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Abstract: Nerve impulse has been simulated as an ion–acoustic breather containing the internal FPU 
recurrence spectrum. The strong electrolyte of intracellular fluid is interpreted as dense plasma where 
electroacoustic solitons can propagate. The dynamics of sodium ion concentration is described by the 
sine-Gordon equation while the dynamics of proton concentration is done by the Korteweg de Vries 
equation. The system of these coupled equations has a breather solution having an intrinsic structure 
with the Fermi–Pasta–Ulam recurrence. Its spectrum possesses a dynamic memory for the initial 
conditions of its modes. Such breathers can be generated in firing process of a neuron. The information 
capacity of each breather can reach 1014 bits. 
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1. Introduction  

Traditionally, the electrical activity of a single neuron is described within the framework of the Hodgkin-Huxley model 
[1], where, in accordance with the Hartley formula, the information capacity of a single spike is bit. In other words, a neuron is 
considered as a system with two states, and all the complexity of a brain's ability to process information is explained by the 
presence of numerous parallel processing paths. However researches have reported correlations between learning and changes 
in ribonucleic acid (RNA) and protein in neurons [2]. These data supported a hypothesis [3] that a single neuron, based on the 
number of triplets existing in its RNA molecule can sustain an information capacity up to bits. 

The purpose of this paper is to develop a neuronal model based on the complex FPU recurrence spectrum, interpreted as 
an information carrier. The FPU recurrence phenomenon was first reported in 1955 [4] as a result of a computer simulation of 
the oscillatory dynamics in a chain of non-linearly coupled vibrators with fixed ends. In contrast to logical expectations, this 
system did not have a tendency toward equipartition of energy among its degrees of freedom. Instead of this, a periodical 
recurrence of the initial perturbation energy spectrum was observed. Later [5], it was established that the FPU phenomenon 
has two types of recurrence: simple and complex. In a simple recurrence, an almost perfect periodic return of energy spectra is 
observed in the system, whereas in a complex version, the periods not stable and Fourier modes exhibit complex sharing and 
regrouping of energy. This interesting behavior of the FPU chain stimulated a number of investigations of the system 
[6,7,8,9]. The first theoretical description of the problem was done by Zabusky and Kruskal [10], who showed that FPU 
recurrence can be described by the Korteweg-de Vries (KdV) equation with periodic initial conditions. Another team of 

researchers,  
Yuen and Lake, were able to describe FPU recurrence within the framework of the Nonlinear Schrodinger Equation (NLS) 

with periodic boundary conditions [11]. Same authors reported about very interesting property of the FPU recurrence to 
"remember" the initial conditions for the active modes of its spectrum, reproducing them periodically in the FPU spectrum. In 
another study of the FPU problem [12], it was proposed that the exchange of energy between modes of the system is 
connected with a transition to strong stochastisity. In discussing early investigations of FPU recurrence, it is necessary to 
emphasize that the original vibrator's chain had fixed ends [4]. But with open ends, the chain also can represent a theoretically 
interesting autonomous distributed system, responsive to initial perturbations. As a first step of our study we tried to consider 
neural activity using a plasma approach. 
 
3. Neural Activity Model 

We shall consider a neuron as a volume containing the strong electrolyte of intracellular fluid in which RNA molecule 
plays the role of neural information carrier. Additionally we assume that all potassium ions are electrically neutralized by 
forming ionic couples with hydroxyl groups that provides an overbalance of protons in the electrolyte of the neuronal 
intracellular fluid. Such assumptions allow us to analyze the proton dynamics by applying the simplified cluster model of the 
seawater strong electrolyte suggested by Frank and Wen [15]. In this model, every sodium ion is surrounded by ionic 
atmosphere consisting of four water molecules and every chlorine ion has two water molecules in its atmosphere (Figure 1).In a 
spherical volume of a neuron, consider one-dimensional chain of Na+ and Cl- ions near the lower layer of neuronal membrane 
as illustrated in Figure 1. Depolarization of the membrane creates a nonlinear proton concentration wave due to the "croquet"  

mechanism of proton transport between water molecules, suggested by Bernal [16]. The electric potential created by the 
combined sodium ion and the chlorineion and the chlorine ion atmosphere can be defined within the framework of the Debye-
Hukkel theory as a sum of repelling and attracting parts [16]: 
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Figure 1. 
Plasma model of a neuron. 
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, e - is the electron charge, n – is the sodium ion concentration,   - is the water 

permittivity, 0r - is the distance between sodium and chlorine ions in the chain and 1−−= nnn xxr , where nx  - is the n-th 

proton shift in the chain. 
Accounting (1) we can write an equation describing the dynamics of the proton motion in the chain (Figure 1) in a form of 

Toda's chain [17]: 
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Where Hm  -is the proton mass. Toda showed that Eq. (2) can be reduced to the KdV equation [17]: 
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The spherical form of a neuron creates periodic boundary conditions for the circulating proton concentration wave, 
described by Eq. (3) in the form: 

( ) ( ) ;, nHH Luu +=  (4) 

Where nn RL 2=  and nR  - is the internal radius of a neuron. Zabusky and Kruskal have demonstrated in their work 

[10] that Eq. (3) together with Eq. (4) give the solution in a form of the FPU recurrence. In the proposed model periodic 
boundary conditions for the proton wave can be modulated in accordance with nucleotide sequence of the RNA molecule 
(Figure 1). 

Now we are able to evaluate numerically the neuron information storage capacity based on the strong electrolyte 

properties of the intracellular fluid. Accounting the proton run length of "over jumping" between the neighboring water 

molecules equal to 0.86
0

A  [16] and the temperature of the intracellular fluid to T = 310 K, it is possible using the analogy with 
plasma to define the collision frequency of a proton with water molecules as: 
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Where 
H - is the proton free run path, 

HV - is the proton velocity, 
Hm  - is the proton mass. 

Since the duration of a nerve impulse constitutes units of milliseconds [18] we can formally evaluate the single spike 
information capacity applying Kotelnikov's theorem [19] as follows: 

1010*72,32 == icicN  bits per spike (6) 

Here,  = S/cs, where S = L/sin is the soliton length,  is the resonator spirality angle, cs = 104 ms–1, S = 10 m, 

L = 10 cm, and sin = 0.1. 
The next step is to show how this high frequency signal can be embedded into the structure of the action potential. For 

this purpose, we shall consider a neuron membrane as a liquid crystal containing a  
lipid bilayer [20] (Figure 1). Accounting the distance between the lipid molecules in the membrane layer and the distance 

between sodium ions in the chain (Figure 1) to be about 4.7 A [16,21], we can suggest the following mechanism of interaction 
between high frequency proton concentration wave and the ionic wave of the action potential. 

Consider the sodium chain shifted at a distance U relative to the equilibrium positions of the lipid molecules of the 
membrane lower layer (Figure 1). Such a picture allows applying the approach developed by Frenkel and Kontorova [22] for 
the analysis of dislocations dynamics in crystals. 
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We define ( )nUU  potential effecting n-th sodium ion from the immovable chain of lipid molecules in the neuron 

membrane layer (Figure 1) as: 
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Where
La  - is the distance between neighboring lipid molecules in the membrane layer, 0U  - relative position of the lipid 

molecule.  

In this case the dynamics of the sodium ion shift can be described by the following equation [23]: 
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Where   - is the elastic constant for the relative shift of the sodium ions. 

Now using the continuum approximation ( ) ( )txUtxU n ,, →  and introducing a function proportional to the 

modulation of the sodium ion density in a form: 
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We obtain the sine-Gordon equation: 
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relative length of the chain. 
Taking into account that the sodium ion chain is limited by the dimension of the neuron, we can get the soliton solution of 

(10) in the form [24]: 
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The dimension of a neuron NL  will define the boundary conditions for Eq. (10) by analogy with a long transmission line 

open on both ends, which was used for simulation of the Josephson junction dynamics [25]: 
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As shown by Fulton [25] for chains with limited length described by the sine-Gordon equation there exists an energy 

exchange between soliton and plasma solution. This type of Eq. (10) solution represents in the limit  →sin  the standing 

waves which are close to the knoidal waves of the KdV [26]. These properties of Eq. (10) give an opportunity to apply the 
experimentally established plasma phenomenon of locking high frequency electric field by the low density plasma regions [27]. 
Within the framework of this approach we can interpret a spike as a locker of high frequency proton concentration waves 
within the body of the sodium ion concentration waves, because the strong electrolyte of the neuron intracellular fluid can be 
considered as a dense plasma. So the nerve spike forming process can be described by the system of coupled sine-Gordon and 
KdV equations: 
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Where
1 , 

2  < 1 - are the coefficients of interaction between sodium ion concentration waves and proton ones.  

In accordance with the results of Ikezi paper [27], in which a similar pair of equations was studied, the solution of the 
system (13) represents a soliton with internal oscillatory structure. Parametrical coupling of equations in (13) provides an 

effective energy exchange [13]. We looked for the system’s (13) solution having the following considerations. Since periodical 
initial conditions imposed on the KdV equation resulted in the model of Zabusky and Kruskal in forming the FPU solution we 
considered the influence of intermittent KdV solitons on the SG equation as a perturbing factor. Soliton of the SG equation 
captures the modes of this external influence. The number of captured modes is connected with the asymptotic phase shift 
[28]. To get the SG perturbed solution it is necessary to highlight the perturbation at the background of the SG soliton: 

 += S  and to linearize the obtained equation over . Therefore, we get an equation with a “dispersing” potential:  

=f(x)exp(it). For the SG equation S  looks as follows [28]. 
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In (15) there was carried out the Lorentz transform for the coordinat system moving at the soliton’s velocity. From here 
for f(x) we obtain. 
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The solutions of (16) consist of one bound state and a continues spectrum [28].  

0),(
2

)( 0 == 
d

x
sch

d
xf B

  (17) 









+= − )()2()( 02/1

d

x
th

d

i
ke

c
xf ikx

k

k


  (18) 

22

0

2

0

2
kck +=   (19) 

As it follows from (18) due to the motionless soliton of the SG equation the KdV solitons phase shifts in asymptotic for a 
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The most important feature of functions (17) and (18) is that they being the own functions of self-conjugated operator (16), 
form a full multitude - basis in the space of functions of variable x. This multitude represents a natural basis for the 

interpretation of the solution perturbations as a soliton. In this case the modes of continues spectrum reflect the soliton form 
changing and the “emission” as well. The conditions of orthoganality and fullness have the following expression [28]. 
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As it follows from (21) and (22) they can be used for expanding any arbitrary perturbation and their contributions into the 

energy separate. 
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 is the soliton energy, 00 /8 cAM S =  - “mass of peace ” of the soliton in the 

SG equation [28]. 
In the simplest case the solution of the couple (13) can be given in a form of the SG breather, that intrinsic oscillatory 

degrees of freedom represent the FPU recurrence of the Zabusky and Kruskal model [10]. Besides, the summary energy of the 
FPU modes in a form of the Fourier sequence and the energy of non - equidistant modes remains constant and a reversible 
regrouping of energy takes place between equidistant and non - equidistant spectra of frequencies so representing the full FPU 
recurrence. 
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In the equation (24) the interaction between the energies of equidistant and non -equidistant modes takes place due to the 
continues spectrum and the KdV solitons “tails”. As it can be seen from (24) that is the FPU character depends overwhelmingly 

on the peculiarities of the medium, for example, admixtures like 
2
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0 )(  +=x will result in changing in space the 

coefficient  in the SG equation. If to transfer the FPU scenario on macromolecules like neural RNA its spectrum 
characteristics will fully depend on the nitrogen bases sequence along the molecules. Having the described theoretical basis for 
the full FPU recurrence, we consider a physical model for this phenomenon. 
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3. Conclusion 
Developed model enlarges the existing notion about a neuron as a simple binary cell and can explain the information 

processing ability in some insects having only few neurons. These data supported a hypothesis [3] that a single neuron, based 

on the number of triplets existing in its RNA molecule can sustain an information capacity up to 
1410  bits. 

Besides, any intracellular fluid or electrolyte in organism can probably serve as a medium for propagating ion – acoustic 
solitons. Moreover, neurons can be arranged into local or general associative systems. 
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