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Abstract: Al Tamimi and Smith (2023) use a conventional phonological framework to investigate 
gender differentiation in a corpus of 656 Saudi Arabian first names. Their findings suggest that no 
single phonological feature—such as the number of phonemes, syllable structure (open vs. closed), stress 
patterns, or the voicing of initial and final consonants—can definitively determine gender. However, a 
combination of these features can collectively facilitate accurate gender identification. Expanding on this 
premise, the current study integrates phonological analysis with machine learning, employing both 
supervised techniques (e.g., Naïve Bayes) and unsupervised methods (e.g., k-Means Clustering) to 
explore whether machine learning can effectively predict gender based on these phonological 
characteristics. Specifically, this study compares the performance of classification methods—Gradient 
Boosting Machine (GBM), Random Forest, and k-Nearest Neighbors (k-NN)—against clustering 
methods, including hierarchical clustering and DBSCAN. The methodology involves a detailed analysis 
of model performance metrics, such as accuracy, F1 scores, and clustering indices, to comprehensively 
evaluate the accuracy and effectiveness of each approach in gender classification. The results indicate 
that classification methods significantly outperform clustering approaches, with the GBM model 
demonstrating particularly high accuracy and balanced performance across genders. In contrast, 
clustering methods struggled, particularly in classifying male names, due to their reliance on similarity-
based grouping rather than explicit class labeling. These findings suggest that while clustering methods 
may be helpful to for exploratory data analysis, they are inadequate for precise gender classification. The 
study's implications highlight the critical importance of selecting appropriate methodologies for 
classification tasks, demonstrating the superiority of classification models in gender prediction. 
Keywords: Gender identification, K-means clustering, Machine learning, Naive bayes, Phonological features. 

 
1. Introduction  

As a fundamental component of linguistics, phonology—the study of sound patterns in language—
primarily investigates the role of sounds within linguistic systems to create syllables, words, phrases, 
and longer utterances. The phonological structure encompasses a range of segmental features, including 
vowels and consonants; suprasegmental features, such as stress, intonation, and juncture; and extra-
segmental features, such as syllable structure, phonotactics, prosodic hierarchy, and temporal aspects 
(Anderson et al., 2008).  Traditionally grounded in descriptive and theoretical frameworks, phonological 
analysis has evolved to intersect with interdisciplinary fields, including cognitive science, sociology, 
psychology, neuroscience, and computer science, among other disciplines. Recent advancements in 
computational methods, particularly machine learning, have transformed phonological research by 
enabling the analysis of extensive linguistic datasets, revealing complex patterns and relationships that 
were previously overlooked. Integrating these computational approaches enhances analytical precision 
and fosters interdisciplinary collaboration, making each researcher feel included and part of a larger 
scientific community. As phonology progresses, combining traditional methods with modern techniques 
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promises to yield new theoretical developments and a more nuanced understanding of language 
structure and use. 

Machine learning, a branch of artificial intelligence, allows computers to learn from data and 
generate predictions. Its integration into phonology has transformed many linguistic tasks, such as 
speech recognition, phonotactic analysis, accent detection, and language acquisition research. Machine 
learning models deal effectively with linguistic data, as phonological features like syllable count, stress 
patterns, and vowel-consonant sequences can be quantified and modeled mathematically. By encoding 
these features as data points, machine learning algorithms can reveal hidden patterns and relationships 
that might elude traditional linguistic analysis. 

One prominent application is in automatic speech recognition (ASR), where machine learning 
models such as neural networks and Hidden Markov Models (HMMs) are used to transcribe spoken 
language by recognizing phonemes, the smallest distinctive sound units, in a speech stream. Similarly, 
in dialect and accent recognition, machine learning techniques analyze phonological variation to classify 
speech based on regional or social factors. These computational approaches offer greater precision and 
scalability than traditional linguistic analysis methods. 

Recent advancements in machine learning, such as deep learning and sequence-based models like 
LSTM (Long Short-Term Memory) networks, have further improved the accuracy and capability of 
phonological analysis. These models are particularly adept at processing sequential data, rendering 
them well-suited for phonemic and syllabic analyses, where the sequence of sounds is crucial. Such 
developments have led to more sophisticated applications like real-time speech translation and more 
accurate speech synthesis systems. 

In addition to its essential role in speech technologies, machine learning has been instrumental in 
advancing the study of phonotactics, which involves the rules governing permissible sound sequences 
within a language. By employing unsupervised learning algorithms, researchers can uncover 
phonotactic constraints that may be difficult to identify through manual analysis, thereby enriching our 
understanding of the underlying structure of language. Furthermore, machine learning is pivotal in 
diagnosing phonological disorders, as models analyze speech patterns to detect deviations from normal 
phonological processes, facilitating early diagnosis and targeted intervention. 

While machine learning provides significant advantages in processing linguistic data, it has 
challenges. Phonological data is inherently complex, featuring subtle sound patterns that might be 
difficult to capture in a computational model. Additionally, the risk of overfitting, especially with small 
or imbalanced datasets, poses another challenge for researchers in this field. Addressing these 
challenges is crucial for effectively applying machine learning methods in phonological analysis. 

Despite such challenges, the role of machine learning in phonological analysis continues to expand, 
and its potential to reveal intricate patterns and offer more precise insights is becoming increasingly 
evident. However, traditional analytical approaches are fundamental in building a foundational 
understanding of linguistic structures and feeding machine learning research. A case in point is the 
study by Al Tamimi and Smith (2023), which employs a conventional phonological framework to 
investigate gender differentiation in Saudi first names. Specifically, their analysis of a dataset of 237 
male and 419 female names used several phonological variables, including the number of phonemes, 
syllable structure (open vs. closed), stress patterns, and the voicing of initial and final consonants. Their 
findings reveal that female names tend to have fewer phonemes, often start with open syllables, and 
frequently stress the second syllable, while male names are more likely to end with voiced consonants 
and stress the third syllable. The study concludes that “although no single phonological variable can 
definitively determine gender, a combination of these phonological features allows for accurate 
identification of the gender of Saudi names” (p.  449).  

This paper investigates the claim made by Al Tamimi and Smith (2023), which posits that “the 
combination of the variables in question could conceivably account for the ability to identify the gender 
of a Saudi name correctly.” Building on this premise, the current research seeks to explore whether 
machine learning techniques can accurately predict the gender of an individual based on the 
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phonological features of their name, as specified above. By applying supervised machine learning 
techniques like Naive Bayes, we aim to predict the gender of individuals based on these features. 

Additionally, we utilize unsupervised learning techniques like k-Means Clustering to explore 
natural groupings in the data, examining whether phonological features alone can cluster names into 
meaningful gender categories without prior labeling. This approach not only contributes to the field of 
phonology by highlighting the role of sound patterns in social identity but also demonstrates the 
potential of machine learning in uncovering latent structures within linguistic data. 

This study integrates phonology with machine learning, contributing to both fields by 
demonstrating the effectiveness of computational models in predicting social variables and revealing 
underlying phonological structures. By bridging the gap between linguistic theory and computational 
techniques, we aim to provide new insights into the relationship between sound patterns and gender 
while also showcasing the broader applicability of machine learning to linguistic analysis. 
 
2. Literature Review 

The intersection of machine learning and phonological analysis has ushered in a new era of 
linguistic exploration, enabling researchers to uncover intricate patterns embedded in language sounds. 
A prime example of this synergy is gender prediction, where machine learning algorithms leverage 
phonological features to classify names or words based on their perceived gender associations. This 
literature review delves into recent advancements in this interdisciplinary field, highlighting the crucial 
roles of phonological features, sound symbolism, computational linguistic methodologies, and the 
persistent challenges that shape this domain. 

 
2.1. Phonological Features and Gender Classification 

Empirical research consistently highlights the predictive power of phonological cues in gender 
classification. Al Tamimi and Smith (2023) delve into the phonological characteristics of Saudi Arabian 
anthroponyms, uncovering gender-specific patterns in their sound structures. Cho (2024) showcases the 
effectiveness of deep neural networks in classifying the gender of Korean personal names, even 
surpassing human judgments in some instances. Additionally, studies by Fredrickson, A. (2007) solidify 
the connection between specific phonological features, such as syllable count, vowel quality, consonant 
features, and gender. These findings collectively demonstrate the substantial influence of phonology on 
shaping gendered language patterns. Expanding the scope to diverse linguistic contexts, Jia and Zhao 
(2019) focus on gender prediction based on Chinese names, while Tripathi and Faruqui (2011) explore 
similar patterns in Indian names, underscoring the cross-linguistic relevance of phonological cues in 
gender classification. 
 
2.2. Sound Symbolism and Gender 

Sound symbolism, the concept that sounds possess inherent meanings, traces its origins to Plato's 
Cratylus, which discusses the natural connections between words and meanings (Plato, 360 BCE). Otto 
Jespersen (1922) observed that high-pitched vowels often suggest smallness, while Roman Jakobson 
(1965) explored the phonological aspects of this phenomenon. John Ohala (1994) examined the 
biological and perceptual influences on sound-meaning relationships. Together, these scholars provide a 
foundational understanding of sound symbolism across languages. 

Considering its implications, the intricate relationship between sound symbolism and gender 
perception remains a captivating research area. Chun Hau Ngai et al. (2024) explore sound symbolism in 
Japanese names using machine learning, uncovering intriguing sound-gender associations and 
suggesting a cross-linguistic dimension to this phenomenon. Kilpatrick (2023) highlights the role of 
sound symbolism in automatic emotion recognition and sentiment analysis, demonstrating its 
implications beyond gender prediction. Furthermore, Lee et al. (2024) examines the emotional responses 
of Korean and Chinese women to Hangul phonemes, showcasing the subtle interplay between 
phonology, gender, and emotional perception. Lastly, Moorthy et al. (2018) evaluate the influence of 
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sound symbolism on brand name gender perception, offering valuable insights into its practical 
applications. 
 
2.3. Computational Linguistics Approaches 

Advancements in computational linguistics, particularly the emergence of deep learning models, 
have transformed phonological analysis. The capacity of these models to extract intricate features and 
patterns from large datasets has driven the development of increasingly accurate and nuanced gender 
prediction models. Manning (2015) provides a comprehensive overview of the synergy between 
computational linguistics and deep learning, emphasizing its significant impact on various natural 
language processing (NLP) tasks. Moreover, research by Cao and Daumé III (2021) examines the 
potential for bias in coreference resolution systems, advocating for the integration of gender inclusivity 
throughout the machine learning lifecycle.  
 
2.4. Challenges and Advances 

Despite remarkable progress, the field continues to encounter challenges such as potential bias in 
machine learning models and the need for interpretability. Addressing these concerns is paramount for 
ensuring responsible and ethical AI development. Concurrently, ongoing research into data collection, 
annotation techniques, and the pursuit of explainable AI offers promising solutions (Arrieta et al., 2020).  

The evolving landscape of machine learning and phonological analysis offers profound potential for 
revealing intricate connections between language, sound, and gender. By advancing our understanding 
of gendered language patterns and facilitating the creation of fairer, more transparent AI systems, this 
interdisciplinary field is well-positioned for transformative breakthroughs. 

In conclusion, integrating machine learning with phonological analysis has opened new avenues for 
investigating the complex relationship between language and gender. The studies reviewed underscore 
the predictive power of phonological features, the nuanced role of sound symbolism, and the 
transformative potential of computational linguistic methods in gender prediction tasks. Although 
challenges persist, ongoing advancements in machine learning and ethical AI development offer 
promising pathways for future research. As this interdisciplinary field progresses, we can anticipate a 
deeper understanding of the intricate connections between language, sound, and social identity. 
 
3. Dataset 

The data considered in this paper consists of the first names of 656 Saudis, 237 males, and 419 
females, drawn from the registrar of a private university in Riyadh, Saudi Arabia. 

In this case study, the dependent variable is the qualitative ‘gender’ with its two categories: 
“Female” and “Male.” The independent variables are the following: 

• x1: Phonemes (Quantitative variable) 

• x2: Syllables (Quantitative variable) 

• x3: Syllable structure (or syllable pattern or syllable configuration). This variable describes 
different combinations of open and closed syllables. It is a qualitative variable with 22 categories, 
such as closed, closed+closed, and open+open+open+closed. 

• x4: Stress position (or stress pattern). This variable indicates the position of the stress in a word. It 
is a qualitative variable with five categories: first, second, third, fourth, and monosyllabic. 

• x5: Word-initial sound (or initial segment type, or Word-initial consonants vs. vowels). This 
variable indicates the type of sound (vowel or consonant) at the beginning of the word. It is a 
qualitative variable with 41 categories, such as cons = b, cons = d, or vowel = a. 

• x6: Manner of articulation of initial consonants. This refers to how the consonant at the beginning 
of the word is articulated. This qualitative variable has 11 categories, such as (glottal) stop and 
(glottal) fricative. 
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• x7: Manner of articulation of final consonants.  Similar to x6, this refers to how the final consonant 
is articulated. This is a qualitative variable with 13 categories, such as (glottal) stop and (glottal) 
fricative, 

• x8: Voicing of initial consonants. This variable refers to whether the initial consonant is voiced or 
voiceless. This qualitative variable has three categories: voiced, voiced (being vowel), and 
voiceless. 

• x9: Voicing of final consonants. Similar to x8, this refers to the voicing of the final consonant. This 
qualitative variable has three categories: voiced, voiced (being vowel), and voiceless. 

 
4. Machine Learning Approach 

The machine learning approaches used in this paper are classification, a supervised learning 
technique, and clustering, an unsupervised learning technique.  

Classification leverages attributes to assign predefined class labels to data points. Its goal is to 
create a mapping from input features to class labels using labeled training data, allowing the model to 
predict class labels for previously unseen cases. In our study, classification aids in identifying patterns or 
characteristics that differentiate male names from female names using labeled data. This enables the 
development of a model capable of predicting the gender of new names based on the features learned 
from the training data. 

In contrast, clustering involves organizing similar data points into clusters based on shared traits or 
attributes. The main objective of clustering is to uncover hidden patterns or structures in the data 
without prior knowledge of class labels. In this case, names are grouped according to their similarities 
without relying on labeled data. This approach can reveal natural groupings or patterns that may not be 
immediately apparent. For instance, clustering could reveal subgroups within male or female names that 
share specific phonetic or structural features. 

By integrating supervised and unsupervised learning techniques, the advantages of each method are 
harnessed to achieve a more thorough analysis of the first names in the study. Employing both 
approaches enables the identification of patterns that may be missed when using only one method, 
ensuring that the insights are both comprehensive and accurate. 
 
4.1. Classification 

The objective is to determine whether it is possible to predict a subject's gender based on all the 
available variables. Since the 'gender' variable is qualitative, this represents a classification problem. 
Various machine learning algorithms can be applied to address this type of challenge. 

In machine learning, it is customary to split the data into training, validation, and test sets. The 
training set is used to fit the model parameters. The validation set is used to tune the model 
hyperparameters. The test set is used to evaluate the model performance. 

The confusion matrix assesses how well a classification model fits a dataset. The confusion matrix 
summarizes the performance of a classification algorithm as follows: 
                                        

  Table 1. 

 Event No-event 
Event True positive (TP) False positive (FP) 
No-event False negative (FN) True negative (TN) 

 

• “True Positive” are the correctly predicted event values. 

• “False Positive” are the incorrectly predicted event values. 

• “True Negative” are the correctly predicted no-event values. 

• “False Negative” are incorrectly predicted no-event values. 
Using the confusion matrix, the following metrics are usually calculated: 
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• Sensitivity (also known as “recall” or the “true positive rate”): The probability that the model 
predicts a positive outcome for an observation when the outcome is indeed positive. 

Sensitivity =
TP

TP + FN
 

• Specificity (also known as the “true negative rate”): The probability that the model predicts a 
negative outcome for an observation when the outcome is indeed negative. 

Specificity =
TN

TN + FP
 

 

• The precision measures the accuracy of the positive predictions. It answers the question: Of all 
instances that the model predicted as positive, how many were actually positive? 

Precision =
TP

TP + FP
 

• The accuracy is the percentage of total correct classifications. It measures the proportion of 
correct predictions out of all predictions made by the model. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 

We will use the following classification algorithms: logistic regression, k-nearest neighbors, neural 
networks, support vector machine, decision trees, random forests, and gradient boosting machine. 
 
4.1.1. Logistic Regression 

Logistic regression is a statistical and machine-learning method used for binary classification tasks. 
The aim is to predict one of two possible outcomes. Despite its name, logistic regression functions as a 
classification algorithm rather than a regression technique. 

Logistic regression is widely used in various applications, including medical diagnosis (e.g., 
predicting the presence of a disease), spam detection (e.g., classifying emails as spam or not spam), 
marketing (e.g., predicting whether a customer will buy a product), and credit scoring (e.g., assessing 
the risk of loan default). 

In this study, 70% of the data is used for training, while the remaining 30% is used for testing. 
Logistic regression produces the following confusion matrix is obtained: 

 
Table 2. 

 Reference 
Prediction  Female Male 
Female      48 28 
Male        17 94 

 
The technique's Accuracy was 0.7594. This means that the proportion of correctly predicted 

instances (True positives and true negatives) out of the total number of instances is 75.94%, which is 
relatively high. 
 
4.1.2. K-Nearest Neighbors (k-NN) 

k-Nearest Neighbors (k-NN) is a straightforward, non-parametric, instance-based learning 
algorithm used for both classification and regression in machine learning. The core principle of k-NN is 
that similar data points tend to have similar labels or target values. It uses a distance metric to assess 
the similarity between data points, with standard metrics including Euclidean distance, Manhattan 
distance, and Minkowski distance. The "k" in k-NN refers to the number of nearest neighbors 
considered when making a prediction. 
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Among applications of k-NN, we cite pattern recognition (handwriting, fingerprint, and facial 
recognition), recommendation systems (suggesting products or content based on user similarity), 
medical diagnosis (predicting diseases based on patient similarity), and anomaly detection (identifying 
unusual patterns that do not conform to expected behavior). 
Using the 3-NN classifier, the following confusion matrix is obtained: 
 

Table 3. 

 Reference 
Prediction  Female Male 
Female      106 25 
Male        19 47 

 
The accuracy is found to be Accuracy = 0.7766, which indicates that approximately 77.66% of the 

predictions were correct. This is slightly better than the logistic regression classifier. 
 
4.1.3. Neural Networks 

A neural network classifier is a machine learning model inspired by the structure and function of the 
human brain, developed to identify patterns and categorize data. Neural networks comprise layers of 
interconnected nodes (neurons) that process input data, learn from it, and generate predictions. 

Applications of neural networks include image classification (recognizing objects in images), natural 
language processing (text classification, sentiment analysis, language translation), speech recognition 
(converting spoken language into text), medical diagnosis (identifying diseases from medical images or 
patient data), and finance (fraud detection, stock price prediction). 
The neural network classifier produced the following confusion matrix: 
 

Table 4. 

 Reference 
Prediction  Female Male 
Female      100 25 
Male        24 48 

 
The classifier's accuracy is 0.7513, which is slightly lower than that of the logistic regression and k-

NN classifiers. 
 
4.1.4. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a robust supervised learning algorithm employed for both 
classification and regression tasks. It excels in high-dimensional spaces and can effectively manage both 
linear and non-linear data. SVM utilizes hyperplanes as decision boundaries to separate different classes 
within the feature space. 

SVM applications include text classification (spam detection, sentiment analysis), image 
classification (object recognition in images), bioinformatics (protein classification, cancer detection), and 
financial analysis (Credit scoring, stock price prediction). 
The confusion matrix obtained by the SVM classifier is as follows: 
 

Table 5. 

 Reference 
Prediction  Female Male 
Female      111 38 
Male        12 34 
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The accuracy of SVM is Accuracy = 0.7436, which is the lowest of the classifiers’ accuracies 
considered so far. 
 
4.1.5. Naïve Bayes 

Naive Bayes is a group of straightforward yet effective probabilistic classifiers that apply Bayes' 
theorem with strong (naive) independence assumptions between features. Despite its simplicity, Naive 
Bayes often performs remarkably well on complex real-world problems, particularly when dealing with 
large datasets. 

Real-world applications of the naïve Bayes classifier have been reported in text classification (spam 
detection, sentiment analysis, document categorization), medical diagnosis (predicting diseases based on 
symptoms), recommendation systems (predicting user preferences), and market basket analysis 
(Understanding customer purchase patterns). 
Application of the naïve Bayes classifier resulted in the following confusion matrix: 
 

Table 6. 

 Reference 
Prediction  Female Male 
Female      94 29 
Male        31 43 

 
The accuracy obtained Accuracy = 0.6954 is lower than that of the previous classifiers but still very 

close. 
 
4.1.6. Decision Tree 

A decision tree classifier is a supervised learning algorithm used for both classification and 
regression tasks. It employs a tree-like structure to represent decisions and their potential outcomes. 
The tree is built by recursively dividing the training data into subsets according to the feature values 
that provide the most significant information gain or the greatest reduction in impurity. 

Applications of decision trees include classification (spam detection, medical diagnosis, loan 
approval), regression (predicting house prices, forecasting sales), and feature engineering (used in 
ensemble methods like random forests and gradient boosting). 
The naïve Bayes classifier yielded the following confusion matrix: 
 

Table 7. 

 Reference 
Prediction  Female Male 
Female      111 14 
Male        32 40 

 
The accuracy of the classifier is Accuracy = 0.7665. 
 
4.1.7. Random Forest 

Random Forest is an ensemble learning technique used mainly for classification and regression 
tasks. It constructs multiple decision trees during training and combines their results to achieve more 
accurate and stable predictions. This approach, known as "bagging" (Bootstrap Aggregating), enhances 
the model's performance and robustness by leveraging the collective strength of multiple trees. 

Applications of random forests include classification (spam detection, sentiment analysis, disease 
diagnosis), regression (predicting house prices, stock market forecasting, sales prediction), feature 
selection (identifying important features in large datasets), and anomaly detection (detecting outliers 
and unusual patterns in data). 
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The random forest classifier gave the following confusion matrix: 
                                           

Table 8. 

 Reference 
Prediction  Female Male 
Female      93 21 
Male        19 44 

 
The accuracy of the classifier is Accuracy = 0.7740. 

 
4.1.8. Gradient Boosting Machine (GBM) 

Gradient Boosting Machine (GBM) is an ensemble machine learning technique utilized for both 
classification and regression tasks. It develops a model incrementally by sequentially adding predictors, 
often decision trees, where each new predictor corrects the errors of the previous ones. GBM merges the 
strengths of several weak models (typically shallow decision trees) to form a robust predictive model. 

GBM applications include regression (predicting house prices, stock prices, and other continuous 
outcomes), classification (spam detection, fraud detection, customer churn prediction), and ranking 
(search engine result ranking, recommendation systems). 
The confusion matrix obtained by the GBM classifier is: 
 

Table 9. 

 Reference 
Prediction  Female Male 
Female      111 22 
Male        14 50 

 
The obtained accuracy of the classifier Accuracy = 0.8173 is the highest accuracy registered among 

all the classifiers considered. 
 
4.1.9. Comparison of Classifications Techniques 

A comparison of the results of the classification techniques used in this paper is presented in the 
table below: 
 

Table 10. 

 Method Accuracy Sensitivity Specificity Precision Recall F1 score 
Logistic regression 0.7594 0.7385 0.7705 0.6316 0.7385 0.6809 
k-NN 0.7766 0.8480 0.6528 0.8092 0.8480 0.8281 
Neural network 0.7513 0.8065 0.6575 0.8000 0.8065 0.8032 
SVM 0.7436 0.9024 0.4722 0.7450 0.9024 0.8162 
Naïve bayes 0.6954 0.7520 0.5972 0.7642 0.7520 0.7581 
Decision tree 0.7665 0.7762 0.7407 0.8880 0.7762 0.8284 
Random forest 0.7740 0.8304 0.6769 0.8158 0.8304 0.8230 
GBM 0.8173 0.8346 0.7813 0.8880 0.8346 0.8605 

 
These metrics provide insights into the performance of each model. For example: 

• Best Overall Performance: GBM achieves the highest accuracy (81.73%) and a good balance 
between precision and recall (F1 score of 86.05%). 
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• High Sensitivity: SVM and k-NN have high sensitivity (ability to find positive cases), but SVM 
sacrifices specificity. This indicates that SVM is good at identifying true positives but struggles 
with true negatives. 

• Balanced Models: Naïve Bayes, Decision Tree, and Random Forest show balanced performance 
across metrics. 

We will examine the BGM classifier more closely since it achieves the highest prediction accuracy. 
First, Figure 1 is a visual representation of the confusion matrix. 
 

 
Figure 1. 
BGM confusion matrix. 

 
Second, an easy way to visualize the two metrics (sensitivity and specificity) is by creating a 

Receiver Operating Characteristic (ROC) curve, which is a plot that displays the sensitivity and 
specificity of a classification model, see Figure 2. 
 

 
Figure 2. 
BGM ROC Curve. 
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The ROC curve displays the percentage of true positives predicted by the model as the prediction 
probability cutoff is lowered from 1 to 0. The higher the AUC (area under the curve), the more 
accurately our model can predict outcomes. The GBM classifier achieves an AUC of 0.8552. 

Third, in GBM, the importance of variables (also known as feature importance or influence) can be 
calculated based on the improvement in the model’s performance that each variable brings. Different 
methods can be used to measure variable importance in GBM. The variable importance in GBM models 
reflects how much each variable contributes to reducing the model's loss function, normalized to provide 
a relative measure of importance. In our case, the importance of the model variables is depicted in 
Figure 3. 
 

Table 11. 

Variable Importance 
x5 52.2263 
x3 18.5586 
x7 13.5678 
x9 12.4236 
x4 2.3400 
x6 0.3819 
x1 0.2782 
x2 0.2237 
x8 0.0000 

 

 
Figure 3. 
Variables importance. 

 
These values indicate the relative importance of each predictor variable in the model. It seems like 

x5 (word-initial sound), x3 (syllable structure), x7 (manner of articulation of final consonants), and x9 
(voicing of final consonants) are the most important variables in predicting the outcome, while x8 
(Voicing of initial consonants) has zero importance. This information can help us understand which 
variables contribute most to our model's predictions. 
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4.2. Clustering 
Approaching the problem using clustering instead of classification, the goal now shifts from 

predicting the specific label (in this case, "gender") to discovering natural groupings or patterns within 
the data without using predefined gender labels. 

To evaluate how well the clusters match the actual gender labels, we can analyze the confusion 
matrix and calculate metrics like accuracy, precision, recall, and F1 score. Here is how you can interpret 
the results. 

Note that the gender variable is excluded from the clustering process. Clustering aims to group data 
based on inherent patterns without considering any labels. Including gender in the clustering might 
influence the results, leading to biased clusters. Instead, we exclude gender during the clustering 
process and use it later to evaluate how well the clusters align with the actual genders. 

We will use the following clustering algorithms: k-means, hierarchical clustering, and DBSCAN. 
 
4.2.1. k-Means 

k-means clustering is a well-known and extensively used unsupervised machine learning algorithm 
that divides a dataset into a predetermined number of clusters, represented by "k." The main objective of 
k-means clustering is to group data points so that those within the same cluster are more similar to each 
other than to those in different clusters. 

k-means clustering has a wide range of applications across various fields due to its versatility and 
simplicity. Some notable examples include customer segmentation, image compression, document 
clustering, genomics, and anomaly detection. 
Using the 2-means clustering technique yields the following confusion matrix and clusters: 
 

Table 12. 

 Gender 
Cluster Female Male 

1 401 225 
2 18 12 

 
 

 
 

 
Figure 4. 
k-means clusters. 

 
Cluster 1 excels at identifying females, with a high recall rate of 95.69% and moderate precision of 

64.09%. The F1 score of 76.60% suggests a fair balance between precision and recall. In contrast, 
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Cluster 2 performs poorly in identifying males, with very low precision (40%) and recall (5.06%), 
resulting in a low F1 score of 8.93%. 

The clustering model exhibits a strong gender bias, favoring females. Cluster 1 effectively captures 
most females but also misclassifies many males. Meanwhile, Cluster 2, intended to represent males, 
shows poor performance. This suggests that the clustering model may not effectively differentiate 
between genders in this dataset and might need further adjustment or an alternative approach. 
 
4.2.2. Hierarchical Clustering 

Hierarchical clustering is an unsupervised machine-learning method used to organize data points 
into clusters based on their similarities. It generates a hierarchical or tree-like diagram known as a 
dendrogram, which illustrates the nested grouping of data points. The similarity between clusters is 
assessed using different linkage criteria. 

Hierarchical clustering has a wide range of applications across various domains, such as 
bioinformatics, market research, document clustering, social network analysis, and ecology. 

Using the hierarchical clustering technique yields the following confusion matrix and clusters: 
 

Table 13. 

 Gender 
Cluster Female Male 

1 398 200 
2 21 37 

 
 
 
 
 

 
Figure 5. 
Hierarchical clusters. 

 
Cluster 1 is more proficient at identifying females, demonstrating high precision (95.1%) and 

moderate recall (66.6%). The F1 score of 79.0% indicates a strong balance between precision and recall 
for females. Conversely, Cluster 2 performs poorly in identifying males, with very low precision (15.6%) 
and recall (15.6%), leading to a low F1 score of 15.6%. 

Hierarchical clustering exhibits a notable bias towards identifying females. Cluster 1 successfully 
captures most females but also misclassifies a substantial number of males. Cluster 2, intended to 
represent males, performs poorly, suggesting that the model may not be effective in distinguishing 
between genders in this dataset. This implies the need for further refinement of the clustering approach 
or exploring alternative methods to enhance gender classification. 
 
4.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a widely used 
unsupervised machine learning algorithm designed for clustering tasks, especially with datasets that 
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include noise and varying densities. It clusters data points based on their density, identifying regions 
with high point density as clusters and considering points in sparser areas as noise or outliers. 

One of DBSCAN's key advantages is its ability to find clusters of arbitrary shapes, making it 
particularly effective for complex datasets where clusters are not well-defined or are non-spherical. It is 
also robust to noise, as it inherently differentiates between dense clusters and sparse, noisy regions. 

DBSCAN is widely used in applications such as geographic information systems (GIS), anomaly 
detection, astronomy, image processing, and social network analysis. 

Using the DBSCAN clustering technique yields the following confusion matrix and clusters: 
 

Table 14. 

 Gender 
Cluster Female Male 

0 381 232 
1 5 1 
2 5 0 
3 5 0 
4 5 1 
5 9 1 
6 4 2 
7 5 0 

 
 
 
 

 
Figure 6. 
DBSCAN clusters. 

 
Cluster 0 predominantly identifies females, achieving high recall (90.93%) but moderate precision 

(62.17%). The F1 score of 73.74% reflects a reasonable balance between precision and recall. Clusters 1, 
4, and 6 are intended to identify males but perform poorly, with extremely low precision, recall, and F1 
scores. Clusters 1 and 4 each have a precision of 16.67%, while Cluster 6 has a slightly higher precision 
of 33.33%. However, their recall values are very low (approximately 0.42% for Clusters 1 and 4, and 
0.84% for Cluster 6), resulting in very low F1 scores. 

The DBSCAN clustering model, similar to previous methods, shows a strong bias toward 
identifying females, with Cluster 0 successfully capturing most females. However, it fails to accurately 
identify males, as the clusters designated for males (Clusters 1, 4, and 6) exhibit extremely low 
precision, recall, and F1 scores. This suggests that DBSCAN, given the current parameters, may not be 
effective in distinguishing between genders in this dataset and may require further adjustment or a 
different approach for improved results. 



6494 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 6480-6497, 2024 
DOI: 10.55214/25768484.v8i6.3402 
© 2024 by the author; licensee Learning Gate 

 

4.2.4. Comparison of Clustering Techniques 
In clustering, metrics for males and females are usually reported separately because the algorithm 

cannot access the true labels during the clustering process. Instead, it organizes data based on 
similarities, and we assess how well these clusters correspond to the actual gender labels afterward. 
Reporting metrics separately provides a clearer view of how effectively the clustering identifies each 
gender. 

A comparison of the results of the clustering techniques used in this paper is presented in the table 
below: 
 

Table 15. 

  Female Male 
 Method Accuracy Precision Recall F1 score Precision Recall F1 score 
k-means 0.6296 0.6409 0.9569 0.7660 0.4000 0.0506 0.0893 
Hierarchical 0.6631 0.6656 0.9499 0.7827 0.1561 0.1561 0.1561 
DBSCAN 0.5823 0.6215 0.9093 0.7384 0.2222 0.0168 0.0313 

 
These metrics provide insights into the performance of each model. For example: 

• Hierarchical clustering generally performs the best across all metrics, especially in terms of 
accuracy and F1 score for females. However, like the other methods, it struggles with identifying 
males, suggesting that the clustering algorithm is more biased towards capturing females 
accurately. 

• k-Means shows a reasonable balance but has the highest precision for males at the cost of very 
low recall, leading to a poor F1 score for males. 

• DBSCAN underperforms in general, with the lowest accuracy and a very low recall for males, 
though it still maintains a decent recall for females. 

Hierarchical clustering appears to be the most effective method for this dataset, especially for 
accurately identifying females. However, none of the methods excel in identifying males, suggesting 
that the data may need further refinement or that an alternative clustering approach might be necessary 
to enhance male identification. 

Given that hierarchical clustering performed best among the methods evaluated, a more thorough 
assessment was conducted by calculating additional clustering metrics: the Silhouette Score, Within-
Cluster Sum of Squares (WCSS), and Davies-Bouldin Index (DBI). These metrics provide a more 
comprehensive evaluation of the clustering model's performance, helping to determine whether 
hierarchical clustering is the optimal choice or if another method might offer better results. 
 

 
Figure 7. 
Silhouette plot. 
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The silhouette plot (Figure 7) illustrates the performance of the hierarchical clustering algorithm, 
with each bar representing a sample. The silhouette width, ranging from -1 to 1, reflects how well each 
sample fits within its cluster. Cluster 1, which contains 598 samples, has an average silhouette width of 
0.24, indicating relatively good clustering. In contrast, Cluster 2, with 58 samples, has a very low 
silhouette width of approximately -0.003, suggesting poor clustering, potential boundary issues, or 
misclassification. The overall average silhouette width of 0.22 indicates moderate clustering quality, 
with notable overlap between clusters, especially in Cluster 2. 

The silhouette plot suggests that hierarchical clustering has moderately separated the data, but 
further refinement of parameters (such as distance metric and linkage method) or the number of clusters 
might improve the results. Given the low silhouette score for Cluster 2, exploring alternative clustering 
methods may also be beneficial. 

The Silhouette Score, with an average of 0.216, reveals that the clusters are not well-defined and 
show considerable overlap. 

The Within-Cluster Sum of Squares (WCSS), which measures cluster compactness, stands at 
67,863.81—a relatively high value—indicating that the clusters are not tightly packed. This supports 
the low silhouette score and suggests suboptimal clustering. 

The Davies-Bouldin Index (DBI), which assesses cluster separation, is 3.17, indicating poor 
separation and reinforcing the notion that the clusters are not well-defined. 

Therefore, these metrics indicate that hierarchical clustering may not be the most suitable method 
for this dataset, as both cluster cohesion and separation are inadequate. Further exploration of 
alternative methods or adjustments to clustering parameters may lead to improved results. 
 
5. Comparative Analysis Classification vs Clustering 

Classification methods significantly outperform clustering methods in terms of accuracy and 
balanced performance across genders. For example, the GBM model demonstrates high accuracy and F1 
scores for both genders, highlighting its effectiveness in classifying data points with clear labels. In 
contrast, clustering methods struggle with accurately identifying males because they are not designed 
to optimize for specific class labels. As a result, clustering methods generally perform lower, as they 
focus on finding natural groupings in the data without regard to labels. 

Clearly, classification is the more suitable approach for gender classification in this dataset. The 
models used are specifically trained to differentiate between classes, resulting in higher accuracy and 
more balanced performance across genders. While clustering is valuable for exploratory data analysis, it 
is less effective for this task, particularly because it does not directly optimize for accurate identification 
of males and females. 

Given the results, using GBM or other robust classification models such as Random Forest or k-NN 
is recommended for gender classification in this dataset. These methods offer the best accuracy, 
precision, and F1 scores, providing strong performance for both male and female classifications. 
Clustering can complement classification for exploratory purposes or to gain insights into the data 
structure but should not be relied upon as the primary method for gender classification. 
 
6. Conclusion 

In this study, we assessed various machine learning techniques for gender classification by 
comparing the effectiveness of classification and clustering methods on a dataset of first names. Our 
analysis reveals that classification methods—specifically Gradient Boosting Machine (GBM), Random 
Forest, and k-Nearest Neighbors (k-NN)—outperform clustering methods significantly in terms of 
accuracy and balanced performance across genders. Notably, the GBM model exhibited high accuracy 
and strong F1 scores for both male and female names, demonstrating its proficiency with clearly labeled 
data. 

In contrast, clustering methods such as hierarchical clustering and DBSCAN faced significant 
difficulties in accurately identifying males. These challenges arise from their design, which emphasizes 
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grouping based on similarity without optimizing for specific class labels. Metrics such as the silhouette 
plot, Silhouette Score, Within-Cluster Sum of Squares (WCSS), and Davies-Bouldin Index (DBI) 
collectively showed that clustering methods struggled to effectively distinguish between genders, 
particularly for males. 

Our findings suggest that classification techniques are more appropriate for gender classification in 
this scenario, as they are designed to differentiate between distinct classes, leading to better 
performance. Although clustering methods can be valuable for exploratory data analysis and 
understanding data structures, they are not recommended as the primary approach for gender 
classification. 

In conclusion, robust classification models like GBM, Random Forest, or k-NN are recommended 
for gender classification tasks involving this dataset to achieve accurate and balanced results. While 
clustering methods may be useful for initial exploration, they should not replace classification 
techniques where precise gender identification is essential. Future research could focus on refining 
clustering parameters or exploring alternative approaches to enhance gender classification performance 
and address the limitations identified in this study. 
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