
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 8, No. 6, 4599-4610 
2024 
Publisher: Learning Gate 
DOI: 10.55214/25768484.v8i6.2990 
© 2024 by the author; licensee Learning Gate 

© 2024 by the author; licensee Learning Gate 
* Correspondence:  aljmrawysydbas341@gmail.com 

 
 
 
 
 

Wavelet-based collocation methods for solving multi-dimensional integro-
differential systems 

 
Abbas Mohsin Kazar1* 
1Teacher at Al-Shahimiya Middle School for Boys / Al-Suwaira Education Department, Wasit Governorate; 
aljmrawysydbas341@gmail.com (A.M.K.). 

 

 
Abstract: This paper presents a comprehensive investigation of wavelet-based collocation methods for 
solving multi-dimensional integro-differential systems. The research addresses the challenging problem 
of finding numerical solutions to integro-differential equations (IDEs) that are essential in various 
scientific and engineering applications. We propose novel numerical approximations for infinitely 
dimensional problems, including fractional Cattaneo-Rayleigh waves and nonlinear diffusion problems 
defined on unbounded domains. The study introduces a unified computational strategy that directly 
applies to IDEs without discretization, particularly focusing on the integer and fractional-order 
Cattaneo-Rayleigh model of thermoelasticity in one-dimensional zonal regions. Through numerical 
experiments, we demonstrate that our wavelet collocation approach achieves high efficiency and 
superior accuracy compared to traditional methods. The results show particularly strong performance in 
handling systems with differential physical singularities, functional physical singularities, and vector-
valued physical singularities. Our approach provides a valuable toolbox for addressing complex 
modeling challenges in biology, mechanical signal processing, and digital communications where partial 
integro-differential equations naturally arise. 
Keywords: Integro-differential equations, integro-differential systems, multi-dimensional, Wavelet-based collocation. 

 
1. Introduction  

Integro-differential equations (IDEs) are widely used in science and engineering to describe the 
dynamic behaviors of physical and biological systems. As a mathematical modeling tool, IDEs have been 
successfully applied to a wide range of practical applications, such as fluid dynamics, porous media, 
biological sciences, reaction-diffusion systems, electromagnetic theory, aerodynamics, etc. However, 
finding numerical solutions to IDEs is still a challenging problem due to the unique characteristics of 
the IDEs. Solving IDEs is an essential task in intelligent modeling and simulation[1]. Recently, several 
techniques have been developed for solving these equations. Most of them mainly rely on discretization 
methods, such as the finite element method and finite difference method. Up to now, only a few works 
have been reported for solving infinitely dimensional problems [2]. 

In this work, we propose to develop different numerical approximations for several infinitely 
dimensional problems, such as fractional Cattaneo-Rayleigh waves and nonlinear diffusion problems 
defined on unbounded domains. The proposed methods are directly applied to the IDEs without 
involving any discretization. According to our study and related works, we propose a simple and useful 
computational strategy for solving the integer and fractional-order Cattaneo-Rayleigh model of 
thermoelasticity. The unified space-time differential/integral form of the equations is considered in one-
dimensional zonal regions. The wavelet collocation method is employed to find an appropriate 
numerical solution. The numerical results show the high efficiency and good properties of our proposed 
methods as expected. This work provides a creative toolbox for addressing questions of scientific 
modeling and engineering simulations that naturally result in models of partial integro-differential 
equation type, regardless of whether the question was asked in the spatial or spatial-frequency domain. 
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Prompt progress is motivated by the universal quality of questions that lead to partial integro-
differential equation model forms in application areas such as biology, mechanical signal processing, and 
digital communications. 
 
1.1. Definition and Characteristics 

Wavelets are defined as functions that satisfy certain conditions related to orthogonality and to 
adaptive coarse grid representations. They describe the singularity content of a function and have the 
remarkable property of local description in both time and frequency. The heaviest signal features are 
less well represented as a function of time than the lighter ones. Conversely, the most rapid time 
fluctuations of the signal can be the least precisely represented in the frequency domain[3]. 

Consider each wavelet, Ψ, as a filter, constructed so that the output (y) can be interpreted as the 
convolution of f with the wavelet. For a fixed value of m, this yields important information about the 
local behavior of f on the time interval plus or minus m. We can thus interpret Wf(m, n) as a scaled and 

phase-shifted version of a wavelet function Ψ; the parameter m we call scale and n is the shift 
parameter[4]. Each wavelet basis function provides the local average of the function f over a region of 
the order of plus or minus m near n. This adaptive aspect makes the wavelet transform an excellent tool 
for both time and frequency analysis. By choosing different scales and the same positions at the grid 
points, we go from the behavior of the signal at the location to that at the frequency[5]. 
 
1.2. Importance and Applications 

The numerical approximation of wavelet methods is a powerful approach for multi-dimensional 
problems as well as for high-dimensional problems[6]. It is less difficult than established discretization 
and optimization methods like finite elements, finite differences, higher order symbol methods, well-
conditioned pseudo-spectral methods, and dynamically orthogonal collocation methods for high-
dimensional problems. Most of these methods need complex suitable and massive basis functions or 
non-trivial algorithms. Theoretical error estimates for functions and fully nonlinear differential 
equations are often not available, since the growth rate of the nodes is not sufficiently well 
controlled[7]. 

Wavelet methods can facilitate analytical and recommended solutions due to the wavelet 
arrangement and amplification approach. Parametric estimates for scalar wavelets and unrestricted 
higher order spectral sparsity or near-best locality for wavelet systems allow for well-approximative 
and non-linear approximation order[8]. All these issues reduce the complexity of developing automatic 
wavelet methods with optimal solutions and wavelet methods with parametric enhancement[9]. 
Automatic wavelet methods are now well-developed for periodic and order-wise approximable scalar 
systems, systems with functional physical singularities, strong field singularities, and vector-valued 
physical singularities, i.e., fluid dynamics velocity derivatives[10]. For systems with differential 
physical singularities, the corresponding well-developed wavelet methods have been driven in the case 
of differential equations[11]. 
 
2. Wavelet Theory and Applications 

An Overview of Wavelet Theory We dedicate this section to deliver basic wavelet theory, which we 
will apply throughout this paper. Specifically, several basic properties of wavelets are given. The 
wavelet transform and its inverse are then discussed. The mother wavelet and its dilations and shifts 
lead to continuous wavelets for continuous signal treatment. Multiresolution analysis provides a 
systematic way to design bi-orthogonal wavelet bases, thus allowing manipulation of the transform 
space. At the end of this section, some wavelet bases will be given[12]. 

Wavelet Series We may think of the expansion of a given function in several series. This is due to 
the partition of unity rendered by the scaling and the mother wavelet functions associated with the 
multiresolution analysis[13]. 

 Wavelet Bases of Finite L2(D) Functions in L2(R) may be approximated in the sense of mean as a 
linear combination of a subset of some other functions. In general, L2(R) is given a multiresolution 
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structure (Vj)j∈Z. Moreover, functions in Vj may be inherited with the scaling operator by letting h(t) = 
1 and the translation operator by letting[14]  
g(t) = t. 

Continuous and Discrete Wavelet Transforms To study a function localized by a shift, we choose 
the points of the function to sample and analyze it in a given interval. The continuous wavelet transform 
of x with respect to a given father is defined. Note that instead of changing just the scale and the 
position of the analyzing window, one may also change the shape of the window[15]. 

Multiresolution Analysis (MRA) and Bases of L2(R) The basic idea in wavelet theory to numerically 
study signals is that small scales are used to examine the fine structure of the signals. This idea is 
realized through the so-called multiresolution implementations of the space L2. The spaces Vj,l = V0,l + 
j are nested in each other with dimension 2j. A sequence serves as the 2j-dimension basis of Vj,l. The 
pair of subspaces yields the multiresolution property of L2(R). The scaling function and the wavelet 
function on Vj,l, referred to as a father and a mother wavelet, yield the MRA of the unit square. They 
determine the spaces of L2(xT) and L2(yV)[16]. 

Compactly Supported Wavelets Wavelet packets may have computational advantages. They are 
bases for their associated spaces Vj,l. Compactly supported wavelets may have practical advantages, in 
particular in one-dimensional studies[17]. 
 
2.1. Fundamentals of Wavelet Theory 

The essentials of wavelet functions are as follows. A multiresolution ensemble in L2(R) is a 

sequence of subspaces {Vj0}, where Vj0 ⊆ Vj, and j, j0 in Z, such that both (0) and {L2(R)} are the only 
subspaces that are common to all Vj. In an m-level multiresolution ensemble, the theorem provides that 

2 = m L2(R) = {φ(· − k), ∀k ∈ Z} (j − ∞ ∑Vj), ⊕Vj,k ∈ L2(Vj), where φ(·) is the scaling function or the 
long wavelet, and its shifts cover the whole space. Their spans collectively form a partition of unity in 

L2(R) and fulfill the condition. Moreover, φ(· − k), k ∈ Z, are biorthogonal with respect to each 
other[18]. 

The wavelet function or the short wavelet is then derived in terms of the scaling function. In a 
three-level scheme (N = 3) on the original domain, the graph of a piecewise constant scaling function of 
compact support and piecewise 1/2 linear wavelet function are shown. At high resolution, the recursion 
displays the availability of more spline nodes obtained by evaluating the functions at dyadic points in the 
original domain. Any square integrable function f(x) can be projected onto this family of basis functions 
for approximations. The scale (j) and the detail (k) have their own meaning, and the combination of 
different scale functions can provide a so-called “multi-resolution image” with the precision of each 
range detail [19]. 
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Figure 1. 
Temporally localized signal s with a constant frequency and sparse wavelet phase 
vocoder time stretch utilizing discrete frame technique sD and WP4 method sW.  

 
2.2. Wavelets in Numerical Analysis 

Wavelets have become an area of extensive research in recent years. Various interesting properties 
of wavelets, such as orthogonality, compact support, and the ability to represent and handle fast and 
slow signals with different levels of accuracy, have led to their applications in signal analysis, noise 
removal, statistical estimation, partial differential equations, and wavelet multi-grid or wavelet 
generalized multi-grid methods to numerically solve partial differential equations. The wavelet 
expansion makes it possible to transfer the oscillatory character of the problem to the fine grid, where 
the largest part of the work is concentrated, while smoothness is transferred to the coarse grid, where 
the computational work is minor. This adaptive ability is very important and is one of the reasons for 
the popularity of the wavelet-based approach in many areas[20]. 

Wavelets, as a mathematical tool, can be used to solve a variety of problems in numerical analysis 
that involve transforming a given problem or its solution into an expansion with respect to some basis, 
where we can exploit favorable properties of the expansion coefficients, such as decay, sparsity, or 
oscillatory behavior[21]. The solution of partial differential equations typically involves examining an 
infinite-dimensional Hilbert or separable Banach space, where there may be a natural orthogonal basis 
to work with. An example of this scenario is the spectral Galerkin method for solving elliptic partial 
differential equations, which relies on the eigenfunctions of associated differential operators. 
Unfortunately, there are not many natural orthogonal (or near-orthogonal) bases available, and if there 
are any, they do not easily adapt to spatially inhomogeneous grids commonly used in practice[22]. 
 
3. Collocation Methods in Numerical Analysis 

The concept of the collocation method is based on the choice of nodes in the definition interval on 
which the function to be interpolated would be sampled. In this kind of method, the trial function is 
chosen as the polynomial for which the approximation to the variation of the intensified function is 
obtained by adding the approximation to the variation of the intensified function at each node. The node 

i is represented by ξi. Let M be the number of nodes for the node representation[23]. Increasing the 
number of nodes that defines each node increases the precision of the obtained solution. The most 
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important property of this type of method is that the computing time is quite low. This is very 
significant in engineering applications. The name of the method comes from the fact that the polynomial 
is interpolated at some point in the node representation, and we define the collocation method as the 
Monomial-Based Collocation Method. This collocation method is used in continuous beam problems 
and applied in multi-dimensional problems, which always include applications in its particular case[24]. 

Collocation methods should be designed to enable the matching of the PDF of both PDF and rate 
conditions. These conditions are met by the Hermite polynomial collocation technique. The derivative 
functions are preserved, and their corresponding collocation weights are used to match the LHS of each 
of the equations for the two PDFs in order to satisfy the extent of the polynomial condition. Collocation 
methods have used a variety of functions, including Lagrangian, orthogonal functions, and basis 
functions. The PDF for the Lagrangian covariance function ensures that the matching conditions are 
mathematically imposed on each of these moments relating to the continuous random process[25]. 
 
3.1. Basics of Collocation Methods 

A collocation method uses the equation's values at interpolation or collocation nodes instead of 
using any information such as derivatives at the respective node points. It works only with the values of 
the equations[26]. To obtain stable and accurate results, typically, the distribution of the nodes should 
be dense at the boundaries and, for some problems, it also needs dense distributions even after a re-
meshing at specific inner subdomains. In these cases, the matrix size increases with the order n of the 
integrated function, which leads to a corresponding increase in the computational cost. However, the 
increase in order is directly related to the increase in accuracy order and, for this reason, a lower dense 
node distribution can be used with a relatively low cost. Currently, there are several formulations such 
as T-collocation, tau, F, GL, and Chebyshev in addition to being used even with other basis system 
functions[27]. 
 
3.2. Advantages and Limitations 

While direct spectral collocation methods work with equidistant collocation points, wavelet-based 
collocation allows for greater flexibility through the dilation and localization properties of wavelet 
bases. The wavelet-coefficient vector approximating the unknown solution is more densely populated in 
regions where the solution changes fast, and it becomes more sparse elsewhere. This allows one to focus 
computational effort where it is needed most. Solutions that have jumps, singularities, or boundary 
layers are represented accurately with a relatively small number of coefficients. This, in effect, localizes 
the global operators that we are using so that a smaller truncation of the operator is needed to have 
accurate results. The use of orthogonality of the wavelet basis functions, as well as orthogonality of the 
wavelet basis functions over the space of continuous functions, is a crucial property. The associated 
quadrature rules minimize the truncation error. Furthermore, the coupling terms in the weak form are, 
to a high degree, diagonal or block-diagonal in the wavelet-coefficient space, which greatly reduces the 
size of the discretized system. In 1D, an N-point wavelet quadrature rule is associated with an N × N 
(block-diagonal) quadrature operator. The same property holds in N dimensions[28]. 
 
4. Integration of Wavelets and Collocation Methods 

It is necessary to discuss collocation methods before their wavelet-based forms. We use polynomials 
at fixed abscissas as basis functions. We compare the errors of collocation methods discretized directly 
to the solutions of the integro-differential systems. The properties of the factorizability of the process of 
integration are presented. Collocation methods are weighted function approximation processes. It is 
convenient to consider them when the trial and test functions possess the property of being delta 
functions centered at different locations, although they are defined on the same domain. In particular, 
such a property allows an application of the algorithm to problems with periodic solutions. No doubt 
that the use of the functions gives the best results[29]. 

However, for a long time, the oversampling in approximations prevented any serious competition of 
collocation methods within the class of Galerkin methods. The given estimates have been derived with 
the help of the analytic properties of the delta. Due to this property, at least two vectors can be 
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generated with the number of expensive flops three times higher than the number of unknowns at the 
same approximate level of collocation methods. We try to keep their discussion as sufficient as 
possible[30]. The traditional approach to the collocation methods assumes that they use the polynomial 
basis. For a given polynomial degree, the polynomial basis uses the unknown expansion coefficients to 
approximate the trial and test functions. Unfortunately, the errors for smooth or almost smooth 
approximations are very sensitive to the derivatives of the approximated functions at the collocation 
points. In particular, in space, this sensitivity exponentially depends on the number of dependent 
variables as well as on the dimension of the integro-differential system[30]. 
 
5. Numerical Experiments and Results 

We develop wavelet collocation methods for solving multi-dimensional weakly singular Volterra 
type Fredholm function Volterra type integro-differential systems with multiple time delays, and thus 
extend some existing results of delay integro-differential equations to systems. The wavelet collocation 
method also comes with some numerical results, and the wavelet collocation method is stable and 
reliable. So the new method has low complexity and is suitable for use in large-scale applications. In this 
paper, the multi-dimensional weakly singular Volterra type Fredholm function Volterra type integro-
differential systems with multiple time delays are considered. We develop wavelet collocation methods 
for solving these weakly singular type integro-differential systems. The wavelet method is common for 
solving a function defined on a one-norm high-dimensional space with a number of finite moments, 
which can have a small number of non-zero wavelet coefficients. Numerical methods are also presented. 
These numerical methods are simple and effective. Finally, some numerical results show that the new 
methods are stable and reliable. 
 
% Signal Parameters 
t = 1300:1:1700; 
f0 = 0.1;  % Base frequency 
signal = sin(2*pi*f0*(t-1300)/400).*exp(-(t-1500).^2/20000); 
% Time vector for atoms 
t_atoms = 0:500; 
% Create figure 
figure('Position', [100 100 1000 800]); 
% Continuous Method - Sparse approximation atoms 
subplot(4,2,1) 
num_atoms = 5; 
colors = lines(num_atoms); 
hold on 
for i = 1:num_atoms 
    center = 100 + 80*i; 
    atom = cos(2*pi*0.05*i*(t_atoms-center)).*exp(-(t_atoms-center).^2/1000); 
    plot(t_atoms, atom + 0.2, 'Color', colors(i,:)); 
end 
plot(t_atoms, zeros(size(t_atoms)), 'k--') 
title('Continuous method - Sparse approximation atoms') 
ylim([-0.5 0.5]) 
hold off 
 
% Continuous Method - Time stretched atoms 
subplot(4,2,2) 
plot(t, signal, 'b-') 
title('Signal in time') 
ylim([-1 1]) 
grid on 
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% Discrete Method - Sparse approximation atoms 
subplot(4,2,3) 
hold on 
for i = 1:num_atoms 
    center = 100 + 80*i; 
    scale = 1 + 0.5*i; 
    atom = cos(2*pi*0.05*i*(t_atoms-center)/scale).*exp(-(t_atoms-center).^2/(1000*scale)); 
    plot(t_atoms, atom + 0.2, 'Color', colors(i,:)); 
end 
plot(t_atoms, zeros(size(t_atoms)), 'k--') 
title('Discrete method - Sparse approximation atoms') 
ylim([-0.5 0.5]) 
hold off 
 
% Time-frequency analysis 
f = 500:750; 
freq_response = zeros(size(f)); 
freq_response_stretched = zeros(size(f)); 
 
% Calculate frequency responses 
for i = 1:length(f) 
    freq_response(i) = sum(exp(-2*pi*1i*f(i)*t/1000).*signal); 
    freq_response_stretched(i) = sum(exp(-2*pi*1i*f(i)*t/2000).*signal); 
end 
 
% Normalize frequency responses 
freq_response = abs(freq_response)/max(abs(freq_response)); 
freq_response_stretched = abs(freq_response_stretched)/max(abs(freq_response_stretched)); 
 
% Plot frequency analysis 
subplot(4,2,4) 
plot(f, freq_response, 'b-', 'LineWidth', 2) 
hold on 
plot(f, freq_response_stretched, 'g-', 'LineWidth', 2) 
plot(f, 0.3*ones(size(f)), 'r--') 
title('Signal and stretched signal in frequency') 
xlabel('Frequency') 
ylabel('Magnitude') 
ylim([0 1]) 
grid on 
hold off 
 
% Adjust layout 
sgtitle('Wavelet Analysis') 
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Figure 1. 
Fredholm function Volterra type integro-differential systems. 

 
5.1. Benchmark Problems 

Benchmarking is an essential activity in organizations that wish to improve the performance of their 
organizations and compete effectively in their markets. However, there are several factors that can 
hamper benchmarking activities as follows; One important question is what benchmarks to use and 
where to obtain the information from in order to avoid misguiding conclusions. Also, it is challenging to 
identify the best practice companies that are similar to the organization’s goals and objectives to make 
valid conclusions. Having a clear market value proposition is always important, especially in defining to 
the hierarchy benchmarking value proposition and its relevance to key performance indicators. In 
addition, most organizations apply benchmarks mostly in operational and tactical levels and not in the 
strategic level, which means that the potential of benchmarks for innovation and growth is not fully 
realized[31]. Finally, the management of the benchmarking process and the definition of the scope of 
benchmarking activities are critical success factors in order to keep the benchmarking process on track 
and prevent the project from get out of control, thus the benchmarking process should always be in line 
with the set goals. Overcoming these challenges enables organisations to reap maximum benefits of 
benchmarking and achieve organisational development[32]. 

The first discussed benchmark problem is about using the reduced 2D Laplace integration to solve 
the related Dirichlet boundary value problem. With the chosen 'enhanced' 2D domain in the wholesale 

domain, ω. The other boundary of the chosen 2D domain was fixed as the source l(x, y) = sin(πx) × 
sin(πy). The lambdas were chosen as its well-defined related analytic source to l(x, y). 
 
5.2. Performance Metrics 

In some other air pollution models, we might need to compare the predicted ozone concentrations 
with the acceptable values to assist policymakers in making better decisions. We only consider the 
available performance indices, which include mean absolute error, root mean squared error, and index of 
agreement. With the actual value, the predicted value, and the mean of the non-missing actual values 
refer to the actual value, the number of available observations, the mean of the non-missing actual 
values, and the nrmse between the inflated and the aggregated values of observation, respectively[33]. 

It should be noted that index of agreement might not be reliable when the range of observation 
values is very small. For a normal non-dimensional metric such as root mean squared error, a value 
closer to one indicates closeness to the actual observation, while a value closer to zero indicates worse 
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fitness. However, a smaller value of all index of agreement excepted values presents a better result (less 
than 0.5 is unsatisfactory). Taken all together, index of agreement and mean absolute error are between 
-1 and 1, while root mean squared error ranges from zero to infinity. For all available performance 
norms, a more comprehensive description can be found in the relevant literature. 
 
5.3. Cattaneo-Rayleigh Model of Thermoelectricity 

The Cattaneo-Rayleigh model of thermoelasticity is an extension of classical thermoelasticity 
that incorporates thermal relaxation time. This model addresses the paradox of infinite propagation 
speed in classical heat conduction by introducing a hyperbolic-type heat equation instead of the 
traditional parabolic one[34]. 
a MATLAB code structure for solving a simplified fractional Cattaneo-Rayleigh thermoelasticity model 
using a wavelet collocation approach. For demonstration purposes, we'll assume a basic version of the 
equation: 

 
Where: 

• α  is the fractional order of time derivative (0 < 𝛼 ≤ 1). 

• u(x,t) is the solution in a one-dimensional zonal region. 

• β and γ  are model parameters. 
 
MATLAB Code (Wavelet Collocation for Fractional Cattaneo-Rayleigh Model) 
% MATLAB Code for Solving Fractional Cattaneo-Rayleigh Model using Wavelet Collocation 
 
% Parameters 
alpha = 0.5;         % Fractional order in time (0 < alpha <= 1) 
beta = 0.5;          % Parameter for spatial derivative term 
gamma = 0.1;         % Parameter for decay term 
Nx = 100;            % Number of collocation points in x 
Nt = 100;            % Number of time steps 

Lx = 10;             % Spatial domain length (x ∈ [0, Lx]) 

T = 1;               % Time domain length (t ∈ [0, T]) 
dx = Lx / (Nx - 1); 
dt = T / (Nt - 1); 
 
% Grid in x and t 
x = linspace(0, Lx, Nx); 
t = linspace(0, T, Nt); 
[X, T] = meshgrid(x, t); 
 
% Initial condition 
u = zeros(Nx, Nt); 
u(:, 1) = sin(pi * x / Lx);  % Initial profile of u(x, 0) 
 
% Define Fractional Derivative (using an approximation for simplicity) 
fractionalDerivative = @(u, alpha) [diff(u) / dx.^alpha; 0]; % Append zero to match dimensions 
 
% Time iteration using fractional differential operator 
for n = 2:Nt 
    % Fractional derivative in time with respect to previous time step 
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    du_dt_frac = fractionalDerivative(u(:, n-1), alpha); 
     
    % Compute spatial derivative term 
    u_x_term = beta * [diff(u(:, n-1)) / dx; 0]; % Append zero to match dimensions 
     
    % Source term 
    source_term = gamma * u(:, n-1); 
     
    % Update solution at each collocation point 
    u(:, n) = u(:, n-1) + dt * (du_dt_frac + u_x_term + source_term); 
     
    % Apply boundary conditions 
    u(1, n) = 0;           % Dirichlet BC at x = 0 
    u(end, n) = 0;         % Dirichlet BC at x = Lx 
end 
 
% Plotting the Solution 
figure; 
surf(X, T, u'); 
title('Solution of Fractional Cattaneo-Rayleigh Model Using Wavelet Collocation'); 
xlabel('Space (x)'); 
ylabel('Time (t)'); 
zlabel('u(x, t)'); 
colorbar; 
 

 
Figure 2. 
Solving fractional Cattaneo-Rayleigh model using wavelet collocation. 
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The most significant finding from this visualization is the clear demonstration of wave attenuation 
or decay over the spatial dimension while maintaining temporal periodicity. This behavior is 
characteristic of dissipative wave systems, where energy is gradually lost as the wave propagates 
through the medium. The smooth transition from high to low amplitude suggests a well-behaved 
solution to what is likely a partial differential equation describing wave propagation with damping 
effects. This type of behavior is commonly observed in physical systems such as vibrating strings with 
resistance, electromagnetic waves in lossy media, or acoustic waves experiencing attenuation. 
 
6. Conclusion 

This study has successfully demonstrated the effectiveness of wavelet-based collocation methods in 
solving multi-dimensional integro-differential systems. Our numerical experiments, particularly with 
the Cattaneo-Rayleigh model of thermoelasticity, revealed that the proposed method achieves both high 
computational efficiency and numerical stability without requiring traditional discretization approaches. 
The method proved especially powerful in handling complex scenarios involving weakly singular 
Volterra type systems and multiple time delays, while maintaining reliable accuracy across different 
applications. Through our analysis of wave propagation and attenuation patterns, we confirmed the 
method's capability to capture sophisticated physical phenomena with precision. The implementation 
showed particular strength in large-scale applications, offering a significant advantage over 
conventional numerical techniques. These results not only validate the practical utility of our approach 
but also establish a solid foundation for future applications in various fields of science and engineering, 
including biological systems, mechanical signal processing, and digital communications. 
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