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Abstract: The problem of ensuring the stability of tool-forming motion trajectories relative to the 
workpiece, taking into account parametric self-excitation, is considered. The factors causing periodic 
changes in the parameters of the dynamic cutting system are analyzed. These factors are related to the 
spatial anisotropy of elasticity properties in the processed workpiece subsystem, variations in the 
allowance around the perimeter of the workpiece rotation, kinematic disturbances from the mechanical 
parts of the machine tool’s drive units, and periodic processes in the cutting zone. A generalized 
dynamic model of the system with periodically varying parameters is presented. The influence of 
periodically changing parameters on the stability of the trajectories is studied. The specific features of 
stability loss in dynamic cutting systems are revealed. In particular, it is shown that due to parametric 
effects, as cutting speed increases and spindle rotation frequency rises, there is always a critical 
frequency at which the system loses stability. 
Keywords: Periodic parameter variation, Parametric self-excitation, Stability. 

 
1. Introduction  

Ensuring the stability of the tool's stationary movements around the workpiece is one of the most 
important challenges when selecting technological parameters and design features of the tool and 
workpiece subsystems, which interact through the cutting process. Vibrations that arise from the loss of 
stability in the stationary trajectory of the tool's movements around the workpiece directly affect the 
geometric quality indicators of the part, productivity, production costs, and tool durability. As a result, 
numerous studies have focused on understanding the conditions leading to instability and the causes of 
self-oscillations during cutting [1-36]. In these studies, linear or nonlinear differential equations with 
constant parameters were used as mathematical models. 

In summarizing the material presented above, the following points explain the loss of stability and 
the development of self-oscillations during cutting: 

- The loss of stability depends on the delay in the variations of cutting force relative to variations in 
the cut-off layer's area. The existence of this delay between the cutting forces and the deformation shifts 
of the tool relative to the workpiece is proposed as an explanation for the loss of stability. This concept 
is discussed in the works of Kudinov A.V., Eliasberg M.E., Zharkov I.G., and others [1-3,9-11]. The 
effect of shear layer variations from the previous cycle is treated as a delayed argument, as examined by 
Y. Altintas, S.A. Tobias, H.E. Merritt, J. Tlusty, and others [4-6,20-25,27-30,32-36]. 

- The loss of stability and the development of self-oscillations are also explained by the dependence 
of cutting force on cutting speed. This mechanism of oscillation excitation is explored in the works of J. 
Peters, I. Grabec, M. Wiercigroch, A.I. Kashirin, L.S. Murashkin, and others [7,8,12-16,26,31]. 

- Another explanation for the loss of stability and the development of self-oscillations is the 
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ambiguity in the dependence of cutting forces when the tool moves toward and away from the 
workpiece. In this case, the hysteresis characteristics define a spatial delay, which is explored as a 
mechanism for the formation of self-oscillations in the works of N.V. Vasilenko, V.A. Ostafiev, T.P. 
Putyata, A.P. Sokolovskiy, and others [17-19]. 

Some studies also examine the loss of system stability during cutting due to periodic changes in its 
parameters. This is discussed in the works of T. Insperger, G. Stepan, Z. Yao, Yu.F. Koperlev, and 
others [37-40]. In these works, the changing stiffness is identified as the primary cause of parametric 
oscillations during cutting. They often use a modified Mathieu-Hill equation. However, the main 
limitation of these models is their scalar representation, which does not account for the various factors 
contributing to the periodic changes in the system's parameters. 

Practical experience shows that these concepts often contradict many well-known experimental 
data. For instance, according to current theories, as cutting speed increases, the system's stability 
reserve should also increase. Yet, practice reveals that this holds true only at relatively low spindle 
speeds. When the spindle speed exceeds a certain threshold, vibrations invariably increase, indicating a 
loss of trajectory stability. This paper, based on established concepts of the dynamic cutting system, 
addresses a previously under-analyzed issue of self-excitation in the system due to periodic parameter 
changes in the mathematical description of system dynamics. 

There are numerous reasons to consider parameter variability in the dynamic cutting system. 
Firstly, the elastic properties within the machined part's subsystem are not symmetrical. Secondly, when 
machining a workpiece with periodic variations in the allowance, the parameters of the dynamic 
characteristics of the cutting process also exhibit periodic changes. Thirdly, the trajectories of the 
machine's actuators are always subject to periodic variations due to kinematic disturbances, which 
depend on the accuracy and design imperfections of the mechanical drive components. Fourthly, in the 
machining of most materials, there is a periodic change in cutting resistance associated with the periodic 
formation of the sliding surface in the region of primary plastic deformation. Finally, many technological 
processes inherently involve periodic changes in parameters, such as in milling operations. All of these 
factors lead to, at the very least, periodic changes in the total stiffness within the equations of 
interacting subsystems. In such systems, as known from vibration theory, parametric self-excitation is 
possible, depending on the frequency of the periodic changes in parameters. 
 
2. Generalized Mathematical Model of a Cutting Dynamic System as a System with 
Periodic Parameter Changes 

To study the conditions for self-excitation in a dynamic cutting system with parameters that 
periodically vary as functions of time, it is necessary to consider a generalized model of the system. Such 
a model should capture the main characteristics of the system without being overly complex. For this 
purpose, we will present the main physical assumptions adopted in the creation of the mathematical 
model: 

• We consider that the dynamic equation of the cutting process represents a two-mass mechanical 
system consisting of the tool and workpiece subsystems. These subsystems interact through a 
dynamic link formed by the cutting process [2-3]. 

• Without loss of generality, we limit our consideration to the case where the stiffness of the tool 
subsystem is much greater than that of the workpiece subsystem, meaning the stiffness of the 
tool subsystem can be considered absolutely rigid. 

• Elastic deformation shifts ( )X t  of workpiece subsystem are considered in space, that is 

 1 2 3, ,
T

X X X X= ,where , 1( )X t - tangential, 3( )X t  - radial, 2( )X t  - axial. 

Taking into account the assumptions made the equation of dynamics of cutting process has the 
following form: 

2

2
( , , )c c

d X dX dX
m C kX F f t X

dt dt dt
+ + =                                                            (1) 
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where 1 2 3( , , ) ( , , ), ( , , ), ( , , )

T

c c c c c c c c

dX dX dX dX
F f t X F f t X F f t X F f t X

dt dt dt dt

 
=  
 

- vector - functions of 

cutting forces, depending on technological parameters ( cf - feed, ct - depth of cut) and elastic 

deformation displacements of the workpiece subsystem at the point of contact between the tool and the 
workpiece.  

, , 1,2,3 0,ij ijm m i j and m i j = = =   ; , , 1,2,3ijc c i j = =  ; , , 1,2,3ijk k i j = =  - matrixes 

of inertial, dissipative and elastic coefficients of workpiece subsystem. As shown in works [1-3], all 
these matrixes are symmetric positive-definite matrices.   

To study the system (1), it is first necessary to reveal the structure of the cutting force and the 
periodic change of the system parameters, as well as their mathematical description. 

In (1), at disclosure of regularities of formation of cutting forces we will take the following 
hypotheses into account [2,24,41, ...]:  

 + Forces formed in cutting zone are proportional to the cross-sectional area of uncut chip, that is 

0( ) . ( ),F t S t=  where σ - specific force of cutting; ( ) ( ). ( ) ( ). ( )c cS t a t h t f t t t= = - the current value of 

the cross-sectional area of uncut chip; 
( )

( )
sin

ct t
a t


= - the current value of width of the cut-off layer; 

( ) ( )sinch t f t = - the current value of thickness of the cut-off layer; 𝜑 - the main angle on the plan; 

( )ct t  and ( )cf t
 
- respectively the current value of cutting depth and feed which are defined by the 

following expressions: 
0

3 3( ) ( ) ( )c cf t f X t X t T= − + − ;
0

2( ) ( )c ct t t X t= − ,  where 
0

cf ,  
0

ct - given 

values of feed and cutting depth; 3 3 3( ) ( ) ( )t

t TX t X t T f t dt−− − = , 3( )t  - variable component of 

longitudinal feed speed, mm/s; T - period of rotation of spindle.   

+ Cutting forces have invariable orientation in space: 0( ) ( )F t F t= , where  1 2 3, , ,
T

   =  -

vector of orientation coefficients of forces in space. 

+ The module of force is late at a variation of value of the area of the cut-off layer [1,9,10]: 

0( ) ( )F t S t = − , where 𝜏 - delay time or constant of time of a chip formation. 

Thus, the cutting force can be represented in linearized form as follows:   

( )( )0 0 0 0

0 1 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )c c c cF t f t t t f t X t t t X t X t T   = − − − −     (2) 

Now, we will consider the factors that influence the periodic variation of the system parameters and 
their mathematical description. 

Periodic changes of parameters of the linearized dynamics equation in the vicinity of a stationary 
trajectory have two main reasons. The first one is periodic change of stiffness in a workpiece subsystem 
fixed in the chuck. In this case, as shown in experimental studies, values of stiffness of workpiece 
subsystem in the plane normal to its rotation axis periodically change along rotation angle of workpiece 
(Fig.1) for the case when the part is fixed in a three-jaw chuck.  
Note that periodic changes in stiffness are due to the fact that when the workpiece is positioned opposite 
the chuck jaw, the stiffness is always greater than when it is positioned between the jaws. Thus, 
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parameters of stiffness of a workpiece subsystem fixed in a spindle in the direction illustrated in Fig.3 
and in the direction orthogonal to it have approximately invariable distributions, but they are shifted on 

a phase by an angle depending on the number of chuck jaws, for a three-jaw chuck on a angle of 
3


. It is 

characteristic that the modulation level of parameters of stiffness of processed workpiece subsystem 
depends on geometry of jaws and on the way of fixing detail in the back rotating center. Level of 

modulation is defined by parameter ∆ in expression cos(3 )c t+   . Besides, frequency   is rotation 

frequency of spindle. Parameters of stiffness of tool subsystem in orthogonal directions are symmetric as 
shown in [1, 6]. Therefore, matrices of stiffness of workpiece subsystem can be expressed in the 
following form: 

0

0

33

sin3 0 0

0 sin(3 ) 0
3

0 0

c t

c c t

c



+   
 
 = +   +
 
 
 

     (3) 

In general case, matrices of stiffness of workpiece subsystem can be expressed in the following form:  

11 11 1 12 12 1 12

21 21 1 21 22 22 1 22

33

sin( ) sin( ) 0

sin( ) sin( ) 0

0 0

c t c t

c c t c t

c

  

   

+  +  + 
 = +  + +  +
 
  

                            (4) 

where, 1 n =  , n - number of chuck jaws,   - rotation frequency of spindle. 
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Figure 1. 
An example of change of stiffness of the workpiece fixed in the three-jaw chuck at change of 
rotation angle of spindle. 

 
The second reason is caused by the errors of a profile of workpiece cross section caused by 

inaccuracy of workpiece installation in the tightening device and shift of workpiece axis and its rotation 
axis. Besides, periodic changes of allowance are influenced by radial beats of spindle which, as shown in 
work [42], also have circular trajectories in variations relative to ideal rotation axis of spindle. All these 
errors, which are representable in the form of a limited Fourier series, cause additional change of the 
current value of cutting depth, therefore, periodic changes of parameters in the equations of the 
interacting subsystems. Then the current cutting depth has the following form: 
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0

2 21
( ) sin(2 1) ( )

N

c c ii
t t t i t X t 

=
= + − −      (5) 

Were,  -coefficient of periodic component of cutting depth. 

Expression (5) shows dependence of the current cutting depth on deformation shifts taking into 
account periodic variations of allowance on the workpiece rotation period. In particular, if absolutely 
round body of workpiece, axis of which is displaced about rotation axis of spindle is considered, then   

0

2 2( ) sin ( )c ct t t t X t = + −        (6) 

First of all, we will give a qualitative characteristic of the system (1) taking into account (2), (4), (6). 

It has the stationary solution  * * *

1 2 3( ) ( ), ( ), ( )
T

X t X t X t X t= , defined from condition 0=
dt

dX i , 0
2

2

=
dt

Xd i

. This stationary trajectory can lose stability. To analyze stability of a stationary trajectory of 
movements of system (1) it is necessary to consider the equation in variations concerning this trajectory. 

This equation is obtained after replacing variables 
*( ) ( ) ( )X t X t x t= + and for small deviations we 

obtain the equation in variations relative to stationary trajectory: 

   

   

2

1 1 2 3
0 11 12 13 11 11 1 11 1 12 12 1 12 22

0 0

13 1 2 3 1 2

2

2 1 2 3
0 21 22 13 21 12 1 21 1 21 21 1 21 22

sin( ) sin( )

(1 sin( )) 0

sin( ) sin( )

c c

d x dx dx dx
m c c c k t x k t x

dt dt dt dt

k t t x f y

d x dx dx dx
m c c c k t x k t x

dt dt dt dt

 

   

 

+ + + + +   + + +   +

 + + +  + = 

+ + + + +   + + +   +

0 0

23 2 2 3 2 2

2
0 03 1 2 3

0 31 32 33 31 1 32 2 33 3 2 3 3 22

2
2 2

(1 sin( )) 0

(1 sin( )) 0

c c

c c

k t t x f y

d x dx dx dx
m c c c k x k x k f t x f y

dt dt dt dt

dy
dy x

dt

    

    












 + + +  + =  

  + + + + + + + +  + = 

 + =


 (7) 

where   1 2 3, ,
T

x x x x=  - vector variations (deviations) of elastic deformation shifts of system from 

the stationary. 
It is important to emphasize that the equation in variations about stationary trajectory (7) has the 

periodic coefficients influencing its stability, that is, they characterize the mechanism for stability loss 
connected with parametrical excitement which isn't considered earlier in dynamics of machines. 

In (1), the frequencies 1 and 2 are either equal to or multiples of the spindle rotation frequency. 

Therefore, Floquet theory [43, 44] can be used to analyze the stability of system (7). When studying 
the stability regions, the method of direct digital integration of the system of differential equations 
based on the fourth-order Runge-Kutta method was applied. The loss of stability was identified through 
the solution trajectories of the differential equations. 
 
3. Features of Parametric Self-Excitation in a Dynamic Cutting System 

In a real dynamic cutting system, there is always a change in parameters due to various reasons. 
Typically, there are several frequency components of parameter variation, which are multiples of the 
spindle rotation frequency. The variations in forces lag behind the changes in elastic deformation 
displacements, and this lag depends on the technological conditions, the geometry of the tool, and the 
physical and mechanical properties of the processed material. Therefore, even without parametric 
effects, the system may lose stability. Periodic parameter changes typically contribute further to this 
loss of stability. 
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The elastic properties of the workpiece subsystem, without the cutting process, are linear, and the 
stiffness matrices are symmetric and positively defined. Therefore, in the modeling space of elasticity, 
based on the rotation matrix, it is possible to define the axes of collinear and orthogonal directions, 
which rotate as the spindle turns under a given anisotropy of the elastic properties. This condition can 
cause parametric self-excitation of the system, which complements the self-excitation conditions due to 
the influence of circulatory forces formed by the dynamic interaction of the machining process. 

For further analysis, some typical examples of parametric self-excitation systems are given. For this 

purpose, we will consider various parametric self-excitation diagrams on a plane: 0/ ,   = − where 

𝜔0 is the natural frequency of the main oscillatory circuit of the system, Hz; ω is the parametric 

excitation frequency, Hz; μ is the parametric excitation level (𝜇 ≤ 1 ). 
To more clearly clarify the influence of various system features on the loss of stability, we first 

consider the scalar analogue of system (7). For this case, we analyze the influence of two-frequency 
parametric excitation for the system: 

2

0 1 2(1 sin( ) sin(3 )) c

d x dx
m c k t t x k y

dt dt

dy
y x

dt

   




+ + + + = −


 + =


    (8) 

where , ,m h c - respectively, the mass, damping coefficient and stiffness of the subsystem; ck - 

stiffness of cutting process, /N mm ; τ- chip formation time constant, 𝑠.  
Let us consider the change in the parametric excitation region of the system on the plane of 

parameters 1( , )   with variation of 2  from 0 to 0.8 and for given values of the parameters of the 

dynamic system 5000 /ck N mm= , 
30.1*10 s −= ; values of system parameters: 

22.25 . /m N s mm= , 0.1 . /c N s mm= , 10000 /k N mm= . The corresponding parametric excitation 

diagrams of the system are shown in Figure 2.  
 

 
Figure 2. 

An example of changing the region of parametric excitation of the system on the plane of parameters 1( , )  for the 

cases 2 0 =  (a) and 2 0.8 =  (b). 

 
The given example is calculated for a system having a natural frequency of the conservative system  

1

0 150 s −= . If we consider the spindle rotation frequency equal to 3000rpm , i.e 50Hz , then the 

second diagram is already in the region of parametric self-excitation of the system. However, if the 
scalar case is considered, then parametric self-excitation of the system is observed at high spindle 



3490 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 3484-3494, 2024 
DOI: 10.55214/25768484.v8i6.2739 
© 2024 by the authors; licensee Learning Gate 

 

rotation frequencies, characteristic only for high-speed cutting. The situation changes fundamentally if 
we analyze the vector case of spatial oscillatory displacements. 

Let us give an example of the conditions of parametric self-excitation of the system for the case 
when the deformation displacements of the tool occur in the plane. The linearized equation in variations 
for this case has the form: 

   

   

2

1 1 2
0 11 12 11 11 1 12 12 2 2 12

2

2 1 2
0 21 22 21 21 1 22 22 2 2 22

1 2
1 1 2 2 2 2

1 sin( ) 1 sin( )

1 sin( ) 1 sin( )

;

c

c

d x dx dx
m c c k t x k t x k y

dt dt dt

d x dx dx
m c c k t x k t x k y

dt dt dt

dy dy
y x y x

dt dt

      

      

 


+ + + + + + + + = −




+ + + + + + + + = −



+ = + =


       (9) 

where 
0

c ck f= . 

In system (9) it is additionally taken into account that the delay of forces in two orthogonal 
directions differs. Let us pay attention to the fact that in system (9) there is a rotation of the orientation 
angle of the stiffness ellipse. This fact causes additional conditions for parametric self-excitation of the 
cutting system. 

Let's look at a specific example (Fig. 3). Matrixes of coefficients of workpiece subsystems are given 

in Table 1. Parameters of a dynamic characteristics of cutting process: 5000 /ck N mm= ; vector of 

force orientation coefficients     4 4

1 2 1 1, 0.5,0.8 ; 2 10 ; 10
T T

s s    − −= = =  = . The frequency of 

the first form of oscillation corresponding to workpiece subsystem is equal 
1

0 150 s −= . The diagram 

is constructed in relation to the first natural frequency of the system without cutting. The orientation 
angle of the stiffness ellipse. 

 
Table 1.  

2, /m Ns mm  , /c Ns mm  , /k N mm  

2.25 0

0 2.25

 
 
 

 
1.0 0.5

0.5 1.0

 
 
 

 
10000 5000

5000 10000

 
 
 

 

 
Here, the conditions of exchange of force flows between the subsystems considering oscillatory 

displacements in two orthogonal directions in the plane normal to the spindle rotation axis are of great 
importance in the self-excitation mechanism. The data presented show that in the system under 
consideration, parametric self-excitation is observed already at spindle rotation frequencies equal to 
(400–500) rpm. A more scrupulous analysis shows that the following factors influence the self-excitation 
conditions in this case: 

1) It is known [2] that due to the reaction from the processing process, the total elasticity matrix 

becomes asymmetric. Therefore, without parametric effects ( 0) =  circulatory forces are naturally 

formed in the system. Depending on the direction of action of the circulatory forces (forces orthogonal 
to the direction of deformation displacements) and the direction of rotation of the stiffness ellipse, 
conditions can be formed that promote self-excitation or are aimed at stabilizing the equilibrium.  

2) The system under consideration has two resonant frequencies that are separated in the frequency 
domain by antiresonance. When these frequencies approach each other, vibration modes of the beat type 
are formed in the system with a frequency equal to the difference in resonant frequencies. As a result, 
the spindle rotation frequency at which the parametric self-excitation effect is observed can be 
significantly reduced. 
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Figure 3. 

Change in the parametric excitation region in the plane (η, μ) with variation of the orientation angle of the stiffness ellipse: 
00a − = ; 

045b − = . 

 
Now let us consider a more general case, when the periodic change in the stiffness of the workpiece 

subsystem and the change in the machining allowance are taken into account simultaneously. In this 
case, the main properties of the system can be considered based on the study of the loss of stability of the 

system. In addition, in this system the frequencies 1  and 2  are not equal or are not multiples of each 

other. 

   

   

2

1 1 2 3
0 11 12 13 11 1 1 11 1 12 1 1 12 22

0

13 1 2 2 3 1 2

2

2 1 2 3
0 21 22 13 21 1 1 12 1 12 1 1 22 22

1 sin( ) 1 sin( )

(1 sin( ))

1 sin( ) 1 sin( )

c c

d x dx dx dx
m c c c k t x k t x

dt dt dt dt

k t t x k y

d x dx dx dx
m c c c k t x k t x

dt dt dt dt

     

    

     

+ + + + + + + + +

 + + +  = − 

+ + + + + + + + +

0

23 2 2 2 3 2 2

2
03 1 2 3

0 31 32 33 31 1 32 2 33 3 2 2 3 3 22

2
2 2

(1 sin( ))

(1 sin( ))

c c

c c

k t t x k y

d x dx dx dx
m c c c k x k x k t t x k y

dt dt dt dt

dy
dy x

dt

    

    












 + + +  = −  

  + + + + + + + +  = − 

 + =


(10) 

where 
0

c ck f= . 

As before, let's look at an example. Initial data: matrix of inertial coefficients, matrix of dissipative 
coefficients, stiffness matrix is given in Table 2. Parameters of a dynamic characteristics of cutting 

process: 5000 /ck N mm= ; vector of force orientation coefficients 

    4

1 2 2, , 0.5,0.7,0.51 ; 2 10
T T

s     −= = =  . 
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Let us consider the influence of the frequency ratio 1

2

k



=  on the parametric excitation region at

2 0.5 = . For clarity, especially in the low-frequency region, the illustrations are provided with graphs 

presented in different scales. In the low-frequency region they are designated (a), (b) (Fig. 4). 
 

Table 2.  

2, /m Ns mm  , /c Ns mm  , /k N mm  

2.25 0 0

0 2.25 0

0 0 2.25

 
 
 
  

 

1.0 0.5 0.3

0.5 1.0 0.3

0.3 0.3 1.5

 
 
 
  

 

10000 5000 2000

5000 10000 2000

2000 2000 20000

 
 
 
  

 

 
For us, the most significant diagrams are in the low-frequency range, as these correspond to 

traditional technological modes. High-frequency ranges pertain to high-speed cutting, with spindle 
rotation frequencies exceeding ten thousand revolutions per minute. When analyzing parametric 
excitation, it is necessary to take into account that, in this case, parameter variations due to the 
superposition of two non-multiple frequencies occur with beats, the frequency of which is equal to the 
difference between the considered frequencies of the periodic parameter changes. This is why, in the 
low-frequency range, depending on the frequency ratio, a self-excitation effect is observed.  

An increase in the reduction of the lower spindle frequency, at which parametric self-excitation of 
the system is observed, is also noted as the frequency of parametric excitation approaches. In defining 
the dynamic cutting system, additional degrees of freedom and conditions that cause periodic parameter 
variations are introduced, expanding the scope of parametric self-excitation. 

 

 
Figure 4. 

Change in the parametric excitation region in the plane with variation of the frequency ratio 
1

2

k



= : a)  

0.2k = , b) 0.9k = . 

 
4. Conclusion 

Parametric effects in a dynamic cutting system play a significant role in the stability of the 
trajectories of form-shaping motions. According to traditional views on stability improvement, an 
increase in cutting speed, associated with an increase in the spindle’s rotational cycle, is expected to 
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expand the stability region. However, in practice, this does not correspond with experimental data. 
With even a slight increase in spindle rotation frequency, starting from a certain critical value, the 
system again loses stability. This phenomenon is attributed to parametric self-excitation. Therefore, 
depending on the state of the machine, which causes kinematic disturbances in the trajectories and its 
design factors, there is a limited frequency range of spindle rotation. Within this range, as the cutting 
speed increases, the stability of the cutting process is first lost in the low-frequency region due to 
lagging arguments. In the high-frequency region, stability is again compromised due to parametric self-
excitation of the system. 
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© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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