufficient ability to discriminate among the 
larger population. Machine Learning (ML) methods offer a promising alternative to the traditional 
method by avoiding the problem of overfitting and improving accuracy. This study aims to develop an 
ML model for improved PRS calculation. We used the summary statistics for three mentals diseases, 
bipolar, depression, and panic disorder, from the Psychiatric Genomics Consortium (PGC) as a disease 
reference. We also obtained actual genotype data of individuals from OpenSNP, which includes both 
case and control samples. This data is used for predicting scores. The suggested approach, called 
Polygenic Risk Score Neural Network (PRSNN), calculates the PRS using weight vectors that estimate 
the relevance of each single nucleotide polymorphism (SNP) with a particular phenotype by deep 
learning model as an alternative to the traditional method. This study aims to develop a machine 
learning model, called PRSNN, for improved calculation of Polygenic Risk Scores (PRS). The PRSNN 
method outperforms the conventional method in identifying individuals at risk of mental disease. A 
novel deep-learning approach, named as PRSNN, is proposed for generating PRSs. The results 
demonstrate that it outperforms the traditional method of computing PRS for complex diseases. Further 
upgrades for this tool are required to overcome the current limitations, including lack of validation with 
external data from different ancestries, which may limit the applicability of the PRSNN method across 
diverse populations, and the small sample size, which may affect the results. 

Keywords: Genome-wide association studies (GWAS), Machine Learning (ML), Polygenic risk score (PRS), Psychiatric 
genomics con- sortium (PGC). 

 
1. Introduction  

A key function of public health is to prevent the community from diseases and provide an early 
intervention that measures for a specific disease based on their risk level, to pick up future cases in 
the early stage by implementing a targeted screening program, and to intervene before disease 
formation [1]. 

Psychiatric and neurodegenerative disorders cause substantial burdens on individuals, their 
families and the community, causing a high rate of morbidity and mortality [2][3][4].  Those 
diseases have an ongoing course and typically start in childhood or young adulthood, meaning 
many years are spent with a crippling condition. Furthermore, people with serious mental illness 
frequently have lower socioeconomic standing [5]. Other than crippling the patient’s life, they 
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regularly encounter stigma. Psychiatric disorders have higher rates of both drug use and alcohol 
usage, all of which have a detrimental effect on one’s health and quality of life [6] [7][8]. Estimates 
indicate that individuals grappling with serious mental illness have an average life expectancy 
approximately ten years shorter than that observed in the general population [9] [10]. 

To study how genes influence complex traits or diseases and to predict who is more likely to 
have them, researchers use simple models that add up the effects of many genetic variants. These 
models are called Polygenic Risk Scores (PRSs) [11]. The traditional method to generate PRS is 
the most common method to calculate PRSs by summing the number of SNP a person has 
multiplied by the weight of each SNP [12]. The effect weight of the SNP on the trait or disease is 
represented by the weight, estimated from the previous Genome-wide Association Studies (GWAS) 
[13], which are techniques that identify associations between phenotypes and genotypes that are 
involved in causing a certain disease [14]. Based on comparing cases with controls will assess 
the identification of SNPs that might contribute in the disease formation [15][16]. 

However, this assumption may not hold for complex diseases incorporated in gene-gene 
interactions. Therefore, some researchers have suggested using non-additive models or methods 
that can account for these interactions in PRS calculation [17]. Examples of non-additive models 
or methods include quadratic, logistic, or neural network models, as well as Bayesian methods or 
machine learning methods [18] [19]. 

In addition, the traditional method of calculating PRS has some limitations, such as requiring 
large training and testing datasets, the lack of generalizability across different populations, and the 
inability to capture the interactions and dependencies among genetic variants. Moreover, the PRS 
models may be biased by the ancestry of the discovery dataset and may not generalize well to other 
populations [20][21] [22] 

It is noted that these models exhibit a restricted capacity for model fitting, thereby influencing 
the precision of the ultimate prediction outcomes to a certain extent. Nowadays, machine learning 
has contributed towards advancing various fields, including genomics with deep-learning 
techniques, medical imaging, and natural language processing for health records [23][24][25]. 

Some researchers have proposed to use machine learning methods, which can handle high-
dimensional and complicated data and learn from patterns and characteristics. ML methods can 
overcome some of the limitations of the traditional method of calculating PRS. For example, ML 
methods can rank the SNPs according to their importance or relevance for the disease risk, or 
they can identify the pathways or biological processes that are associated with the disease. They can 
also visualize the relationships between the features and the outcome, or between different 
features, using graphs or networks [26]. 

This paper presents a deep learning-based approach, named as PRSNN, to generate polygenic 
risk scores (PRSs). Section 2 discusses the adopted materials and methods to explain the 
methodology of the proposed approach. Section 3 presents the obtained results. Discussion is made 
in Section 4 while Section 5 draws the conclusion. 
 

2. Materials and Methods 
We propose a methodology for disease diagnosis using genetic data. Our method- ology consists of 

two parts: generating polygenic risk scores and evaluating their diagnostic accuracy. We use two 
methods to generate PRSs: the traditional method, which selects single nucleotide polymorphisms 
based on their quality and effect size, and the PRSNN method, which trains a neural network 
model to learn the SNP weights. Our neural network model takes the SNPs, the genotype, the p-
value, and the effect weights as inputs, and predicts the disease status as output. We use grid search 
and cross-validation to optimize the model param- eters. Once the model is trained, we use its 
weights to compute the PRSs by PRSNN. We test our methodology on a real-world dataset from 
OpenSNP and compare the diagnostic performance of the traditional method and the PRSNN 
method. Figure-1 illustrates the proposed methodology. 
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Figure 1. 
The proposed methodology. 

 
2.1. Data Collection and Preprocessing 

The dataset from the Psychiatric Genomics Consortium (PGC) is used, which is a large 
genetic variation source associated with psychiatric diseases utilizing GWAS and other methods 
[27][28]. We also used genotype datasets containing case and control samples from the 
OpenSNP platform, a website that collects personal genomic data from individuals who have done 
direct-to-consumer DNA testing. These genomic data contain the SNPs of the individuals, and these 
datasets comprise both cases of anxiety and depression as a mental disorder and healthy controls. Table 
1 presents the demographic features of the OpenSNP datasets, while Figure-2 illustrates the 
distribution of file sources, with 23andMe, Ancestry, and FTDNA-Illumina being the most prevalent 
file types [29][30]. 

 
Table 1. 
Demographic features of the open SNP dataset. 

Demographic feature Details 
Age Varies widely; includes users from different age groups 
Sex Both male and female users are represented 
Ethnicity Diverse ethnic backgrounds, particularly European 
Genetic testing services Data from multiple genetic testing services like 

23andMe, deCODEme, and FamilyTreeDNA 
Phenotypic traits Users share a wide range of phenotypic traits, includ- 

ing physical characteristics, health conditions, and 
lifestyle factors 

Genotypes Over 215 million genotypes distributed across more 
than 2 million unique SNPs 

Geographic location Users from various countries around the world 
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As a result, three datasets were employed for training: the PGC summary statistics for 
bipolar disorder, depression, and panic disorder. For the test data, we employed the OpenSNP 
individual genotypes, which included traits related to anxiety, depression, bipolar disorder, and 
panic. The PCG library was used to detect variants in the OpenSNP dataset. Table 2 provides a 
summary of the features of the datasets used in this study. 
 

 
Figure 2. 
Number of genotype samples available on openSNP, categorized by file type. 

 
Table 2. 
Disease training and testing data information. 

Disease Training data References Testing data 
Bipolar 41917 cases, 371549 controls [31] 5 cases, 70 controls 
Depression 153458 cases, 344901 controls [32] 50 cases, 70 controls 
Panic disorder 7016 cases, 14 745 controls [33] 10 cases, 40 controls 

 
We performed data quality checks on both sources to detect and handle ambiguous SNPs, 

mismatching SNPs, and missing values. We then selected a subset of SNPs from the PGC data 
that exhibited associations with the disease of interest, applying a p-value threshold of 0.005 to 
distinguish between cases and controls is considered statistically significant, particularly in the 
field of genomics [34]. For feature extraction, we encoded the genotype data, and for feature 
selection, we employed Random Forest (RF), a machine learning method, to identify the most 
essential features. Figure-1 shows the flowchart of our data preprocessing steps, along with some 
examples of SNP data and the features that we used for our model. 
 
2.2. Deep Learning Model 

A deep learning model called the sequential model, which is a kind of Neural Network (NN), is 
employed to predict the disease status using four features: genotype encoding, SNP, effect weight, 
and P-value. Our model architecture is designed to predict binary outcomes, such as disease 
presence, based on input data. 
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Figure 3. 
Flowchart of the training model and hyperparameters. 

 
The neural network comprises two hidden layers with ReLU activation and an output layer 

with a sigmoid activation function.  During training, we use binary cross-entropy loss, and for 
evaluation, we rely on accuracy. The sigmoid function produces a value between 0 and 1, 
representing the probability of disease presence. Table 3 displays the model architecture details. 
 

Table 3. 
The NN architecture details. 

Layer Parameters 
Layer 1 Input shape 
Layer 2 32 neurons 
Layer 3 Units neurons (16 or 32 based on hyperparameter search) Activation = 

activation 
Layer 4 1 neuron activation = sigmoid 

 
To avoid overfitting and enhance the predictive accuracy of our model, we implemented cross-

validation and hyperparameter tuning in our methodology. We employed the GridSearchCV module 
[35] to determine the optimal parameters for our model, as illustrated in Figure 3 and the prediction 
performance of the optimal model (the accuracy) of is equal to 0.98. The objective of our model’s 
training is to derive the SHapley Additive exPlanations (SHAP) values, which assess the influence 
of each feature on the model’s prediction for a given instance. They rely on a game-theoretic 
approach that assigns each feature a fair and consistent importance score, considering the 
feature interactions. The strength or intensity of the SHAP value indicates the effect. SHAP values 
are model-agnostic, they can provide interpretable explanations for any machine learning model, 
including decision trees, random forests, linear regression, and neural networks [36]. These SHAP 
values are the new weights, as shown in Figure 1. 
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2.3. Methods To Generate PRS 
2.3.1. The Traditional Method 

The basic stepwise process for calculating PRS adds up the effects of many small genetic 
variations that are linked to the trait or disease [37]. Each variation has a weight that shows how 
much it influences the trait or disease. The formula to calculate the PRS for an individual is: 
 

 
where N represents the count of SNPs in the score, βi is the effect size (or beta) of variant i and 

dosage refers to the number of copies of SNPi present in the genotype of individual j [37]. 
 
2.3.2. Polygenic Risk Score Neural Network (PRSNN) 

Some studies have used machine learning to generate PRS, such as the one by [38], which 
also employed weight vectors for a new PRS prediction method. However, we added more steps, 
such as the feature selection and modified the weight vectors obtained by the neural network. 
Specifically, NNW represents the weight vector derived from the NN model, as explained in the 
previous section. This process yields individual risk scores for each SNP. The following 
formula depicts this procedure: 
 

                              (1) 
Where the variable ’N’ signifies the overlap between the SNP sets of the individual 

genotype and the PGC dataset. NNW vectors represent the weight vectors that assess the 
importance of each SNP. The dosage calculation relies on the minor allele of SNP j in the PGC 
data summary statistics. 
 
2.4. Performances 

We used logistic regression with the PRS values obtained from the traditional and PRSNN 
methods to evaluate their performance in disease prediction. We measured the logistic 
regression model using the accuracy, recall, precision, and f1 score metrics. Table 4 displays the 
performances. 
 

Table 4. 
Comparing traditional and PRSNN method performances in disease prediction. 

Disease Traditional method PRSNN method 

Accuracy Precision Recall F Score Accuracy Precision Recall F score 
Depression 0.8 0.82 0.97 0.89 0.96 0.97 0.97 0.97 
Panic disorder 0.85 0.89 0.8 0.84 0.95 1 0.89 0.94 
Bipolar 0.88 0.85 1 0,92 0.95 0.96 0.96 0.96 

 
2.5. Logistic Regression 

We applied logistic regression, a machine learning technique that can estimate the probability 
of an outcome (e.g., disease status) from one or more predictors (e.g., PRS), to predict the risk of a 
certain disease from genetic data. We used PRS as the sole predictor. We trained the logistic 
regression model on a dataset with two columns: PRS, the PRS values for each individual, and 
status, a binary variable indicating whether the individual had the disease or not. The model 
returned a coefficient for the PRS predictor that reflected the magnitude and direction of its 
association with the disease outcome. A positive coefficient indicated that a higher PRS 
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increased the likelihood of having the disease, while a negative coefficient indicated the opposite. 
We validated the model on a new set of individuals with PRS values and used it to predict their 
disease status. 

Figures 4, 5, 6, 7, 8, and 9 compare the actual and predicted disease diagnoses for 23 samples, 
using both the traditional method and the PRSNN method. 
 

 
Figure 4. 
Comparison of actual and predicted bipolar diagnosis using PRSNN Method. 

 
 

 
Figure 5. 
Comparison of actual and predicted bipolar diagnosis using the traditional method. 
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Figure 6. 
Comparison of actual and predicted depression diagnosis Using the traditional method. 

 

 
Figure 7. 
Comparison of actual and predicted depression diagnosis using PRSNN method. 
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Figure 8. 
Comparison of actual and predicted panic disorder diagnosis using the traditional method. 

 
 

 
Figure 9. 
Comparison of actual and predicted panic disorder diagnosis using the traditional method. 
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3. Results 
3.1. The Distribution of PRSs Values 

The box plots in Figure-10 shows the PRS values calculated by the traditional method and 
PRSNN respectively, show how the PRS values are distributed for people with and without 
bipolar disease. PRS values measure the genetic risk for these mental conditions. It is shown 
that people with bipolar disease have higher PRS values than people without any mental 
disease, which means they have more genetic variants linked to these conditions. 
 

 
Figure 10. 
Box plot case-control comparison of PRSs values compared to PRSNN values for bipolar disease. 

 
The box plot consists of four parts: the median, the quartiles, the whiskers, and the outliers. 

The median is the PRS value that splits the data into two equal parts.  The quartiles are the PRS 
values that mark the 25th and 75th percentiles of the data, which show how spread out the data are. 
The whiskers are the lines that go from the quartiles to the lowest and highest PRS values, 
except for the outliers. Outliers are the PRS values that are much higher or lower than the rest 
of the data, and they are shown as circles on the box plot. The box plots in Figure-10 shows the 
same insights as of Figure-11 and Figure-12 but the PRSs values are calculated here for 
depression disease and panic disorder respectively. 
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Figure 11. 
Box plot case-control comparison of PRSs values compared to PRSNN values for depression. 

 
 

 
Figure 12. 
Box plot case-control comparison of PRSs values compared to PRSNN values for panic disorder. 

 
3.2. Diagnosing the Disease 
3.2.1. Quartile-Based PRS Diagnosis 

The box plot allows us to compare the PRS values of the two groups of people. For example, 
we can observe that the group with depression has a higher median PRS value than the group 
without any mental disease, which implies that the group with mental disease has a higher mean 
genetic risk. We can also notice that the group with depression has a wider interquartile range 
than the group without any mental disease, which implies that the group with mental disease has 
more diversity in their genetic risk. The whiskers and the outliers also show us the lowest and 
highest PRS values for each group. For example, to evaluate the risk of bipolar disease, we used the 
PRS distribution’s quartiles. The traditiona method produces these PRS values for the 25th, 50th, 
and 75th percentiles: people with the disease have 0.7, 2.29, and 4.8, while people without the 
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disease have -1, -0.3, and 1.56 (see Figure-10). Based on these values, we can diagnose the disease 
like this: a person with a PRS value below -1 is probably healthy, and a person with a PRS 
value above 0.7 is probably sick. 
 
3.3. Comparative Analysis 

[39] presented a novel deep-learning-based model named DeepPRS for scoring the risk of 
common diseases with genome-wide genotype data. The model was evaluated on the UK Biobank 
dataset and shown to outperform other state- of-the-art methods for Alzheimer’s disease, 
inflammatory bowel disease, type 2 diabetes, and breast cancer. DeepPRS is reported not to rely 
solely on the additive effect of risk SNPs and has the potential to identify high-risk individuals even 
with few known risk SNPs. 

[40] compared the performance of machine learning (ML) and deep learning (DL) 
methods to classical PRS calculation methods for predicting polygenic risk scores (PRS) in 
genome-wide association studies (GWAS). The authors used simulated GWAS data with 
different allele frequencies and sample sizes to evaluate the performance of different methods. They 
found that ML methods, such as Support Vector Machine (SVM) and Random Forest (RF), can 
achieve more consistent results in terms of case-control separation compared to PRS 
calculated with the classical method. The paper suggested that ML and DL methods can be a 
good alternative to classical PRS calculation methods. 

[41] compared the use of PRS and machine learning for case/control classifi- cation 
using simulated data. The results showed that the average classification AUC for PRSice, Plink, 
Lassosum, and machine learning was 0.27, 0.3, 0.35, and 0.87, respectively. The authors 
concluded that the choice between PRS and machine learning depends on the specific 
phenotype. The study provides scripts and code segments for dataset generation, PRS calculation, 
and machine learning model training, discussing the steps involved in dataset generation, 
dataset division, quality control, PRS calculation, and machine learning.  The PRS scores are 
normalized between 0 and 1, and individuals with PRS ¿ 0.5 are considered cases. While this 
procedure is demonstrated using simulated binary phenotypes, it can likely be adapted to real-world 
datasets containing continuous phenotypes by modifying the final step and employing a multi-label 
classification approach when training the machine learning model. 

[42] also compared PRS and machine learning methods for predicting CAD status, but 
uses a different dataset and methodology. The authors used a dataset of 527 CAD cases and 473 
controls from Germany to evaluate the performance of the same machine learning methods as in 
the previous paper, as well as PRS based on 50,633 loci. They again found that PRS outperformed 
all machine learning methods, with an AUC of 0.90 in the German test data. 

Overall, these studies suggest that PRS is generally a more accurate method than machine 
learning for predicting complex diseases like CAD, although the performance may vary 
depending on the specific disease and the methods used. 

A comparative analysis of these approaches is also presented as a table given below: 
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Table 5. 
A comparative analysis of methods that calculate PRS. 

Ref. Method Data Disease Finding 
[39] DL-based model 

(DeepPRS) for 
scoring disease risk 

Genome-wide 
genotype data 
from UK 
Biobank 

Alzheimer, 
inflammatory bowel,
 type 
2 diabetes, 
breast cancer 

DeepPRS outperformed 
other state-of-the-art 
methods (prun- ing and 
thresholding method, and 
lasso model) 

[40] Compared ML 
(SVM and RF) and 
DL methods to 
classical PRS 
calculation 

Simulated 
GWAS data 

NA ML methods achieved 
more con- sistent results 
than PRS 

[41] Compares PRS and 
ML (ANN) 
methods for 
cases/controls 
classification 

Simulated geno- 
typed data 

NA ML (ANN) 
outperformed the PRS 
tools in terms of 
classifica- tion accuracy. 

[42] Compares PRS 
and ML meth- ods 
for predict- 
ing CAD 

German case- 
control data 

Coronary artery 
disease (CAD) 

PRS outperformed all 
ML meth- ods 

Proposed 
PRSNN 

DL for calculat- 
ing PRS 

genotype data 
from OpenSNP 

Mental     dis- 
eases     such as 
bipolar disorder, de- 
pression, and panic 
disorder 

PRSNN performed 
better than traditional 
method for all three 
mental diseases 

 

4. Discussion 
In this study, we meticulously assessed the PRS for each individual utilizing two distinct 

methods: the traditional method and a newly proposed approach termed PRSNN. Both 
methodologies were scrutinized for their ability to portray the distribution of PRS values 
accurately, with outcomes indicating a normal distribution. This implies that while the 
majority of individuals exhibit an average risk of developing bipolar disorder, a subset displays 
either heightened or reduced risks contingent upon their PRS. The traditional method involves 
assigning weights to individual genetic variants based on their effect sizes as deduced from 
PGC summary statistics data, then aggregating the weighted scores for all variants. However, 
this method may not account for the complex interactions and dependencies among the variants and 
may suffer from overfitting or underfitting issues, and explains only a small fraction of trait 
variance, and their discriminative ability is low in the general population. 

The technique PRSNN is a novel approach that determines PRS by employing weight vectors 
that estimate the relevance of each SNP, which were derived using a deep learning model. This 
method can handle high-dimensional data and capture non-linear relationships among the variants. 
It could reduce the sample size. 

Our study has some limitations that should be addressed in subsequent research. However, a 
limitation of this study is that we did not validate our results with external data from different 
ancestries because the currently experimented data, i.e., PGC data and the genotypes from openSNP, 
are mostly of European origin, which may limit the applicability and reliability of our findings. In the 
future, we aim to explore other populations or ethnicities, such as the Arab, and compare the results to 
those of this study, using machine learning, and we will include the phenotypes of the individuals to 
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understand how the PRS and the genotype influence the disease risk more than the phenotypes or the 
genotypes alone, this will help to understand how the PRS and the genotype influence the disease risk 
more than the phenotypes or the genotypes alone. 

Responses (such as disease outcomes) are intricately linked to genetic data, which are 
sophisticated. Research-based case-control studies using PRSs have shown that the scores and 
disease status are positively correlated. These studies have also seen widespread use of PRSs in 
research investigations. That being said, there is still much to learn about how the genotype-
environment interaction affects the functionality and application of PRS models. 

In conclusion, the PRSNN method holds promise for improving disease predic- tion and 
understanding the genetic underpinnings of complex diseases. However, further validation and 
exploration of its potential across diverse populations is needed. The use of machine learning 
techniques will be instrumental in this endeavour, potentially leading to significant advancements 
in genetic studies. 
 

5. Conclusion 
The PRSNN method, as a novel proposed approach for calculating PRS, has shown promising 

results in disease prediction. It leverages machine learning, which can analyze large sets of 
genomic data, making it an effective tool for considering interaction and nonlinear effects. 
However, the study has some limitations, like a lack of validation with external data from different 
ancestries. Future work will focus on exploring other populations or ethnicities using machine 
learning. An important area that still needs to be investigated is how genotype- environment 
interactions affect the functionality and applicability of PRS models. Leveraging machine learning 
techniques will play a crucial role in this undertaking, potentially resulting in substantial progress 
within the field of genetic research. 
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