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Abstract: Here, we propose a new variable neighbourhood search (VNS) algorithm for solving 
fractional fuzzy number linear programming problems (FFNLPPs). We make use of modified Kerre’s 
inequality for comparison of LR fuzzy numbers. In our proposed algorithm, we introduced a new local 
search defined based on descent directions, which are found by solving four crisp mathematical 
programming problems. In several methods, a fuzzy fractional optimization problem is converted to a 
crisp problem. Still, in our proposed method, using modified Kerre’s inequality, the fuzzy optimization 
problem is solved directly, without changing it to a crisp program. To show the effectiveness of our 
method, we compare our proposed algorithm with other available methods. 
Keywords: Fractional linear optimization, Modified Kerre’s inequality, VNS algorithm. 

 
1. Introduction  

Charnes and Cooper [4] first formulated a linear fractional programming problem as an 
optimization problem of a ratio of linear functions subject to linear constraints. Such linear fractional 
objectives (i.e., ratio objectives that have a linear numerator and denominator) are helpful in production 
planning, financial and corporate planning, health care, hospital planning, and so forth. Examples of 
fractional objectives in production planning include inventory/sales, output/employee, etc. For single 
objective, linear fractional programming, the Charnes and Cooper [4] transformation can transform the 
problem into a linear programming problem. In many real-world situations, some parameters of a linear 
program are given by experts. However, experts and decision-makers frequently are not aware of the 
precise values of the parameters.  

Since some optimization problems contain parameters with imprecise values (see [3]), fuzzy number 

linear programs (FNLPs) are handy tools for modelling and solving real-world problems . 
Arya et al. [1] presented a fuzzy based branch-bound approach is attempted for solving multi-

objective linear fractional (MOLF) optimization problems. The original MOLF optimization problem is 
converted into an equivalent fuzzy multi-objective linear fractional (FMOLF) optimization problem. 
Then, branch and bound techniques were applied to the FMOLF optimization problem. The feasible 
space of FMOLF optimization problem was bounded by triangular simplex space. The weak duality 
theorem was used to generate the bound for each partition and feasibility conditions were applied to 
neglect one partition in each step. After finite number of steps, a fuzzy efficient (Pareto-optimal) 
solution was obtained for FMOLF optimization problem which was also efficient (Pareto-optimal) 
solution of the original MOLF optimization problem. Some theoretical validations were also established 
for the proposed approach on FMOLF optimization problem. Chinnadurai and Muthukumar [5] 

proposed using the (α,r) acceptable optimal value for a linear fractional programming problem with 
fuzzy coefficients and fuzzy decision variables, as well as developing a method for computing them. To 

obtain acceptable (α,r) optimal values, they take an α-cut on the objective function and r-cut on the 
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constraints. They then formulated an equivalent bi-objective linear fractional programming problem to 
calculate the upper and lower bounds of the fully fuzzy linear fractional programming (LFP) problem. 
Using the upper and lower bounds obtained, they constructed the membership functions of the optimal 
values numerically. Wang et al. [33] obtained the solution to bi-level linear fractional programming 
problem (BLFP) using an optimization algorithm based on the duality gap of the lower level problem. 
In their algorithm, the bi-level linear fractional programming problem was transformed into an 
equivalent single-level programming problem by forcing the dual gap of the lower level problem to 
zero. Then, by obtaining all vertices of a polyhedron, the single-level programming problem could be 
converted into a series of linear fractional programming problems. Pal et al. [17], presented a goal 
programming (GP) procedure for fuzzy multi-objective linear fractional programming (FMOLFP) 
problems. In the proposed approach, which is motivated by Mohamed (Fuzzy Sets and Systems 89 
(1997) 215), GP model for achievement of the highest membership value of each of fuzzy goals defined 
for the fractional objectives is formulated. In the solution process, the method of variable change on the 
under- and over- deviational variables of the membership goals associated with the fuzzy goals of the 
model is introduced to solve the problem efficiently using linear goal programming (LGP) 
methodology. Yang et al. [34], presented to solve fuzzy multi-objective linear fractional programming 
(FMOLFP) problems through an approach based on superiority and inferiority measures method 
(SIMM). In the model for the proposed approach, each of fuzzy goals defined for the fractional 
objectives and some constraints have fuzzy numbers. To achieve the highest membership value, SIMM 
was adopted to deal with fuzzy number in constraints, then a linear goal programming methodology 
was introduced to solve the problem in which the fractional objectives was fuzzy goals. A case of 
agricultural planting structures optimization problem was solved to illustrate the application of the 
algorithm. Sakawa and Kato [24], by considering the experts’ vague or fuzzy understanding of the 
nature of the parameters in the problem formulation process, multi-objective linear fractional 
programming problems with block angular structure involving fuzzy numbers are formulated. Sakawa 
and Kato [24] proposed the following model: 

 min  𝑧1(𝑥, 𝑐̃1, 𝑑̃1). . . min  𝑧𝑘(𝑥, 𝑐̃𝑘 , 𝑑̃𝑘)𝑠. 𝑡. (1 )  

 𝐴̃1𝑥1 + ⋯ + 𝐴̃𝑝𝑥𝑝 ≤ 𝑏̃0, 𝐵̃1𝑥1                         ≤ 𝑏̃1, .            .            .                        𝐵̃𝑝𝑥𝑝 ≤

𝑏̃𝑝, 𝑥𝑗 ≥ 0, 𝑗 = 0, ⋯ , 𝑝. 

Where, 𝑥𝑗, 𝑗 = 1, ⋯ , 𝑝, are 𝑛𝑗 dimensional column vectors of decision variables, 𝐴̃1𝑥1 + ⋯ +

𝐴̃𝑝𝑥𝑝 ≤ 𝑏̃0 are 𝑚0-dimensional coupling constraints, and 𝐴̃𝑗, 𝑗 = 1, ⋯ , 𝑝 are 𝑚0 × 𝑛 fuzzy coefficient 

matrices. 𝐵̃𝑗𝑥𝑗 ≤ 𝑏̃𝑗 are 𝑚𝑗-dimensional block constraints with respect to 𝑥𝑗, 𝐵̃𝑗, 𝑗 = 1, ⋯ , 𝑝 are 𝑚𝑗 × 𝑛𝑗 

fuzzy coefficient matrices and 𝑏̃𝑗, 𝑗 = 1, ⋯ , 𝑝, are 𝑚𝑗-dimensional column fuzzy vectors. Furthermore, 

𝑧1(𝑥, 𝑐̃1, 𝑑̃1), ⋯ , 𝑧𝑘(𝑥, 𝑐̃𝑘 , 𝑑̃𝑘) are 𝑘 distinct fuzzy linear fractional objective functions defined by  : 
 

 𝑧𝑖(𝑥, 𝑐̃𝑖 , 𝑑̃𝑖) =
𝑝𝑖(𝑥,𝑐̃𝑖)

𝑞𝑖(𝑥,𝑑̃𝑖)
=

𝑐̃𝑖1𝑥1+⋯+𝑐̃𝑖𝑝𝑥𝑝+𝑐̃𝑖,𝑝+1

𝑑̃𝑖1𝑥1+⋯+𝑑̃𝑖𝑝𝑥𝑝+𝑑̃𝑖,𝑝+1
. 

 

Using the a-level sets of fuzzy numbers, the corresponding non-fuzzy α-multi-objective linear 
fractional programming problem is introduced. The fuzzy goals of the decision maker for the objective 
functions are quantified by eliciting the corresponding membership functions, including nonlinear ones. 
Through the introduction of extended pareto optimality concepts, if the decision maker specifies the 

degree α and the reference membership values, the corresponding extended pareto optimal solution can 
be obtained by solving the minimax problems for which the Dantzig-Wolfe decomposition method and 
Ritter’s partitioning procedure are applicable. Jiao et al. [14], presented a branch-and-bound algorithm 
for globally solving a wide class of generalized linear fractional programming problems (GLFP). This 
class included such problems as: minimizing a sum, or error for product of a finite number of ratios of 
linear functions, linear multiplicative programming, polynomial programming, etc. over nonconvex 
feasible region. First a problem (Q) was derived equivalent to problem (GLFP). In the algorithm, lower 
bounds were derived by solving a sequence of linear relaxation programming problems, which was 
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based on the construction of the linear lower bounding functions for the objective function and 
constraint functions of the problem (Q) over the feasible region. Shen et al. [26], proposed an 
interactive fuzzy programming method for seeking a satisfactory solution for multi-objective two-level 
linear fractional programming problems in which the decision makers in the upper and lower levels have 
several objectives, by first setting up the fuzzy goals for several objectives of each decision maker and 
seeking a satisfactory solution for the degree of satisfaction of two decision makers in a cooperative 
manner. In the proposed method, the decision maker at the upper level sets the minimal satisfactory 
levels for each fuzzy goal. The decision-maker at the lower level determines the aspiration levels. The 
minimal satisfactory levels were treated as a constraint and the solution closest to the aspiration levels 
of the decision maker at the lower level is computed. The ratio of the aggregative degrees of satisfaction 
of the decision makers in the upper and lower levels with the obtained solution is evaluated by using 
partial information on the preference of the decision makers. Chun-Feng and Pei-Ping [6], presented an 
efficient branch and bound method for general linear fractional problem (GFP). First, using a 
transformation technique, an equivalent problem (EP) of GFP was derived, then by exploiting structure 
of EP, a linear relaxation programming (LRP) of EP was obtained. To implement the algorithm, 
primary computation involve solving a sequence of linear programming problem, which could be solved 
efficiently. The proposed algorithm converged to the global maximum through the successive 
refinement of the solutions of a series of linear programming problems. D’Amato and Bernstein [8], 
used retrospective cost optimization to determine linear fractional transformations (LFTs). This method 
used an adaptive controller in feedback with a known system model. The goal was to identify the 
feedback portion of the LFT by adapting the controller with a retrospective cost. D’Amato and 
Bernstein [8] demonstrated this method on numerical examples of increasing complexity, ranging from 
linear examples with unknown feedback terms to nonlinear examples. Sheikhi and Ebadi [27] presented 
a novel method for solving fractional transportation problems (FTPs) with fuzzy numbers using a 
ranking function. The proposed method introduces a transformation technique that converts an FTP 
with fuzzy numbers into an FTP with crisp numbers by employing the robust ranking technique. Then, 
they formulated two transportation problems, one for maximization and another for depreciation, based 
on the given FTP. See other works in fuzzy in  [2, 11, 12, 19, 20, 22, 21, 25]. 

A type of fractional fuzzy number linear programming problem (FFNLPP) can be described as 
follows: 

 max  
𝑎̃𝑥+𝑏̃

𝑐̃𝑥+𝑑̃
𝑠. 𝑡. (2 )  

 𝐴𝑥 ≤ ℎ, 𝑥 ≥ 0, 
 where, 𝑎̃ ∈ 𝐹(ℝ𝑛), 𝑐̃ ∈ 𝐹(ℝ𝑛), 𝑏̃ ∈ 𝐹(ℝ), 𝑑̃ ∈ 𝐹(ℝ), 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛 and ℎ ∈ ℝ𝑚, with 𝐹(ℝ) 

being the set of all fuzzy numbers. 
For solving (2), we propose a new fuzzy VNS algorithm with its local search intended to find a 

feasible solution by using increasing directions, leading to the value of the objective function being more 
significant than the current solution. In our proposed algorithm, we compare the fuzzy value of the 
objective function using the modified Kerre’s inequality. Using Kerre’s inequality, we can solve the 
problem (2) directly without changing it to the crisp problem [10]. 

The rest of our research is structured in the following manner. In Section 2, we provide some 
necessary definitions, properties of fuzzy ordering and fundamental aspects of modified Kerre’s method. 
We present our model in Section 3. In Section 4, we first talk about our VNS algorithm for solving our 
proposed model, then to make the algorithm more clear we implement our proposed algorithm on an 
example. We test our algorithm on several examples in Section 5, and conclude in Section 6. 

 
2. Preliminaries 

Here, we provide an overview of the basic principles of fuzzy set theory. 
 
2.1.  Definitions and Notation 

Definition 1 [35] Let ℝ be a collection of objects denoted by 𝑥. Then 𝐴̃ is called a fuzzy set in ℝ, if 𝐴̃ is a 

set of ordered pairs , 
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 𝐴̃ = {(𝑥, 𝜇𝐴̃(𝑥)) | 𝑥 ∈ ℝ}, 
 where 𝜇𝐴̃(𝑥) ∈ [0,1] is called the membership function or grade of membership of 𝑥 in 𝐴̃  . 

 
 

Definition 2  [29] A fuzzy number is a fuzzy quantity 𝐴̃ satisfying the following conditions   : 
    1   . 𝜇𝐴̃(𝑥) = 1, for exactly one 𝑥  . 

    2  . The support {𝑥: 𝜇𝐴̃(𝑥) > 0} of 𝐴̃ is bounded  . 

    3  . The 𝛼-cuts of 𝐴̃ are closed intervals  . 
   

Definition 3  [35] A fuzzy number 𝐴̃ is of LR-type if there exist shape functions 𝐿 (for left), 𝑅 (for right), 

and scalars 𝛼 > 0 and 𝛽 > 0 such that   

 𝜇𝐴̃(𝑥) = {
𝐿 (

𝑎−𝑥

𝛼
) ,    𝑥 ≤ 𝑎,

𝑅 (
𝑥−𝑎

𝛽
) ,    𝑥 ≥ 𝑎.

 

The mean value of 𝐴̃, 𝑎, is a real number, and 𝛼 and 𝛽 are called the left and right spreads, 

respectively. Here, 𝐴̃ is denoted by (𝑎 − 𝛼/𝑎/𝑎 + 𝛽)𝐿𝑅  . 
 

Remark 1  Based on Definition 3, another representation of an LR fuzzy number 𝐴̃ is 𝐴̃ = (𝐴𝐿 , 𝐴𝑅), where 

𝐴𝐿 is a shape function for the left arm and 𝐴𝑅 is a shape function for the right arm  . 

Definition 4  [3] A triangular fuzzy number 𝐴̃ is defined by three real numbers 𝑎 < 𝑏 < 𝑐, where the base 

of the triangle is the interval [𝑎, 𝑐] and its vertex is at 𝑥 = 𝑏  . 

Remark 2 Another representation of a triangular fuzzy number 𝑀̃ is 𝑀̃ = (𝑀𝐿 , 𝑀𝑅), where 𝑀𝐿 and 𝑀𝑅 

are the functions for the left arm and the right arm of triangular fuzzy number 𝑀̃ = (𝑎/𝑏/𝑐), respectively  . 

Note 1 In the rest of our work, triangular fuzzy numbers will be represented as 𝐴̃ = (𝑎/𝑏/𝑐). We also 

denote a real number a by 𝐴̃ = (𝑎/𝑎/𝑎)  . 
   

Theorem 1  [35] Let 𝑀̃ = (𝑚𝐿/𝑚/𝑚𝑅)𝐿𝑅, let 𝑁̃ = (𝑛𝐿/𝑛/𝑛𝑅)𝐿𝑅, and let 𝜆 ∈ ℝ+. Then   , 

    1   . 𝜆𝑀̃ = (𝜆𝑚𝐿/𝜆𝑚/𝜆𝑚𝑅)𝐿𝑅  . 

    2   . −𝑀̃ = (−𝑚𝑅/−𝑚/−𝑚𝐿)𝐿𝑅  . 

    3   . 𝑀̃ ⊕ 𝑁̃ = (𝑚𝐿 + 𝑛𝐿/𝑚 + 𝑛/𝑚𝑅 + 𝑛𝑅)𝐿𝑅  . 
   
 
 

2.1.1.  Modified Kerre’s Inequality 
Kerre’s inequality is recognized as a highly efficient method for assessing fuzzy number comparisons 

[32]. Ghanbari et al. [10] introduced a modified version of Kerre’s inequality and established 
straightforward formulas for comparing fuzzy triangular numbers, as stated in the following theorem. 

Theorem 2 [10] Consider 𝑀̃ = (𝑎/𝑏/𝑐) and 𝑁̃ = (𝑎′/𝑏′/𝑐′) as two triangular fuzzy numbers with 

𝑏 ≤ 𝑏′. Then the following assertions hold: 

    1  . If 𝑐 ≤ 𝑎′, then   

 𝑟(𝑀̃, 𝑁̃) =
𝑐′−𝑎′

2
+

𝑐−𝑎

2
. (3 )  

   

    2  . If 𝑏 = 𝑏′, then   

 𝑟(𝑀̃, 𝑁̃) =
𝑐′+𝑎′

2
−

𝑐+𝑎

2
. (4 )  



7806 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 7802-7812, 2024 
DOI: 10.55214/25768484.v8i6.3708 
© 2024 by the authors; licensee Learning Gate 

 

   

    3  . If 𝑏 < 𝑏′ and 𝑎′ < 𝑐 then   

 𝑟(𝑀̃, 𝑁̃) =
𝑐′−𝑎′

2
+

𝑐−𝑎

2
− 𝑦̅(𝑐 − 𝑎′), (5 )  

 where 𝑦̅ = 𝑀𝑅(𝑥̅) = 𝑁𝐿(𝑥̅) in which 𝑥̅ is the length of the intersection point of 𝑀𝑅 and 𝑁𝐿 and 
defined as follows: 

 𝑥̅ =
𝑏′𝑐−𝑏𝑎′

(𝑏′−𝑎′)+(𝑐−𝑏)
. 

 So, 𝑦̅ in (5) is defined as follows: 

 𝑦̅ =
(𝑐−𝑎′)

(𝑏′−𝑎′)+(𝑐−𝑏)
. (6 )  

   
   

Note 2  If 𝑟(𝑀̃, 𝑁̃) ≥ 0 then 𝑀̃ ≤ 𝑁̃, otherwise 𝑀̃ ≥ 𝑁̃   [10  .]  
 

Note 3  Throughout our work, <, >, and = on fuzzy numbers are defined based on our modified Kerre’s 

inequality, and so we show them by <𝐾, >𝐾, and =𝐾, respectively [10]. 
   

3. The Proposed Model 
 We consider the following fractional programming problem: 

 max  
𝑎̃𝑇𝑥+𝛼̃

𝑐𝑇𝑥+𝛽
(𝐹𝐹𝑁𝐿𝑃𝑃)    𝑠. 𝑡. (7 )  

 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0, 
 where, 𝑎̃ ∈ 𝐹(ℝ𝑛), 𝛼̃ ∈ 𝐹(ℝ), 𝑐 ∈ ℝ𝑛, 𝛽 ∈ ℝ, 𝑎̃ and 𝛼̃ are 𝐿𝑅 fuzzy numbers and 𝑐𝑇𝑥 + 𝛽 > 0 for 

any feasible solution 𝑥. Let 𝑧 =
1

𝑐𝑇𝑥+𝛽
 and 𝑦 = 𝑧𝑇𝑥. By getting the ideas from [4], the problem (7) can 

be converted to the following problem: 

 max  𝑎̃𝑇𝑦 + 𝛼̃𝑧, 𝑠. 𝑡. (8 )  

 𝐴𝑦 − 𝑏𝑧 ≤ 0, 𝑐𝑇𝑦 + 𝛽𝑧 = 1, 𝑦, 𝑧 ≥ 0, 
 We can rewrite the problem (8) to the vector form as follows: 

 max  [𝑎̃, 𝛼̃] [
𝑦
𝑧

] , 𝑠. 𝑡., (9 )  

 [𝐴, −𝑏𝑇] [
𝑦
𝑧

] ≤ 0, [𝑐𝑇 , 𝛽] [
𝑦
𝑧

] = 1[𝑦, 𝑧] ≥ 0, 

 If we suppose 𝑋 = [
𝑦
𝑧

], 𝐷̃ = [𝑎̃, 𝛼̃], 𝐵 = [𝐴, −𝑏𝑇] and 𝐻 = [𝑐𝑇 , 𝛽] then we have , 

 

 max  𝑓(𝑋) = 𝐷̃𝑋, 𝑠. 𝑡. (10 )  

 𝐵𝑋 ≤ 0, 𝐻𝑋 = 1𝑋 ≥ 0. 
 By solving the problem (10), we can find the so lution of the problem (7). 

Example 1 Consider the following programming problem: 
 

 max  
(−43/−3/0)𝑥1+(−76/−48/45)𝑥2+(−22/15/41)

14𝑥1+55𝑥2+9
, 𝑠. 𝑡., (11 )  

 100𝑥1 + 59𝑥2 ≤ 359,24𝑥1 + 41𝑥2 ≤ 229, 𝑥1, 𝑥2 ≥ 0. 
 

 Let, 𝑧 =
1

14𝑥1+55𝑥2+9
 and 𝑦 = 𝑧𝑥. So the problem (11) convert to the following problem: 

 

 max  (−43/−3/0)𝑦1 + (−76/−48/45)𝑦2 + (−22/15/41)𝑧, 𝑠. 𝑡., (12 )  

 100𝑦1 + 59𝑦2 − 359𝑧 ≤ 0,24𝑦1 + 41𝑦2 − 229𝑧 ≤ 0,14𝑦1 + 55𝑦2 + 9𝑧 =
1, 𝑦1, 𝑦2, 𝑧 ≥ 0. 
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 Finally, we can rewrite the problem (12) to the following problem : 
 

 max  ((−43, −3,0), (−76, −48,45), (−22,15,41)) (
𝑦1

𝑦2

𝑧
) , 𝑠. 𝑡., (13 )  

 [14,55,9] (
𝑦1

𝑦2

𝑧
) = 1 (

100 59 −395
24 41 −229) (

𝑦1

𝑦2

𝑧
) ≤ 0, 𝑦1, 𝑦2, 𝑧 ≥ 0. 

   
 In the next section we propose VNS algorithm for solving the problem (10). 

 
4. Vns Algorithm for Solving Fuzzy Fractional Programming Problem with Fuzzy 
Objective Parameter 

The VNS algorithm was initially introduced by Mladenovic and Hansen [18]. It is a local search 
approach that systematically explores the search space by introducing deliberate modifications to 
neighbourhood structures. Considering the demonstrated effectiveness of VNS and its extensions in 
addressing combinatorial and continuous optimization problems [18], we propose the utilization of 
VNS. In each iteration, a specific neighborhood structure, denoted as k, is chosen following the sequence 
outlined in [10]. 

A random neighbor s^' is generated in this neighborhood. Afterwards, a descent method is applied 
to s^'. If the best solution found by descent method, s^", is better than the best known solution, it is 
updated and the neighborhood structure is set to the first one. Otherwise, the search continues in the 
following neighborhood structure. When we explore the last neighborhood structure kmax, the search 
return to the first neighborhood. This process continues until a stop condition is reached. Some 
successful examples of application of VNS can also be found in [7, 30, 31]. 

Based on the definition of the objective function in the (𝐹𝐹𝑁𝐿𝑃𝑃), the value of the objective 
function for each feasible solution is a fuzzy number. Thus, to compare the solutions in the proposed 
algorithm (e.g., Step 1-2-3), we use modified Kerre’s inequality in Theorem 2. Using our modified 
Kerre’s inequality, the fuzzy optimization problem is solved directly without changing it to a crisp 
problem. 

 

 Algorithm 1 FVNS for solving 𝑭𝑭𝑵𝑳𝑷𝑷 

Inputs: Neighboring structures 𝑵𝒕  (𝒕 = 𝟏, 𝟐, ⋯ , 𝒕𝐦𝐚𝐱), an initial feasible solution 𝒙𝟎 and 

𝒎𝒂𝒙𝒊𝒕𝒆𝒓 (maximum number of iterations).  

[output: ] Return 𝒙∗. [1. ]  

While 𝒌 < 𝒎𝒂𝒙𝒊𝒕𝒆𝒓 do   : 

    1   . 𝒕 = 𝟏 . 

    2  . If 𝒕 < 𝒕𝐦𝐚𝐱 then  : 

        (a) Select one point in the neighborhood of 𝒙𝟎 and name it to be 𝒙𝟏 (𝒙𝟏 ∈ 𝑵𝒕(𝒙𝟎))  . 

        (b) Apply local search on 𝒙𝟏 and name the new point as 𝒙𝟐 . 

        (c) if 𝒇̃(𝒙𝟐) ≤𝑲 𝒇̃(𝒙𝟎) then let 𝒕 = 𝒕 + 𝟏 and go to 1-2, else go to 1-3 .   
  

    3   . 𝒙𝟎 = 𝒙𝟐 . 

    4   . 𝒌 = 𝒌 + 𝟏 . 
 

 

   Details of the steps involved in algorithm 1 are described below   . 

    1  . Neighboring structure [10]: We define neighboring structure as follows  : 

 ||𝑥′ − 𝑥0|| < 𝑡𝜖, (14 )  
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 for 𝑡 = 1, ⋯ , 𝑡max, where 𝑥′ is in the 𝑡-th neighborhood of 𝑥0 and 𝜖 is an arbitrary parameter  . 

    2  . Selection of a point in the neighborhood of 𝑥0: Let 𝑥′ be a point in the neighborhood of 𝑥0. Then, 𝑥′ is 

to satisfy in the following conditions   : 

         (a) (𝑡 − 1)𝜖 < ||𝑥′ − 𝑥0|| ≤ 𝑡𝜖  . 

         (b) 𝐵𝑥′ ≤ 0  . 

         (c) 𝐻𝑥′ = 1  . 

         (d) 𝑥′ ≥ 0  . 

 see details in   [10  .]  

    3  . Local search[10]: Let 𝑥𝑘 represent a feasible solution during iteration 𝑘, we want to find a 

feasible solution with larger value of the objective function with respect to 𝑥𝑘. In other words, we must 

find 𝑠𝑘 such that 𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘) ≥𝑘 𝐷̃𝑇𝑥𝑘, where, 
 

 {

𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘) =

(𝐷𝐿𝑇
(𝑥𝑘 + 𝑠𝑘)/𝐷𝑇(𝑥𝑘 + 𝑠𝑘)/𝐷𝑅𝑇

(𝑥𝑘 + 𝑠𝑘)),

𝐷̃𝑇𝑥𝑘 = (𝐷𝐿𝑇
𝑥𝑘/𝐷𝑇𝑥𝑘/𝐷𝑅𝑇

𝑥𝑘).

 

 Since the given results for the modified Kerre’s method depend on the mean value of the fuzzy numbers, 

to find 𝑠𝑘 we consider the following three cases: 
 

Case 1: 𝐷𝑇𝑥𝑘 < 𝐷𝑇(𝑥𝑘 + 𝑠𝑘) , 
Case 2: 𝐷𝑇(𝑥𝑘 + 𝑠𝑘) < 𝐷𝑇𝑥𝑘 , 

Case 3: 𝐷𝑇(𝑥𝑘 + 𝑠𝑘) = 𝐷𝑇𝑥𝑘 . 
   

         (a) Let 𝐷𝑇𝑥𝑘 < 𝐷𝑇(𝑥𝑘 + 𝑠𝑘), based on Note 2, we must have 𝑟(𝐷̃𝑇𝑥𝑘 , 𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘)) ≥ 0, 

and thus we propose problem (𝑃1) as follows: 

 max   𝑟(𝐷̃𝑇(𝑥𝑘), 𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘)), 𝑠. 𝑡. (15 )  

 (𝑃1)   𝐷𝑇𝑠𝑘 ≥ 0, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤ 𝑥𝑘 . 
 Note that replacing the constraint 𝐷𝑇𝑠𝑘 > 0 with 𝐷𝑇𝑠𝑘 ≥ 0 has no impact on the solution of (𝑃1)   . 

             i. Let (𝐷̃𝑇𝑥𝑘)𝑅 and (𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘))𝐿 have an intersection point. In this case, we have 

𝐷𝑇𝑥𝑘 ≤ 𝐷𝑇(𝑥𝑘 + 𝑠𝑘) and 𝐷𝐿𝑇
(𝑥𝑘 + 𝑠𝑘) ≤ 𝐷𝑅𝑇

𝑥𝑘, and (15) turns into (𝑃1
′) as follows: 

 max  (𝐷𝑅 − 𝐷𝐿)𝑇𝑥𝑘 +
(𝐷𝑅−𝐷𝐿)𝑇

2
𝑠𝑘 −

((𝐷𝑅−𝐷𝐿)𝑇𝑥𝑘−𝐷𝐿𝑇
𝑠𝑘)2

(𝐷𝑅−𝐷𝐿)𝑇𝑥𝑘+(𝐷−𝐷𝐿)𝑇𝑠𝑘
, 𝑠. 𝑡., (16 )  

 (𝑃1
′)    − 𝐷𝑇𝑠𝑘 ≤ 0, 𝐷𝐿𝑇

𝑠𝑘 ≤ (𝐷𝑅 − 𝐷𝐿)𝑇𝑥𝑘, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤ 𝑥𝑘 . 
 Note that (𝑃1

′) is a quadratic fractional programming problem. By using a method that is proposed 

in [9] (Theorem and Section 3) we solve problem (𝑃1
′)  . 

             ii. 𝐷𝑅𝑇
𝑥𝑘 ≤ 𝐷𝐿𝑇

(𝑥𝑘 + 𝑠𝑘), that means two numbers do not have any intersection point 
(see (3)). By using (3) we have the following program: 

 max  (𝐷𝑅 − 𝐷𝐿)𝑇𝑥𝑘 +
(𝐷𝑅−𝐷𝐿)𝑇

2
𝑠𝑘 , 𝑠. 𝑡., (17 )  

 (𝑃2)    − 𝐷𝑇𝑠𝑘 ≤ 0, −𝐷𝐿𝑇
𝑠𝑘 ≤ (𝐷𝐿 − 𝐷𝑅)𝑇𝑥𝑘, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤

𝑥𝑘 . 
 After removing the constant terms, we have: 

 max  
(𝐷𝑅−𝐷𝐿)𝑇

2
𝑠𝑘 , 𝑠. 𝑡., (18 )  

 (𝑃2
′)    − 𝐷𝑇𝑠𝑘 ≤ 0, −𝐷𝐿𝑇

𝑠𝑘 ≤ (𝐷𝐿 − 𝐷𝑅)𝑇𝑥𝑘, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤
𝑥𝑘 . 
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         (b) Let 𝐷𝑇𝑥𝑘 > 𝐷𝑇(𝑥𝑘 + 𝑠𝑘). In this case if 𝑟(𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘), 𝐷̃𝑇𝑥𝑘) ≤ 0 then 𝐷̃𝑇(𝑥𝑘 +

𝑠𝑘) >𝑘 𝐷̃𝑇𝑥𝑘. So, we propose the following problem: 

 min  𝑟(𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘), 𝐷̃𝑇𝑥𝑘), 𝑠. 𝑡., (19 )  

 (𝑃3)   𝐷𝑇𝑠𝑘 ≤ 0, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤ 𝑥𝑘 . 
 Note that replacing the constraint 𝐷𝑇𝑠𝑘 < 0 with 𝐷𝑇𝑠𝑘 ≤ 0 has no impact on the solution of (𝑃3)   . 

             i. Let (𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘))𝑅 and (𝐷̃𝑇𝑥𝑘)𝐿 have an intersection point. In this case, we have 

𝐷𝑇𝑥𝑘 ≥ 𝐷𝑇(𝑥𝑘 + 𝑠𝑘) and 𝐷𝐿𝑇
𝑥𝑘 ≤ 𝐷𝑅𝑇

(𝑥𝑘 + 𝑠𝑘), the problem (19) turns into (𝑃3
′) as follows: 

 min  (𝐷𝑅 − 𝐷𝐿)𝑇𝑥𝑘 +
(𝐷𝑅−𝐷𝐿)𝑇

2
𝑠𝑘 −

((𝐷𝑅−𝐷𝐿)𝑇𝑥𝑘+𝐷𝑅𝑇
𝑠𝑘)2

(𝐷𝑅−𝐷𝐿)𝑇𝑥𝑘+(𝐷𝑅−𝐷)𝑇𝑠𝑘
, 𝑠. 𝑡., (20 )  

 (𝑃3
′)   𝐷𝑇𝑠𝑘 ≤ 0, −𝐷𝑅𝑇

𝑠𝑘 ≤ (𝐷𝑅 − 𝐷𝐿)𝑇𝑥𝑘𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤ 𝑥𝑘 . 
 By using a method that is proposed in [9] (Theorem and Section 3) we solve problem (𝑃3

′)  . 

             ii. 𝐷𝑅𝑇
(𝑥𝑘 + 𝑠𝑘) < 𝐷𝐿𝑇

𝑥𝑘, that means two numbers do not have any intersection point 

(see (3)). Since 𝐷𝑅𝑇
(𝑥𝑘 + 𝑠𝑘) < 𝐷𝐿𝑇

𝑥𝑘 and 𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘) is located completely on the left side of 𝐷̃𝑇𝑥𝑘 

and according to (5) 𝑟(𝐷̃𝑇(𝑥𝑘 + 𝑠𝑘), 𝐷̃𝑇(𝑥𝑘)) > 0, so there is no increasing direction. 
   

         (c) Let 𝐷𝑇𝑥𝑘 = 𝐷𝑇(𝑥𝑘 + 𝑠𝑘). So, according to (4), this case is divided into two cases   : 

             i. Suppose 𝑎 = 𝐷𝐿𝑇
𝑥𝑘, 𝑐 = 𝐷𝑅𝑇

𝑥𝑘, 𝑎′ = 𝐷𝐿𝑇
(𝑥𝑘 + 𝑠𝑘) and 𝑐′ = 𝐷𝑅𝑇

(𝑥𝑘 + 𝑠𝑘) in  (4  :)  

 max  
(𝐷𝑅+𝐷𝐿)𝑇

2
𝑠𝑘 , 𝑠. 𝑡., (21 )  

 (𝑃4)   𝐷𝑇𝑠𝑘 = 0, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤ 𝑥𝑘 . 
   

             ii. Suppose 𝑎 = 𝐷𝐿𝑇
(𝑥𝑘 + 𝑠𝑘), 𝑐 = 𝐷𝐿𝑇

(𝑥𝑘 + 𝑠𝑘), 𝑎′ = 𝐷𝐿𝑇
𝑥𝑘, 𝑐′ = 𝐷𝑅𝑇

𝑥𝑘, in   (4  :)  

 min  −
(𝐷𝑅+𝐷𝐿)𝑇

2
𝑠𝑘 , 𝑠. 𝑡., (22 )  

 (𝑃5)   𝐷𝑇𝑠𝑘 = 0, 𝐵𝑠𝑘 ≤ −𝐵𝑥𝑘 , 𝐻𝑠𝑘 = 1 − 𝐻𝑥𝑘 , −𝑠𝑘 ≤ 𝑥𝑘 . 
   

   
4.  Stopping condition[10]: We stop the proposed FVNS algorithm when reach maxiter successive 

iterati ons without improvement. 
   

Note 4 The (21) and (22) problems have the same solution, so you can find the increasing direction by solving 
either one. 

Finally, to find s_k, we need to solve for P_1^', P_2, P_3^', and P_4. It is clear that P_1^', P_2, 
P_3^' and P_4 can be solved in parallel. After solving these problems, choose the best s_k. That is, the 
one given by P_1^', P_2, P_3^' and P_4 that causes the largest increase in the objective function. 

Example 2 Suppose the fuzzy fractional linear programming problem as follows  : 

 max   𝑓(𝑥) =
(−97,−73,−31)𝑥1+(−37,−27,9)𝑥2+(−99,−27,42)𝑥3+(−77,−53,14)

64𝑥1+3𝑥2+12𝑥3+82
, 𝑠. 𝑡. (23 )  

 86𝑥1 + 11𝑥2 + 86𝑥3 ≤ 280,73𝑥1 + 90𝑥2 + 17𝑥3 ≤ 343, 𝑥1, 𝑥2, 𝑥3 ≥ 0. 
 With x_0 as the starting point (which can be generated randomly in the interval [1,5]), using 

Algorithm 4, after one iteration we obtain: 

 𝑥0 = [2,2,1], 𝑓(𝑥0) = [−3.6680, −2.3028,0.0987], 𝑥∗ = [0,0.3575,3.2101], 𝑓(𝑥∗) =
[−3.3557, −1.2281,1.2504], 𝑟(𝑓(𝑥0), 𝑓(𝑥∗)) = 1.5517. (24 )  

 According to Note 2, we can conclude that 𝑓(𝑥∗) >𝑘 𝑓(𝑥0)  . 
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5.  Numerical Results 
In this section, we demonstrate the effectiveness of the algorithm 4 we have developed. To 

evaluate its performance, we generated numerous test problems for the FFLPP. These test 
problems were created using a random generation process in the MATLAB 7.0 programming 
environment, executed on a notebook equipped with an Intel(R) Core(TM) i5-3210M CPU 
running at 2.5 GHz, with 4.00 GB of RAM. To introduce fuzzy random coefficients into the 
objective function, we initiated the process by generating three numbers within the range of [-
100,100]. Subsequently, these numbers were sorted in ascending order and employed as the 
components of the fuzzy number. 
 
Table  1. 

Objective function values obtained by various methods on the examples . 

𝐝𝐢𝐦 Obj(init) Obj (A) 1] 𝐫(𝐀𝐥𝟏), 

10 × 20 [−12.5611/−6.5882/0.5839] [−4.7204/−3.8596/−2.6984] 4.081016 

15 × 45 [−13.3151/−4.8021/3.0413] [−5.7192/−5.0795/−0.4860] -1.7628 

20 × 50 [−83.3284/−29.3203/19.0412] [−24.2866/−10.7058/1.1153] 33.5785 

25 × 75 [−37.0272/−18.1645/5.1532] [−14.7937/−5.1766/−2.6203] 15.0961 

60 × 100 [−117.8211/−42.6375/32.4857] [−40.4461/−36.0957/−25.3402] 15.7779 

25 × 200 [−76.6690/−72.7284/−29.6852] [−187.8614/−74.2193/41.3462] 21.5528 

40 × 300 [−56.8188/−21.7506/13.0071] [−23.6253/−19.7209/−0.8734] 11.5796 

300 × 600 [−222.6613/−88.4877/48.5212] [−86.3218/−81.8225/−77.2927] 11.6141 
 

In Table 1, the dim column shows the dimensions of the test problems, the column entitled Obj 
(init) shows the value of the objective function corresponding to the initial solution of Algorithm 1, the 
column entitled Obj (Al4) shows the values of the objective functions obtained by Algorithm 1 and the 
column entitled r(Al1,) shows the comparison of the value of objective function of initial solution 
corresponding to Algorithm 1 with the ones obtained by Algorithm4 using (5). According to the 
obtained results shown in column labeled as r(Al1, ), it is observed (based on Note (2)) that the 
Algorithm 4 can improve the initial solution. 

All problems were also solved by the methods due to [27]. Sheikhi and Ebadi in [27] proposed 
method introduces a transformation technique that converts an FTP with fuzzy numbers into an 
FFNLPP with crisp numbers by employing the robust ranking technique. Details o the results are 
shown in Table 2. 
 

Table  2. 

Objective function values obtained by Sheikhi and Ebadi [27] on the examples . 

dim Obj(Al[27]) r(Obj(Al]), Obj(Al[27])) 

10 × 20 [−10.7321/−4.1001/1.2150] 3.2697 

15 × 45 [−14.8912/−6.1221/1.7841] 2.6305 

20 × 50 [−80.1432/−35.5698/16.1201] 5.7479 

25 × 75 [−30.8531/−20.1345/−10.5200] 6.5833 

60 × 100 [−120.2510/−50.3217/25.1432] 12.1784 

25 × 200 [−110.2002/−80.1214/−10.4879] 13.8171 

40 × 300 [−60.1901/−30.3114/20.5417] 5.6262 

300 × 600 [−150.1122/−90.3333/−20.5417] 0.0858 

 
In Table 2, the dim column shows the dimension of problems, the column entitled Obj(Al [27]) shows 
the value of the objective function corresponding to the solution obtained by Algorithm proposed in 
[27], and the column entitled r(Al1, Al([27])) shows the comparison of the value of objective function 
corresponding to Algorithm 4 with the ones obtained by the methods using in [27]. According to the 
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obtained results shown in column labeled as r(Al1, Al([27])), it is observed that the objective function 
values obtained by Algorithm 1 are more significant than the ones due to other methods on all the test 
problems. The obtained results showed that the objective function values obtained by the proposed 
algorithm were significant than the ones obtained by the algorithms due to Sheikhi and Ebadi in [27]  
 
6.  Conclusions and Future Work 

In this paper, we considered a fractional fuzzy linear programming problem, with the assumption 
that the parameters of the objective function are fuzzy numbers, and we presented a new model with the 
name FFNLPP. We proposed an FVNS algorithm based on modified Kerre’s inequality for solving 
FFNLPP. We generated and solved some randomly tested examples with triangular fuzzy coefficients, 
and we concluded that our proposed algorithm could improve the initial solution by increasing the 
direction we introduced through Kerre’s inequality. Also, we compare our proposed algorithm with 
another method.  

Similar to technique that is introduced in [13], by using ABS algorithm the fractional fuzzy linear 
programming can be simplified and by using of this method we can decrease the number of variables. 

 
Copyright:  
© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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