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Abstract: Surface refractivity is a crucial parameter that determines the bending of radio signals as they 
propagate within the troposphere. It is greatly influenced by the atmospheric weather conditions and 
changes rapidly, especially in the coastal areas. This research utilized 50 years (1974-2023) surface 
temperature, pressure, and humidity data from six coastal stations in South Africa to forecast radio 
refractivity in the Mediterranean climate. Five machine learning models: Gated Recurrent Unit (GRU), 
Light Gradient Boosting Machine (LightGBM), Long-Short Term Memory (LSTM), Prophet, and 
Random Forest were trained for future prediction of surface refractivity at any coastal area in South 
Africa. The stations latitude, longitude, altitude, surface refractivity and date were applied as the input 
parameters to train the models. The models were optimized through the randomized searchCV 
hyperparameter tuning to improve their efficiency. The LightGBM outperformed other models with 
RMSE and adjusted determination coefficients of 1.67 and 0.96, respectively. The model is 
recommended for future prediction of surface refractivity needed for the improvement of point-to-point 
wireless communication, terrestrial radio and television transmissions, and mobile communication 
networks in the coastal sub-tropical regions. 
Keywords: GRU, Hyperparameter tunning, Light GBM, LSTM, Machine learning, Surface refractivity, Troposhere. 

 
1. Introduction  

Surface refractivity is crucial for accurate modeling of radio wave propagation, particularly in 
applications such as telecommunications and meteorology [1]. Accurate refractivity gradient data is 
essential for radio system design, as strong negative gradients can cause interference, while positive 
gradients affect antenna height requirements [2]. Understanding the variations in refractivity due to 
factors like humidity, temperature, and atmospheric pressure is essential for improving signal strength 
and clarity. These variations can be influenced by geographical features, seasonal changes, and even 
time of day, making it imperative to gather comprehensive data for precise estimations [3]. In coastal 
regions, the proximity to large bodies of water adds another layer of complexity, as sea breezes, ocean 
currents and evaporation can significantly alter local atmospheric conditions. This necessitates the 
application of advanced modeling techniques to forecast local radio refractivity, ensuring accurate and 
reliable propagation data for optimization of terrestrial communication links. 

Several studies have shown that temperature, humidity, and height above ground level significantly 
influence refractivity, with an inverse relationship observed between refractivity and signal strength 
[4]. The existing refractive index model is deemed inadequate for Southern Africa, necessitating 
improved propagation models for better spectrum usage, particularly in mobile systems [5]. Accurate 
refractivity gradient data is essential for radio system design, as strong negative gradients can cause 
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interference, while positive gradients affect antenna height requirements [2]. The current research aims 
to enhance understanding of refractivity profiles and their impact on radio communications. 

Most previous studies have recommended fixed mean values through some statistical and advanced 
prediction techniques. For instance, Dabideen, et al. [6] derived surface refractivity and 1km-height 
refractivity gradient from Kwazulu-Natal atmospheric data obtained from the South African Weather 
Station (SAWS). The research recommends monthly mean refractivity in the range of 320-360 N-units. 
The 50 years atmospheric data used for the current research has revealed that surface refractivity in any 
of the study stations vary beyond this range especially during extreme atmospheric conditions. 

Asiyo and Afullo [7] computed refractivity and k-factor using three years radiosonde data from five 
stations across South Africa. The results were applied through the interpolation techniques to develop 
and recommend k-factor contour map of South Africa. Seasonal variability of atmospheric parameters 
such as temperature, pressure, and humidity could influence great difference between the computed and 
real-time values of surface refractivity which is essential for improved dynamic communication systems. 
Hence, the need for a dynamic prediction method. 

Salamon, et al. [2] applied a new empirical model for the cumulative distribution of meteorological 
data to predict surface refractivity and refractivity gradient in the lowest 80 m of the atmosphere. 
Sixteen years (1997-2012) radiosonde data from some stations excluding South Africa was obtained 
from the NOAA/ESRL Radiosonde Database. Although, the research recommended a new model for 
surface refractivity prediction, spatial variation of atmospheric parameters makes the model unfit for the 
mediterranean climate in South Africa. Agbo [8] applied Multiple linear regression model to predict 
refractivity in the Calabar. The derived partial differential equations require temperature, pressure and 
humidity as input to compute predicted refractivity. The model performed well with minimal error but 
requires the measured values of the three atmospheric parameters for surface prediction. Moreover, the 
model which was trained with subtropical region data from Calabar (Nigeria) is not suitable for the 
newly selected research locations. 

This research presents a new approach for forecasting surface refractivity in the coastal regions of 
South Africa. 
 
1.1. Overview of the Machine Learning Models 
1.1.1. The Gated Recurrent Unit Model 

It is a kind of Recurrent Neural Network RNN that can effectively solve long-term dependencies 
issues and does not pose a vanishing gradient problem that is associated with the traditional RNN. The 
GRU improves the RNN functionality by adopting the use of gating mechanism which controls 
information flow, making the network capable of holding essential information over time and offering 
efficient training [9]. The GRU is made up of four major components: the reset gate, the update gate, 
the current memory content and the final hidden state. The two gates are responsible for information 
storage management by ensuring secured storage and prompt update. The current memory content is 
the candidate hidden state which combines its content with that of the reset gate to arrive at the final 
hidden state. The final hidden state is derived through feature interpolation between the current 
memory value and previous hidden state. Its operation is controlled by the update gate thus, they can 

lower the data quantity with improved accuracy. The final hidden state 𝐺𝑖 of the GRU is computed 
using equation (1). 

𝐺𝑖 = (1 − 𝑥𝑖) ⊙ 𝐺𝑖−1 + 𝑥𝑖 ⊙ �̃�𝑖     (1) 

where 𝑥𝑖 is the update gate, ⊙ is the element-wise multiplication,  𝐺𝑖−1is the previous hidden state, 

�̃�𝑖  is the current memory content [9]. GRU algorithm is less complex compared to LSTM but 
provides efficient computations for temporal sequence analysis. 
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1.1.2. The Light Gradient Boosting Machine (LightGBM) 
It is an advanced extensive gradient boosting for machine learning classification, regression, 

ranking, and so on, which was developed by Microsoft. LightGBM is particularly fast and efficient, 
especially when enormous data and multi features are involved. It does this through changes to the 
ways trees are built, such as the introduction of histogram-based decision tree learning and the complete 
family of leaf-wise trees for speedier and more accurate training. Elimination of the continuous need to 
process raw values directly allows for a decrease in memory footprint as well as faster training. This is 
done using the histogram-based technique whereby quantitative data values are grouped in bins. The 
leaf-wise feature of the LightGBM helps to focus only on leaf with highest probability of loss reduction 

thereby reducing the number of splits and improving accuracy. The objective function 𝐹𝑜𝑏𝑗 of the 
LightGBM is minimized at each stage of iteration by equation (2) while equation (3) gives the total 

output prediction 𝑥𝑖
(𝑡)

 [10] & [11]. 

𝐹𝑜𝑏𝑗 = ∑ 𝑙(𝑥𝑖, 𝑥𝑖)𝑛
𝑖=1 + ∑ Ω(𝑓𝑗)𝑚

𝑗=1       (2) 

𝑥𝑖
(𝑡)

= 𝑥𝑖
(0)

+ 𝜂 ∑ 𝑔𝑚(ℎ𝑖)𝑡
𝑚=1        (3) 

where 𝑙(𝑥𝑖, 𝑥𝑖) is the loss function, Ω(𝑓𝑗) is the regularization term which prevents overfitting, 𝑥𝑖  is 

the predicted output, 𝑥𝑖
(0)

 is the baseline prediction, 𝜂 is the contribution control which lies between 0 

and 1, 𝑔𝑚 is the tree function for iteration m, ℎ𝑖 is the input value. 
 
1.1.3. The Long Short-Term Memory (LSTM) Model 

The LSTM model is a kind of Recurrent Neural Network (RNN) commonly used for learning 
comparatively long-term dependencies based on previous data trend. Unlike the traditional RNNs, 
LSTMs are equipped with special units called memory cells. Information is stored in the memory cell 
for a long period. Each cell has three main gates: the input gate, which decides what information is 
allowed into updating the cell state. The forget gate identifies the remaining part of the previous data 
saved in the memory cell and ensure it is cleared before the next iteration. The output gate manages the 
information flow rate from the memory cell that is used to compute the output. The activation vector 
used for the computation of the output gate is presented in equation (4) [12]. 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [𝑔𝑡−1, 𝑦𝑡] + 𝑐𝑜      (4) 

where 𝑊𝑜is the output gate weight matrix, 𝑔𝑡−1 is the previous hidden state, 𝑦𝑡 is the input at the 

current time step, 𝑐𝑜 is the bias term for the candidate memory cell state. 
 
1.1.4. The Prophet Model 

Prophet is an automated forecasting tool developed by Facebook researchers, Taylor and Letham 
[13]. It is suitable for time series data with daily observations and noticeable seasons. The model is 
resistant to missing observations problems and shifts in trend as it handles outliers and seasonality 
appropriately. Being the most appropriately used in the analysis of business time series data, the model 
can be applied in sales, marketing, and web traffic data. Prophet uses additive approach to model times-
series function as a combination of data trend, seasonality, and holiday effects. The additive model 

equation 𝐹(𝑡) is defined by equation (5).  

𝐹(𝑡) = 𝑠(𝑡) + 𝑢(𝑡) + ℎ(𝑡) +∈𝑡     (5) 

where 𝑠(𝑡) is the seasonality function that captures periodic pattern of the data, 𝑢(𝑡) is the trend 

function which models the non-periodic changes in the time series, ℎ(𝑡) accounts for the holidays such 

as special events or anomalies in the time series, ∈𝑡 is the error term responsible for unexplained 
variability [13, 14]. The seasonality function as shown in equation (6), uses the Fourier series which 
enables the model to capture repetitive patterns like daily, weekly, monthly, bi-annual, annual, 
variations. 



70 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 1: 67-75, 2025 
DOI: 10.55214/25768484.v8i6.3109 
© 2025 by the authors; licensee Learning Gate 

 

𝑠(𝑡) = ∑ [𝑎𝑖𝑐𝑜𝑠 (
2𝜋𝑖𝑡

𝑇
) + 𝑏𝑖𝑠𝑖𝑛 (

2𝜋𝑖𝑡

𝑇
)]𝑛

𝑖=1     (6) 

where T is period for the seasonality, n is the number of terms in the fourier series, 𝑎𝑖 and 𝑏𝑖 are the 

coefficients of the fourier series learned from the data. Prophet uses two types of trend model 𝑢(𝑡) to 
learn data trend pattern; the piecewise linear trend and logistic growth trend models expressed in 
equations (7) and (8) respectively.  

𝑢(𝑡) = (𝑘 + 𝑎(𝑡)𝑇𝛿)𝑡 + (𝑚 + 𝑎(𝑡)𝑇𝛾)    (7) 

where 𝑘 is the initial growth rate, 𝑎(𝑡) is the indicator function that determines when the change 

occurs, 𝛿 is the change in growth rate at change points, 𝑚 is intercept of the linear function (i.e offset 

parameter), 𝛾 is the adjustment vector which counterbalances the changes in the trend.  

𝑢(𝑡) =
𝐶

1+exp (−𝑘(𝑡−𝑚))
     (8) 

where 𝐶 is the carrying capacity or the maximum possible value, 𝑘 is the initial growth rate, 𝑚 is 
the time at which the growth rate reaches maximum or midpoint. 

The piecewise linear trend is a linear function with potential at a point where the trend’s rate of 
growth changes. The logistic growth is commonly used to activate rapid growth and saturate the model 
at a maximum capacity. The holiday effects which have significant influence on time series is computed 
using: 

ℎ(𝑡) = ∑ 𝛼𝑖𝐷𝑖(𝑡)𝑛
𝑖=1       (9) 

where 𝛼𝑖 is the impact of each holiday, 𝐷𝑖(𝑡) is an indicator function which is 1 if day t is holiday and 0 

if it is non-holiday? Prophet usually assumes the error term ∈𝑡 to follow a normal distribution. 
 
1.1.5 The Random Forest Model 

The Random Forest Model is a machine learning algorithm that randomizes the use of a 
disentangled set of several decision trees to arrive at a special product. It is a type of learning model that 
is relatively appropriate for classification and regression analysis. Its working principle depends on 
establishing several decision trees during the training phase. After the training, it comes up with its 
decisions which are the class modes for classification analysis or the mean of the individual trees’ 
prediction for regression analysis using equations (10) and (11) respectively [15]. 

𝐺𝑖

^

= 𝑚𝑜𝑑𝑒[𝑇𝑖
𝑏(𝑃)]𝑏=1

𝐵            (10) 

𝐺𝑖

^

=
1

𝐵
∑ 𝑇𝑖

𝑏(𝑃)𝐵
𝑏=1            (11) 

where 𝐺𝑖

^

 is the final prediction for input sample P. 𝐵 is the total trees in the forest. 𝑇𝑖
𝑏 is the 

prediction from the bth tree for the ith sample P. The model takes advantage of the multiple decision trees 
in the forest to improve prediction accuracy. 
 
2. Methodology 

The surface refractivity N was computed from the surface temperature, pressure, and humidity 
retrieved from Era5 dataset of the ECMWF using equation (12) [16].  
 

𝑁 =
77.6𝑃

𝑇
+

3.73×105𝑒

𝑇2      (12) 

where P is the total atmospheric pressure in hPa, T is the air temperature in Kelvin and e is the water 
vapour pressure in hPa defined by equation (13). 

𝑒 = 𝐻 ×
6.1121exp(

17.502𝑡

𝑡+240.97
) 

100
    (13) 

where t is the air temperature in in degrees Celsius. 
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The seasonal trend of the computed surface refractivity was studied and discussed based on the four 
prevailing seasons in South Africa [17, 18]. The coordinates of the study stations presented in Table 1 
were obtained from altitude-maps database [19]. The stations’ latitude, longitude, altitude and date are 
the independent variables which serve as the input variables for the model training. The surface 
refractivity which is the dependent variable was fed into the models using python programming 
language. The data was split into 80% for training and 20% for testing. The initial results were 
optimized using the randomized searchCV hyparameter tuning. The models performance metrics such 
as RSME and determination co-efficient were compared to identify the best model. The future 
prediction python script which any location coordinates and future date as input parameters was 
developed for forecasting corresponding surface refractivity. 
 
3. Results and Discussion 
3.1. Seasonal variation of Surface refractivity 

Selected time series plots of the 50 years surface refractivity data used for training the models are 
presented in Figures 1 and 2. Durban and Cape Town are the selected typical stations whose monthly 
refractivity values are shown in Figures 1 and 2, respectively. Comparison of the stations’ seasonal 
variation could not be revealed in the figures due to the crowded data points for the 50 years. To 
visualize the seasonal trend of the data, only five years data were plotted for all the stations and 
presented in Figures 3.  

 

 
Figure 1. 
The time series plot of the 50 years surface refractivity data at Durban used for training the models. 
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Figure 2. 
The time series plot of the 50 years surface refractivity data at Cape Town used for training the models. 

 
The 5 years’ time series plot presented in Figures 3 shows that surface refractivity varies 

significantly over the four seasons in South Africa annually. Surface refractivity across all the stations 
usually attains all-time lowest during the winter season (June-August). This is because relative 
humidity reaches maximum due to high rate of evaporation, frequent heavy rainfalls, and cool 
temperature [20, 21]. The East London has the lowest mean value of about 310 N-units, followed by 
316 N-units at Port Elizabeth, 322 N-units at Durban and Mossel Bay, 330 N-units at Cape Town while 
Richard Bay recorded highest value of 332 N-units. The spring season (September-November) 
witnessed gradual reduction in rainfall as the costal temperature rises due to transition from winter to 
summer. The coastal region, especially the southeastern part experiences steady rise in moisture from 
the Agulhas current, with humidity often reaching about 70% by late spring [22]. The water vapour 
pressure which has a significant influence on radio refractivity becomes high [23]. Consequently, 
surface refractivity rises gradually which signifies the on-set of the summer season. Surface refractivity 
reaches its peak in the summer (December-February) as the hot dry air dominates the coastal region. 
The average peak values during the study period are 361, 358, 353, 345, 341, and 338 N-units at 
Richard Bay, Durban, East London, Port Elizabeth, Mossel Bay, and Cape Town respectively. 
Refractivity begins to decline during Autum (March-May) due to gradual cooling temperature and 
reduced relative humidity. The observed seasonal trend and values resonate with the results of Asiyo 
[24] that utilized ten years (2001-2010) radiosonde data for Cape Town, Durban and Port Elizabeth. 
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Figure 3. 
Five-year time-series plot of surface refractivity of the sample data. 

 
3.2. Analysis of the Prediction Models 

Table 2 presents the performance metrics of the five models employed for the prediction of surface 
refractivity. The model performance metrics show notable differences in terms of accuracy for 
forecasting surface refractivity. The LightGBM possesses the best performance metrics with the lowest 
MAE and MSE and highest adjusted R2 of 0.96, followed by Random Forest as shown in Table 2. This 
indicates that LightGBM captures the variation patterns in the data very effectively, explaining 
approximately 97% of the variance.  
 
Table 2. 
Performance metrics of the trained models. 

Model MAE RMSE Adjusted R2 

Random forest 2.69 5.62 0.92 
LightGBM 1.67 3.84 0.97 
LSTM 3.14 10.33 0.88 
GRU 3.13 10.56 0.89 
Prophet 14.46 14.86 -1.56 

 
It can be inferred that the gradient boosting feature of the LightGBM allows it to handle seasonal 

variation and complex relationships in the data efficiently, making it an excellent choice for this task. 
Random Forest also performs well, but not as well as LightGBM. It has slightly higher errors and a 
lower Adjusted R² of 0.92, indicating that it explains around 92% of the variance. While the Random 
Forest is quite accurate, its ensemble of decision trees may not capture subtler patterns in the data as 
effectively as LightGBM. The LSTM model's performance is decent, with an Adjusted R² of 0.88. This 
indicates it explains 88% of the variance. However, its error rates are higher than both LightGBM and 
Random Forest. LSTM is well-suited for sequential data, but in this case, it may not have captured the 
seasonal patterns as effectively, or it could require further tuning. The GRU model performs similarly 
to LSTM, with nearly identical error metrics and an Adjusted R² of 0.89. This model captures around 
89% of the variance but still lags behind LightGBM and Random Forest. GRU, being simpler than 
LSTM, is generally faster but may not provide additional benefits in this specific context. Prophet 
performs very poorly in this case, with high error values and a negative Adjusted R², indicating that it 
fails to explain the variance in the data. The negative Adjusted R² implies that the model performs 
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worse than a simple mean model. Hence, the model is unsuitable for this complex multivariate dataset 
modeling, as it fails to capture the data’s patterns effectively.  

The recommended LightGBM model was used to forecast refractivity for the remaining months in 
2024 and 2025 in several locations within the coastal stations. The results obtained and the percentage 
errors for a typical (Cape Town) are presented in Figure 4 and Table 2. The figure clearly illustrates 
that the model provides an efficient prediction method. The maximum percentage error between the 
measured and predicted across all tested stations within the coastal region is 1.2%. 

 

 
Figure 4. 
Time-series of the LightGBM trained model showing the measured and predicted surface refractivity for a typical 
station; Cape Town. 

 
4. Conclusion 

The preliminary stage of this research studies the seasonal variation of surface refractivity over the 
coastal region of South Africa. The observed seasonal trend is in consonant with previous research 
works. Subsequently, fifty years atmospheric data of six coastal locations in South Africa were used to 
train five machine learning models for surface refractivity forecasting. Comparative analysis of the 
model performance recommends the LightGBM model with maximum percentage error of about 1.2% 
based on tested future predictions. The model could be used to derive past, real-time and future values of 
surface refractivity in areas where there is scarcity or absence of atmospheric data. The models could be 
applied to other climatic regions such as arid, semi-arid, tropical climate to as ascertain its suitability.  
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