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Abstract: Rice leaf diseases are a significant issue that adversely impact rice production in India. 
Identifying these diseases manually is labour-intensive and prone to delays, often resulting in 
substantial crop losses for farmers. Therefore, the need for an automated system for early detection of 
plant diseases is critical. Recent advancements in machine learning, computer vision, and deep learning 
have paved the way for classification models capable of automatically identifying these diseases. 
However, the challenge lies in obtaining a sufficiently large and diverse image dataset to effectively 
train deep learning models. In this paper, we address this limitation by employing advanced data 
augmentation techniques, including Deep Convolutional Generative Adversarial Networks (DCGANs), 
to generate synthetic images that expand the dataset of rice leaf diseases. By integrating these synthetic 
images with real images, a new Convolutional Neural Network (CNN) architecture is proposed, which 
offers improved generalization capabilities. The performance of the classification model is evaluated 
with and without the DCGAN-generated images. The results demonstrate that the inclusion of 
synthetic images significantly enhances accuracy, as the enlarged dataset better represents real-world 
conditions. This approach provides a promising solution for more effective rice disease identification, 
offering higher precision in real-time scenarios. 

Keywords: Automated diagnosis, Classification, CNN, Computer vision, Deep Learning, Generative adversarial networks, 
Plant diseases, Rice leaf diseases, Smart farming, Synthetic images. 

 
1. Introduction  

Food safety is a critical issue in balancing agricultural production with increasing demand [1]. In 
India, the agricultural sector contributes 17.5% to the country's GDP, with production levels rising 
annually [2]. Rice, a staple crop and one of the most cultivated cereals in India, plays a pivotal role in 
this growth. It is primarily a kharif crop, thriving in temperatures above 25°C and requiring over 100 
cm of rainfall. In regions with insufficient rainfall, irrigation systems support rice cultivation. However, 
fluctuations in production are common; for instance, rice production in 2009-10 dropped to 89.13 
million tons from the previous year's 99.8 million tons [3]. 

To address this, improving agricultural productivity is essential, especially given India's relatively 
low average yield compared to other major rice-producing countries [4]. Visible effects of plant 
diseases, referred to as symptoms, are critical indicators in diagnosing issues. These symptoms include 
changes in color, shape, and overall plant function, which are caused by either abiotic (non-infectious) or 
biotic (infectious) factors. Abiotic diseases stem from external factors, such as nutrient deficiencies or 
soil problems, and do not spread between plants. In contrast, biotic diseases are caused by pathogens 
like fungi, bacteria, viruses, and nematodes, which can spread and visibly affect leaves, roots, seeds, 
fruits, and stems. 
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This research focuses on the identification and classification of rice diseases using advanced 
technologies. Domain experts have been consulted for a deeper understanding of common rice diseases 
[5]. Precision farming, leveraging technological advancements such as remote sensing and GIS, helps 
farmers optimize inputs like water, pesticides, and fertilizers. Recent developments in computer vision 
and deep learning techniques, particularly Convolutional Neural Networks (CNNs), offer promising 
solutions for automatic image classification, addressing complex agricultural challenges [6,7]. 
 
1.1. Related Work 

Convolutional Neural Networks (CNN) are widely used in the development of image classification 
and object detection models. Phadikar et al. [8] proposed a method for identifying rice diseases using 
pattern detection techniques, specifically the Self-Organizing Map (SOM) neural network. The authors 
introduced a zoom-in algorithm that renders image features through a simple, computationally efficient 
process. Sanyal, P., and Patel, S.C. [9] focused on detecting patterns of two rice plant diseases using a 
Multi-Layer Perceptron (MLP) classifier. Their validated analysis showed that 89.26% of pixels were 
accurately organized. 

A. Smith, J.S. [10] proposed a method for identifying plant pathogens based on visible signs of 
disease in color photographs. The authors used a Support Vector Machine (SVM) to analyze 117 images 
of cotton plants, considering features like gray levels, connectivity, and texture. H. Al-Hiary and S. 
Bani-Ahmad [11] suggested a rapid and precise method for diagnosing and classifying plant-borne 
pathogens by integrating K-means clustering with Neural Networks (NNs). Bashir and Sabah [12] 
introduced a method for remote disease diagnosis in Malus Domestica using image analysis and K-means 
clustering. 

Neumann et al. [13] proposed an approach for cell disease detection using core-specific features, 
achieving highly accurate predictions on mobile devices with low-cost computing. Sachin D. Khirade 
[14] developed a method for plant disease diagnosis using artificial neural networks (ANN), classifying 
diseases from RGB leaf images. Various methods such as Feature Mapping, backpropagation 
algorithms, and SVMs were effectively employed. 

P. Mohanty et al. [15] developed a deep learning model on a public dataset and created a mobile 
application for real-time plant disease detection. Sladojevic et al. [16] proposed a model capable of 
distinguishing 13 different plant pathogens using a Deep Neural Network, offering potential for global 
application in leaf disease detection. Grinblat et al. [17] suggested an in-depth study of plant 
identification using morphological vein patterns, while Barbedo et al. [18] focused on identifying 
multiple plant diseases using digital image processing, addressing the gap between current image-based 
diagnostics and real-world needs. Alvaro F. Fuentes [19] introduced a three-step process that improved 
the identification of plant diseases by focusing on different plant parts (stems, leaves, and fruits), 
achieving approximately 96% accuracy.  
 
1.2. Problem Statement  

Deep learning experiments, particularly those involving Convolutional Neural Networks (CNNs), 
require large datasets to effectively train models. In cases where large datasets are unavailable, model 
accuracy and precision often decline. To address this challenge, a Deep Convolutional Generative 
Adversarial Network (DCGAN) is utilized to generate synthetic images. The model's accuracy is then 
evaluated using a combined dataset of original and synthetic images. 

This paper is organized as follows:  

• The architecture used to generate synthetic images using DCGAN.  

• The DCGAN architecture, which includes a Generator network to create images and a 
Discriminator network to differentiate between generated and original images.  

• The CNN model used to classify diseased images after integrating synthetic images with the 
original dataset. 
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•  Evaluation of the deep learning model's performance using standard metrics after training with 
the combined dataset. 

 

2. Dataset & Methodology 
2.1. Dataset 

In this paper, the Rice Image Dataset [20] was selected, which comprises a total of 5,932 images 
across various categories of rice diseases, including Bacterial Blight, Blast, Brown Spot, and Tungro. To 
address the challenge of limited data, basic data augmentation techniques were applied to enhance the 
diversity of the training set. These techniques included transformations such as image rotation, flipping, 
scaling, and cropping. By artificially expanding the dataset, the model was provided with a greater 
variety of image patterns, which helped reduce overfitting, improve generalization, and enhance the 
precision of the deep learning model. This approach ensured that the model could better recognize and 
classify different disease types, even with variations in image orientation or scale. 
 

 
Figure 1. 
(A)Bacterial blight, (B)Blast, (C)Brown Spot and(D)Tungro. 

 

3. Methods 
3.1. Generative Adversarial Network (Gan)- 

The goal for GAN is to model “how the data looks like (density estimation)” and generate new data 
based on what it has learned. GANs are unsupervised learning algorithms with loss as a supervised 
learning component that becomes part of the training. In 2014, Ian Goodfellow introduced a deep neural 
network architecture that leverages unsupervised machine learning to produce data [21,22]. A 
generative model's specialized frameworks are called GANs. When given a set of sample images, such as 
X1, X2 a model learns the data distribution (pdata) in order to produce new sample. It is made up of the 
discriminator (D) and the generator networks, which were trained concurrently (G). D makes a 
distinction between the actual and fraudulent images it has obtained. It receives an input of I and 
produces D, that is called as probability of original sample (i). On the other hand Generator module 
create new samples by mechanism of synthesis input j1, j2..,jn from a kind of uniform distribution p(i) 
and pairing with G(j) to create new image dimension p(g).Generator tries to achieve f(g)=f.(data)[35]. 

To minimize 1 D(G(j)) or maximize D(G(j)), the generator is trained, during training, G increases 
its ability to create more realistic images. D increases its ability to distinguish between real and artificial 
visuals.[35] 

The generator produces a 128x128x1 sized image by utilizing a 100-dimensional input vector 
containing random values drawn from a uniform distribution. The network architecture includes four 
fractional-stride convolutions with 4x4 sized kernels to up-sample the image, along with a fully 
connected layer scaled to 4x4x128. appending zeros in the pixels expands our output of each fractional 
stride convolution. At every layer to handle gradient vanishing problem batch normalization is added at 
every layer, including the output layer, to normalize the output across the mini batch. This 
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normalization prevents the generator from failing all samples to a single point and helps stabilize the 
learning process of the DCGAN. The output layer employs the Tanh activation function, while all other 
layer’s use ReLU. 

The discriminator network receives 128x128x1 images as input and produces result regarding the 
validity of the images. It has five completely connected layers with and four convolutions. Stride 
convolutions are used to reduce the spatial dimensionality. The likelihood probability score of images is 
output using the sigmoid function as [0, 1]. Additionally, every layer—aside from the second and the 
output layers—uses the dropout technique to avoid the over-fitting problem. 
 
3.2. Convolutional Neural Networks (Cnn)  

Neural Network that has multiple convolutional layers and used for image processing, 
segmentation, classification and for data, which is auto corrected, is known to be Convolutional Neural 
Network (CNN), CNN is created using many layers, main layers of CNN are: The feature extraction 
layer i.e. Convolutional layer. When an image is passed as input to a CNN, a specific layer in the 
network detects the existence of a predefined set of features within the image. Each layer in the CNN 
can be seen as a filter applied to the image, where this layer performs a convolution operation between 
the feature and the scanned image. Next layer is called sub sampling or pooling layer. This layer is a 
mediator of two layers to perform pooling features from one layer and transfer to another without 
affecting their properties and reducing the size of input image [23,24]. 

To replace all values which are negative by zeros taken in input, performed by RELU which is 
Rectified Linear Unit function works as an activation function. Its function is defined as: 

ReLU(x)=max(0,x)                         (1) 
Activation Layers Activation Layers are used in-between each nonlinear function layer to activate 

the layers such as ReLU and Convolutional layer.  Dropout layer regularizes and prevents overfitting 
through increasing testing accuracy based on training accuracy is Dropout Layer. It disconnects the 
inputs by probability p and improves the further layers. The last layer in CNN architecture is fully 
connected layer. Softmax / Logistic Layer Softmax or Logistic layer is used as binary classification and 
multi-classification and used just after Fully Connected layer. Batch normalization Batch normalization 
is the processes of normalization within the activation layer batch including subtraction of mean and 
deviation by the standard deviation. To make Neural Network more predictive it is required to minimize 
or remove prediction error, it is simply as the errors are loss, that is what Loss function works and 
calculates gradients. Loss functions update the weights of the network and Network trained. SoftMax or 
Logistic layer used separate cross entropy for binary and multi-class classification as: 

Binary Cross entropy is used for binary classification process by passing output value through 
sigmoid activation function as: 

𝐿 = −(𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦�̂�)            (2) 
 

Categorical Cross entropy is used for a multi- class classification process by passing output value 
through SoftMax activation as: 

𝐿 = ∑ 𝑦𝑗 log(𝑦�̂�)
𝑀
𝑗=1                                                      (3) 

 
CNN optimizer calculating the gradients for each training examples is not practical, as it will lag in 

prediction accuracy. To optimize the process various methods are used, from that most used are: 
Stochastic Gradient Descent: Using batches at a time or randomly selecting examples on each pass. 
RMSprop: Gradients of all examples are collected in a fixed window and avoid collecting all for 
moment. Adam: It calculates the current gradients based on past gradients by using momentum by 
adding fractions from previous gradients. 
 
 
3.3. Experiment & Analysis 
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In the proposed model for rice disease identification, the training and test datasets were first 
augmented using the Keras Image Data Generator. The Rice Image Dataset contains images of four 
disease types. To further enhance the dataset, a Deep Convolutional Generative Adversarial Network 
(DCGAN) was employed to generate synthetic images for two specific disease types: Blast and Tungro. 
Initially, the dataset comprised 5,932 images, but the application of DCGAN, trained over 1,000 epochs, 
generated an additional 2,000 synthetic images (1,000 images for each disease). 

 

 
Figure 2. 
DCGAN architecture. 

 

For the DCGAN training, key parameters such as D(G(j1)), D(G(j2)), D(i), Loss D, and Loss G 
were monitored and plotted against the number of epochs to analyze the training process for both 
the generator and discriminator networks. Figure 3 illustrates the performance comparison 
between the real images of Blast and Tungro from the original dataset and the synthetic images 
generated by the DCGAN. The results indicate that as the number of epochs increases, both 
networks achieve greater stability. 

For disease classification, a novel Convolutional Neural Network (CNN) architecture was utilized. 
The architecture comprises five convolutional layers, with Batch Normalization added to mitigate 
overfitting, and a Dropout rate of 0.25 to enhance test accuracy. The output layer employs the Softmax 
activation function. The model was fine-tuned with hyperparameters such as 25 epochs and a learning 
rate of 0.0001. Additionally, the model's performance was evaluated using three CNN optimizers: Adam, 
SGD, and RMSprop. Accuracy and Top-5 accuracy were used as evaluation metrics, with Categorical 
Cross Entropy as the loss function to assess the difference between actual and predicted classes. 
The following steps were carried out: 

1. The original Rice Image Dataset was augmented and used to train the CNN model, and the 
model's accuracy was evaluated. 

2. A new dataset consisting of synthetic images of Blast and Tungro, generated by DCGAN, was 
used for data augmentation. This augmented dataset was then employed for further model 
training. 

The performance metrics of the proposed CNN model and comparative analyses are detailed in the 
results section. The Keras deep learning library was used for model training, and both the DCGAN and 
CNN models were trained on Google Colab. 
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4. Results & Discussions     
The proposed DCGAN model for generating synthetic data in the form of Blast and Tungro disease 

images has been evaluated to improve CNN classification performance. The generated images are mixed 
with the original dataset to increase the diversity of the training data. By utilizing DCGAN-generated 
synthetic data, the CNN model's training process can be enriched, leading to improved generalization, 
particularly for real-world test cases. 
 

Original Image (Blast & Tungro) Generated Image (Blast & Tungro) 

 
 

  

 
 

  
Figure 3. 
Generated Images of Blast & Tungro through DCGAN. 

 
The GAN network attempts to optimize the loss function V(D,G) given below[22] 

        
  

(6) 
 

The use of generator which is here G(z) is used to convert noise z into which is input into some kind 
of data, as images. The role of discriminator D(x) is to discriminate and output the probability of to 
identify input coming is from real images or not. This is achieved by using log-likelihood function of 
D(x) and 1-D (z) that is defined in objective function.  The performance of DGCAN is assessed using the 
average testing accuracy value. For each category, additional metrics like accuracy, F1-score, recall, 
precision computed & analyzed. 
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Figure 4. 
Epoch analysis (1-1000) for blast. 
 

 

    
Figure 5. 
Epoch analysis (1-1000) for Tungro. 

 
Table 1. 
CNN model accuracy without GAN. 

Method Optimizer Loss function Epoch Validation accuracy 
CNN (From Scratch) SGD categorical_crossentropy 25 98.75 
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Table 2. 
Accuracy of CNN with DCGAN. 

Method Optimizer Loss function Epoch Validation accuracy 
CNN (From scratch) SGD Categorical cross entropy 25 99.75 
 

 
Figure 6. 
CNN(DCGAN) training & validation loss. 

       

5. Discussions 
1. CNN with and without GAN Integration: Table 1 shows that the baseline CNN model, trained 

from scratch without synthetic data, achieved a validation accuracy of 98.75%. However, as shown 
in Table 2, after introducing DCGAN-generated images, the validation accuracy rose to 99.75%. 
This increase in accuracy underscores the advantage of using synthetic images generated by 
DCGAN, suggesting that the model was better equipped to generalize to unseen data. 

2. Training and Validation Metrics: The training and validation loss and accuracy plots (shown in 
the figures) provide insights into the model's learning process. The validation loss consistently 
tracks the training loss, indicating that the model is not significantly overfitting. Over the course 
of 25 epochs, the validation accuracy remained stable and high, reaching close to 99.5%. The 
training loss steadily decreased over time, with validation loss showing more fluctuations but 
overall following the same downward trend. The proximity of the two curves indicates minimal 
overfitting. 

3. DCGAN Epoch Analysis: Figures depicting the quality of DCGAN-generated images for Blast 
and Tungro diseases across different epoch values (200, 500, 1000) indicate that as the number of 
epochs increases, the quality of the generated images improves. This is particularly noticeable for 
epoch values of 1000, where the synthetic images are almost indistinguishable from real ones. The 
visual improvement suggests that the generator network in the DCGAN becomes more adept at 
producing realistic images with more training iterations. 

4. Loss Function Behaviour: The generator and discriminator losses reveal an interesting trend. 
Initially, the generator loss increases, which might indicate that it struggles to fool the 
discriminator. However, as the epochs increase, the discriminator loss decreases, eventually 
reaching a minimum at 1000 epochs. This is a common observation in GAN-based models where, 
over time, the generator becomes more effective at producing realistic images, while the 
discriminator becomes less able to distinguish between real and fake images. 

5. Quantitative Metrics and Performance: The research highlights various metrics for assessing the 
model's performance. In addition to accuracy, precision, recall, and F1-score are computed for 
both the real and synthetic datasets. The CNN model trained with DCGAN images outperforms 
the baseline in almost every metric. The increase in accuracy and other performance metrics can 
be attributed to the enlarged and diversified dataset created by adding synthetic images to the 
training set. 
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6. Training and Validation Loss Comparison: The training and validation loss curves for the CNN 
model with DCGAN reveal that the model is learning effectively without major signs of 
overfitting. Both the training and validation losses decrease steadily throughout the epochs. The 
fact that the loss curves for both datasets—real and augmented with synthetic images—are very 
similar further validates the effectiveness of DCGAN in generating meaningful data for the 
training process. 

The results presented in this analysis highlight the power of synthetic data generation using 
DCGAN, especially in scenarios where the dataset is small or imbalanced. This study lays a foundation 
for future research into the benefits of GANs in generating data across various domains, including 
agriculture, medical imaging, and other industries requiring image classification. Future research could 
explore different GAN architectures, such as Wasserstein GANs (WGANs), to see if further 
improvements in the quality of synthetic data and model performance can be achieved. In conclusion, by 
utilizing DCGAN-generated images, the CNN model not only increased in accuracy but also became 
more robust and capable of handling diverse real-world data. The successful application of DCGAN in 
this study suggests that such synthetic data generation techniques could play a vital role in improving 
AI models' performance in areas where data is limited or difficult to obtain. 
 

6. Conclusions and Future Plans 
In this study, we explored the efficacy of employing Deep Convolutional Generative Adversarial 

Networks (DCGAN) for enhancing the accuracy of plant disease classification, specifically for rice 
diseases. By generating synthetic images through DCGAN, we successfully augmented the original 
dataset, thus significantly increasing the total number of training samples. This approach not only 
addressed the challenge of limited data availability but also ensured that the newly generated images 
closely resembled real-world data, thereby improving the generalization capabilities of the CNN model. 

The comparative analysis between the models trained with and without DCGAN-generated images 
revealed a marked improvement in classification accuracy when synthetic images were included. The 
augmented dataset allowed the CNN to learn more diverse features, thereby equipping it with the 
ability to recognize plant diseases with higher precision in real-time scenarios. The stability of training 
and validation loss metrics across epochs further validated the robustness of the proposed approach, 
indicating minimal overfitting and effective learning dynamics. 

Moreover, the evaluation of generator and discriminator losses highlighted the adaptive learning 
process of the DCGAN framework, where an increase in generator loss coincided with a decrease in 
discriminator loss, stabilizing at the 1000-epoch mark. This behaviour exemplifies the complementary 
relationship between the generator and discriminator, emphasizing the DCGAN's effectiveness in 
generating high-quality synthetic images that enhance model training. 

Overall, the findings suggest that leveraging DCGAN for synthetic data generation is a promising 
strategy in the field of plant disease recognition. Future research may expand upon this foundation by 
exploring alternative GAN architectures and further refining the generated images to optimize 
classification outcomes. The implications of this study extend beyond agricultural applications, 
potentially benefiting various domains where data scarcity hampers the performance of machine 
learning models. 
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Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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