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Abstract: Objectives: To determine the effectiveness of erythritol and xylitol in the inhibition of gut bacteria possibly 

associated with Autism Spectrum Disorder (ASD) and Clostridium difficile Infection (CDI). Methods: Seven bacterial strains 
associated with ASD, or with CDI and a control probiotic were tested for polyol inhibitory activity: Clostridium histolyticum, 
Bacteroides vulgatus, Bifidobacterium longham, and two strains each of Clostridium bolteae and difficile. Each strain was 
grown in brain heart infusion/sucrose media with polyol concentrations varying from 0% to 15% for erythritol and 0% -30 % 

for xylitol. Growth of Clostridium histolyticum and Bifidobacterium longham was measured after 24 hours while all other 
strains were evaluated at 48 hours to permit additional growth. Optical density was measured using a spectrophotometer and 
the plates were read at 620 nm. Results: All strains had results indicating polyol inhibition of growth. Clostridium histolyticum 
(Chis), Bifidobacterium longham (Blof), and both Clostridium bolteae (Cbol) strains showed reduced growth with increasing 
polyol concentration with an inflection point of about 4% for both xylitol and erythritol (complete or near complete inhibition 
relative to control wells). Bacteroides vulgatus (Bvul) grew very lightly in the BHI/sucrose. This strain has visible growth but 
very low OD values. Inhibition of growth with increasing polyol concentrations was observed but assessing the polyol 
inhibition break point was difficult with this strain. Conclusions: Xylitol and erythritol at sufficient concentrations were able to 
inhibit the growth of bacterial strains that have been associated with the development of Autism Spectrum Disorder in recently 
published studies. 
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1. Introduction  

Polyols have been used for decades as a substitute for sucrose [1-4]. The most commonly used polyols for consum p t ion are  sorb itol, 
mannitol, xylitol, erythritol, maltitol, lactitol and isomalt [5]. Besides having fewer calories than regular sucrose, i.e., table sugar, polyols have 
other reported health benefits, especially in regards to oral health [6]. Well publicized studies showing the effectiveness of xylitol at reduc ing 
dental disease have been reported for decades, all with results demonstrating safety and effectiveness [7-9]. The well-publicized “Turk u” and 
the “Belize” studies reported on the caries reduction by xylitol, with xylitol being more effective than sorbitol  [10, 11]. Xylitol chewing gum s, 
toothpastes, lollipops, candies and mouth rinses are all part of a complete dental oral hygiene program [12].  

Erythritol and xylitol are polyols that repeatedly have been demonstrated to possess anti-cariogenic and anti-periodontal disease 
properties [13]. Polyols (particularly the non-hexitol alditols or “sugar alcohols” erythritol and xylitol) have been found effective in inhibiting 
the transition to and maturation of biofilms from planktonic cells [14]. Xylitol clearly inhibits the formation of mixed species biofilms, in vitro  
[15]. Erythritol suppresses the maturation of biofilms and contributed to a healthier oral ecosystem [16]. Polyols can suppress the growth and 
virulence expression of mixed bacterial biofilms. Erythritol was the most effective polyol in suppressing the growth and organization of dental 
pathogens. Erythritol also exerted inhibitory effects on several pathways reduced growths through DNA and  RNA  deple tion , at tenuated 
extracellular matrix production and alterations of dipeptide acquisition and amino acid metabolism [17].  

The bacteria associated with Autism Spectrum Disorder have been reported in the literature, with similar results independent of research  
institution and locality [18]. Autism Spectrum Disorder (ASD) has been linked to propionic acid producing bacterial species, such as, Clostridia 
bolteae and Clostridia histolyticum [19-22]. 

Conversely the presence of Clostridia sporogenes could help protect against ASD by combining propionic acid with indole to produc e 3 -
Indole Propionate, a neural protective metabolite, thereby neutralizing the epigenetic effect of propionic acid [23-25]. It has b een theorized  
that the absence of C. sporogenes in the soil is related to the use of glyphosate, known by the trade name Roundup  [18]. Absence of C. sporogenes 
in the soil and the environment could possibly shift the maternal microbiome, resulting in epigenetic changes in the fetus or infant. Bacteroides 
vulgatus also has been implicated in ASD as reported in the Frontiers in Microbiology by Coretti, et al. [26]. 

Clostridia difficile (Cdif) is a gram-positive bacterium that is implicated in antibiotic-associated diarrhea. The relatively recent emergence  
of a newer hyper-virulent North American strain (NAP1) has been associated with the increase in incidence and severity of C. difficile infections 
(CDI) over the last decade [27]. Antibiotic overuse remains the leading risk factor for C. difficile infection. Several classes of antibiotics such as 
penicillins, cephalosporins, fluoroquinolones, and clindamycin have been implicated in causing CDI.  

Besides antibiotic usage, other risk factors are reported to include advanced age, chemotherapy, use of proton pump inhibitors, c hronic  
renal disease, chronic liver disease and malnutrition [28, 29]. Treatment options include discontinuing the causative antibiotic and 
administering either vancomycin or fidaxomicin. Another option is fecal transplantation, the process in which feces from a healthy donor are  
transplanted into the intestinal tract of a person with the disrupted microbial balance. This protocol has reported an 80% to 90% success rate in 
reducing the recurrence of C. difficile infections [30]. There remains some opposition to Fecal Transplantation Therapy due to the basic nature 
of the procedure and potential complications [31]. A simpler, safer and “cleaner” technique would be more appealing to patients and clinicians. 
 
2. Materials and Methods 

Bacterial isolates and media: C. bolteae and C. histolytica strains were kindly provided by Dr. Emma Allen- Verc o PhD. (Univ ersi ty of 
Guelph/Canada). B. vulgatis (8482) and B. longum (15707) were obtained from the American Type Culture Collection (ATCCC/Manassas Va .). 
C. difficile strains 5555 and 5557 were provided by Dr. Larry Kociolek MD (Lurie Children’s Hospital, Chicago, IL). All studies u sed  a  b as al 
media of Brain Heart Infusion broth supplemented with 2% sucrose (BHI/Suc). Polyols were prepared separately at high  c oncentrat ions in  
BHI/Suc for assay plate preparations. Xylitol was added to 60% (w/v) and Erythritol was prepared at 30% (w/v) in BHI/Suc. The se  p olyol 
levels were the maximum achievable based on solubility. Final media preparations were sterilized and placed in an anaerobic c hamber for at  
least 2 hours after preparation to cool and remain in a reduced state. 
 
3. Assay Procedures 

Assays were prepared in the anaerobic chamber. 96 well plates were employed with each test preparation in triplicate wells by  adding 100 
mcL of BHI/Suc at 2x concentration to all test wells. Bacterial preparations were made in BHI/Suc adjusted to a Macfarl and standard 
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concentration of 0.5. Final assay inocula of each strain with a further 1:100 fold dilution. 100 mcL of bacterial inocula was added to eac h  test  
well with or without a polyol. Plates were incubated anaerobically for 24 or 48 hours and terminated when bacterial growth reached  a  easi ly 
visible level in control wells. Plate were then transferred to a plate spectrophotometer and read at 620 nm wavelength. Mean OD v alues for 
each well were calculated and OD values vs. polyol concentration were plotted.  
 
4. Results 

Seven strains were tested for polyol inhibitory activity C. histolyticum, B. vulgatus, C. bolteae (x2), C. difficile (x2), and Bifidobacterium 
longham. All strains grew to variable bacterial density levels. B. vulgatus had the poorest growth but still had measurable mean OD v alues to 
suggest polyol activity. Detailed OD values vs. polyol concentration are plotted as follows with relative inhibition inflection points (Figures 1 -
7). 
 

 
Figure 1. 
Xylitol begins inhibiting C. histolyticum with only a 2% concentration . 
The probiotic is also inhibited and supplementation may be advised. 

 

 
Figure 2. 
Erythritol inhibits at around a 2% concentration but inhibits the 
probiotic more that xylitol. 

 

 
Figure 3. 
C. bolteae strains inhibited by a very low concentration of xy li tol, b u t 
less so at a 2% level. 

 

 
Figure 4. 
Erythritol inhibits the C. bolteae strains at a very low conc entrat ion 
and in a more linear path than xylitol. 
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Figure 5. 
Both erythritol and xylitol inhibits B. vulgatis at only a 0.25% 
concentration. 

 

 
Figure 6. 
At 2% concentration, xylitol generally inhibit C. difficile strains, 
although C.diff 5557 is inhibit in a more linear manner and at a lower 
concentration. 

 
 
5. Discussion 

Erythritol inhibits ASD bacteria at a lower concentration than xylitol. Both polyols were capable of significant inh ibition o f the  A SD 
associated bacteria, in addition to the inhibition of antibiotic resistant C. diff strains. Erythritol may inhibit Bacteroide s vulgatus b e tter than 
xylitol but additional studies with a more optimal media for B. vulgatis need to be performed.  
 

 
Figure 7. 

Erythritol seems to inhibit C. diff only after reaching a higher 
concentration. Most dental products contain 20% xylitol for 
effectiveness. There are no popular dental products with a high 
erythritol concentration, although some commercial drinks use 
erythritol as a sweetener. 

 
However, Xylitol should be considered as a treatment for C. difficile infection due to its low cost and availability. In addition, xyli tol and 

erythritol are considered safe food additives with decades of use in the prevention of oral diseases, such as p eriodontal d is ease  and  dental 
cavities. Autism spectrum disorders are likely caused by a combination of microbiome, environment, and the epigenetic interac t ion  [ 3 2-34] . 
Recent research shows that more than 50% of children with autism have GI symptoms, food allergies, and maldigestion or malabsorption issues 
[35]. Propionic acid is used as a food additive and is also a bacterial byproduct. Propionic acid uptake may be related to lack of the  b ac terial 
gluten metabolizers and resultant leaky gut. Elimination of calcium propionate as a bread additive/preservative may be benefi cial in reducing 
the behaviors associated with ASD [36]. Shifting the oral and gut microbiome with polyols may also be successfu l in  reduc ing b ehaviors 
associated with ASD. More research, large well-designed clinical trials are indicated for protocols illuminating therapies effective with reducing 
the symptoms of ASD [37]. 
 
6. Conclusion 

Xylitol and erythritol at sufficient concentrations were able to inhibit the growth of bacterial strains that have been assoc iated  with the  
development of ASD. Further research into the use of polyols for the treatment and possible prevention of ASD is rec ommended. Large clinical 
trials with patients that are correctly diagnosed with ASD then treated with xylitol supplementation and the resultant  e ffec t s on b ehavior 
should be carefully explored. In addition, the uses of polyols to treat C. difficile infections also require clinical trials.  
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