
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 
Vol. 8, No. 6, 7846-7864 
2024 
Publisher: Learning Gate 
DOI: 10.55214/25768484.v8i6.3714 
© 2024 by the author; licensee Learning Gate 

© 2024 by the author; licensee Learning Gate 
* Correspondence:  tmalthaqafi@uj.edu.sa 

 
 
 
 
 

A study on inventory control system for a supply chain using Markov 
decision processes 

 
Torky Althaqafi1* 
1College of Business, University of Jeddah, Jeddah, Saudi Arabia; tmalthaqafi@uj.edu.sa (T.A.). 

 

 
Abstract: This paper examines the application of Markov Decision Processes (MDPs) for controlling 
supply chain inventories. MDPs effectively simulate decision-making problems related to uncertainty, 
facilitating the determination of optimal inventory policies. The MDP framework addresses various 
inventory management challenges, including demand fluctuations, lead times, and holding costs. The 
study investigates the modeling of inventory management as a Markov decision process, detailing the 
states, actions, and transitions within the MDP model, along with their respective advantages and 
disadvantages. The research employs policy and value iteration techniques to evaluate and optimize 
inventory management policies. The paper assesses the proposed MDP-based inventory control system 
through simulations that utilize supply chain data, aiming to identify optimal policies using the MDP 
model. A comparative analysis of the MDP approach against conventional inventory management 
methods is conducted to demonstrate its efficacy in reducing costs and enhancing service levels. 
Additionally, the paper proposes the incorporation of multiple commodities, multi-echelon supply 
chains, and perishability considerations into the MDP model. The findings indicate that MDPs facilitate 
improved optimization of inventory policies, cost reductions, and enhanced customer service, thereby 
emphasizing the significance of computational complexity and the necessity for accurate data. This 
research provides a comprehensive investigation into the role of MDPs within inventory control 
systems, contributing valuable insights to the field of supply chain management. Ultimately, this study 
lays the groundwork for advancements in MDP-based inventory control methodologies. 
Keywords: Computational, Complexity, Decision-making, Inventory management. 

 
1. Introduction  

The management of inventory is of paramount importance in ensuring the efficiency of supply chain 
operations. This concept pertains to the astute administration of the movement and volume of goods 
throughout a supply chain, with the objective of harmonising inventory expenditures and customer 
service standards. Effective inventory control is a critical aspect of business operations, as it aims to 
ensure the availability of sufficient stock to meet customer demand while minimising the costs 
associated with holding inventory and the occurrence of stockouts. Managing inventory within a supply 
chain presents a multifaceted undertaking, owing to numerous challenges that must be navigated. These 
challenges encompass a range of factors, including variability in demand, uncertainties surrounding lead 
times, the ever-changing nature of market conditions, and the necessity to optimise inventory levels 
across multiple locations. Conventional approaches to inventory control often rely on fixed regulations 
and assumptions, which may prove suboptimal when confronted with fluid and unpredictable 
circumstances. 

Markov Decision Processes (MDPs) provide a robust framework for the representation and 
resolution of decision-making dilemmas in the presence of uncertainty. MDPs effectively encapsulate 
the dynamic nature intrinsic to inventory control decisions by accounting for the probabilistic 
transitions that occur between various states, as well as the corresponding rewards or costs associated 
with these transitions. By incorporating these elements, MDPs offer a comprehensive and rigorous 
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approach to modelling and analysing inventory control problems. Through the application of MDPs in 
the context of inventory control within a supply chain, organisations are enabled to make informed 
decisions and optimise their inventory policies effectively. This research investigation explores the 
application of MDPs in the conceptualisation and development of an inventory control system 
specifically designed for the complex dynamics of a supply chain. By leveraging the inherent capabilities 
of MDPs, our objective is to address the intricacies and challenges associated with inventory 
management, thereby providing a more streamlined and effective methodology for informed decision-
making. The user has provided a numerical sequence consisting of the elements 1 and 2. In the pursuit 
of knowledge, our research endeavours to demonstrate the significance and efficacy of MDPs in the 
optimisation of inventory control policies.  

MDPs constitute a mathematical framework that provides a formalised approach to modelling and 
resolving decision-making challenges in the presence of uncertainty. These concepts are particularly 
relevant in the domain of inventory control within the broader context of supply chains, primarily due 
to their inherent capacity to effectively encapsulate the dynamic nature of decision-making processes 
associated with inventory management. In inventory control, practitioners are tasked with making 
decisions regarding order quantities, reorder points, and replenishment strategies. These decisions must 
be made with careful consideration of the uncertainties that inevitably arise, such as demand variability 
and lead time fluctuations. The utilisation of conventional methodologies often relies on fixed rules or 
assumptions that may not adequately accommodate dynamic circumstances.  

MDPs present a notably refined and adaptable methodology by conscientiously accounting for the 
probabilistic transitions that occur between distinct states, as well as the corresponding rewards or 
costs associated with these transitions. MDPs provide an effective means of encapsulating the intricate 
dynamics of the inventory control problem within a sequential decision framework. In the context of 
inventory management, the decision-maker is tasked with making choices at various states, where each 
state signifies the inventory level and potentially encompasses other pertinent variables. These choices 
manifest as actions, which may involve placing an order for a specific quantity of items or modifying the 
replenishment strategy. The system subsequently undergoes a transition to a novel state, which is 
contingent upon the stochastic dynamics encompassing demand and lead time fluctuations. 

The problem at hand is the lack of effective communication strategies in the workplace. Managers 
encounter formidable challenges when endeavouring to fulfil the imperative and ideal inventory 
management prerequisites within manufacturing enterprises, owing to the intricate nature engendered 
by the sheer magnitude of transactions and the multifarious demands emanating from customers 
situated in disparate geographical locations. In their scholarly work, Tochukwu and Hyacinth (2015) 
astutely observed that the management of inventory poses a considerable challenge, as it possesses the 
potential to engender significant risks that can disrupt both production processes and customer 
satisfaction. One of the key challenges inherent in the realm of inventory management pertains to the 
issue of inconsistent tracking of products. This conundrum arises when there is a lack of uniformity and 
reliability in the process of monitoring and tracing the movement of goods within the inventory system. 
Furthermore, inefficiencies in inventory warehousing can also pose a significant obstacle. This 
predicament arises when the storage and organisation of inventory within the warehousing facilities are 
not optimised, leading to suboptimal utilisation of space and resources. Another pertinent issue in the 
domain of inventory management is the matter of inaccurate data management.  

There are a number of reasons why the uncertainties felt when deciding on inventory management 
strategies are so important. Firstly, we aren't always able to use a precise technique that takes into 
account all the important factors related to the issue. Secondly, the decision-making process is further 
complicated since accurate predictions of human conduct are not yet available. Finally, the unknowns of 
the future make it difficult to predict with any degree of certainty what may happen. Modern technology 
and years of academic research have yielded a plethora of decision support models and systems that may 
help businesses make better investment and inventory management choices. In order to improve 
inventory management prospects while simultaneously limiting uncertainties, these tools are designed 
to make it easier to formulate accurate judgements. Improving business effectiveness and performance is 
the end goal. There have been two main types of recent innovations in the field of inventory 
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optimisation for manufacturing companies: quantitative and qualitative techniques. In an attempt to 
address these issues, several methods are used. Reasonable and intuitive approaches, like Just-in-time, 
are part of the qualitative side of decision-making. In contrast, mathematical techniques like decision 
trees, linear programming, and the use of Markov Decision Models (MDM) are used in the quantitative 
side. 

This study's main objective is to analyse how Nigerian manufacturing organisations use Markov 
chains and inventory management systems. This research suggests using a non-empirical and 
explanatory technique to handle the complexities of inventory management and its possible relationship 
with the Markov chain. Examining the current literature on the Markov chain and its effects on 
inventory management in Nigeria's industrial industry is the goal of these techniques. 
 
1.1. Motivation 

There has been an increase in the frequency and complexity of humanitarian catastrophes, and the 
methods for inventory management need to be modified in order to accommodate these revised 
requirements. This research aims to provide assistance in this regard by developing a model that is 
capable of continually managing the inventory of help while taking into consideration the 
unpredictability of both demand and contribution. In addition to this, the model takes into account the 
possibility of supply increases brought about by the action taken by the decision maker.  Some of the 
possible causes of these increases include aggressive marketing operations, inventory transfers from 
nearby facilities, and other similar factors. In spite of this, there is a cost associated with these benefits, 
regardless of the underlying reason. Because of this, we provide a technique for evaluating the most 
effective strategy for long-term storage that takes into consideration the costs associated with 
inventory, perishability, and the expenses that are incurred as a result of donors increasing their 
contributions. Overall, the purpose of this research is to increase the ability of humanitarian 
organisations to respond by minimising the consequences of slow-to-onset disasters, such political 
upheavals and droughts, on people that are already at risk. As a result, it is possible to assert that the 
development and implementation of the model that has been proposed are relevant to the stages of the 
disaster management cycle that are concerned with preparedness and mitigation, respectively.  The 
theory of Markov chains, which was developed by Abell'an and Liu (2013), states that if a chain is 
allowed to continue for a sufficient length of time, it will ultimately reach the point of equilibrium, 
regardless of the initial value that is entered into the chain. The mathematical notion that is commonly 
referred to as a "Markov chain" was named after Andrey Markov, the brilliant individual who had the 
audacity to suggest a model for monitoring and comprehending systems that change based on 
predetermined probabilities. In the field of statistical modelling, the highly regarded mathematical 
construct known as the Markov chain may be utilised in a number of different ways. There are a number 
of real-world processes that make use of these applications. Some examples include the dynamics of 
animal populations, the development of customer lineups at airports, and the area of continually varying 
currency rates. 
 
1.2. Problem Identification 

Manufacturing managers face significant obstacles in fulfilling the requirements for effective and 
optimum inventory management. These difficulties stem from the complexity created by the numerous 
transactions and demands from clients who are spread out over different locations. Inventory 
management is plagued by a variety of issues, such as inconsistent product monitoring, inefficient 
inventory storage, erroneous data management, inadequate documentation, product stocking, and a 
failure to adapt to changing and growing demand fluctuations.  There are many intricate details and 
difficult tasks involved in supply chain management. The optimal inventory notion for inventory 
management advises managers to aim for the ideal stock level, which is just enough to have products on 
hand without going overboard or creating issues. The goal of the optimal inventory theory is the 
creation of effective methods for inventory management. The Markov chain and inventory management 
can be related because mathematics has a propensity to look for possible solutions to issues that are 
related to inventories. 
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1.3. Contribution of the Study 
Recognize them as an essential part of a humanitarian operation and employ inventory management 

for long-term humanitarian operations that involve donations and demands that are unpredictable. To 
the best of our knowledge, none of them take into consideration the simultaneous uncertainty that exists 
in the demand and the distribution of donations. The bulk of the works that are published on the subject 
of humanitarian logistics do not deal with inventory management for perishable goods, and only a tiny 
number of these works investigate slow-onset disasters. Consequently, this research contributes by 
presenting an inventory model for progressive on-set disasters that explicitly takes into account 
perishability and also takes into consideration the unpredictability of demand and donation. 
 
2. Objective of the Study  

1. To Study the Development of a Markov Decision Process-based inventory control system for 
supply chain management. 

2. To study the theory of Markov chains pertains to a mathematical framework. 
 
3. Literature Review 

The mathematical process known as the Markov chain involves determining the probability of 
future actions based on the currently known values of certain variables. The likelihood of a specific 
outcome can be calculated by constructing a decision tree and assessing the probabilities of future 
actions at each step. Mathematically, the Markov chain represents a stochastic process in which the 
present state depends solely on the immediate past, thereby influencing the occurrence of future events. 
Notably, within the context of Markov chain theory, stochastic processes impart an appealing quality to 
finite Markov chains, as demonstrated in a recent study by Lotfi, Mardani, and Weber (2021). The 
Markov chain is a widely employed model across various disciplines, including statistics, artificial 
intelligence, linguistics, industrial engineering, operations research, and genomics. 

According to the research conducted by Akhlaghi and Malkhalifeh (2019), one of the most valuable 
mathematical quantitative models for inventory management is the Markov chain. The application of 
the Markov chain has significantly influenced the field of inventory management, as evidenced by the 
findings of Akumu (2014). Furthermore, this mathematical model has been demonstrated to be closely 
associated with enhancements in inventory management efficiency. Numerous academic studies have 
concentrated on the Markov chain, which has been applied in various contexts to facilitate prediction, 
inventory management, and forecasting. These contexts include energy supply rationing, workforce 
planning, and inventory market analysis, among others. Grossman, Pinto, and Ramaswamy (2019) have 
highlighted that the Markov chain can be characterised as a continuous-time process, referred to as the 
continuous-time Markov chain (CTMC), in addition to its discrete-time formulation. This statistical 
model serves as an effective tool for modelling a diverse range of issues across multiple fields. The 
Markov chain's ability to integrate differential equations and its g-steps transition probability enables a 
comprehensive examination of dynamic systems. The following differential equation illustrates the 
relationship between the variables x and y: (1+x^2)dy/dx = n(1+y^2). 

According to Grossman et al. (2019), the Markov chain model elucidates a sequence of random 
events in which the probability of transitioning from one state to another is determined exclusively by 
the states attained in preceding events. This characteristic engenders a natural lack of memory, as the 
model does not retain information about events beyond the most recent occurrence. The research 
conducted by Lotfi et al. (2021) posits that Markov processes are particularly effective in characterising 
the sequential development of events. In a discrete process, transitions can occur only at specific, 
predetermined intervals, whereas in a continuous process, they may transpire at any moment. Within 
the framework of stochastic processes, the Markov chain serves as an exceptional and invaluable 
analytical tool. The principal objective is to estimate the transition matrix, which is derived from well-
defined system states. When examining complex systems, stochastic methodologies such as the Markov 
Decision Process (MDP) are employed. The five primary components of this framework operate in a 
coherent and sequential manner. These components can be categorised as follows: Decision epochs (i), 
States (ii), Actions (iii), Transition probabilities (iv), and Rewards (v). The overarching goal of the 
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decision-maker is to optimise the potential of the situation, thereby guiding the environment through 
various developmental phases. 

Inventory decisions can be conceptualised as occurring at regular intervals, or decision epochs, as 
highlighted by Afrinaldi (2020). Depending on whether these epochs are fixed or dynamic, they can be 
categorised as discrete or continuous, respectively. The primary objective is to identify a course of 
action that aligns most closely with established criteria to achieve the desired outcome. Prudently 
selecting activities can lead to improved financial results and maximised profit, which in turn influences 
the formulation of company policies aimed at enhancing the effectiveness of inventory management 
techniques. In their seminal work, Nwuba et al. (2020) conducted an extensive study on stochastic 
inventory management employing a Markov chain approach. Their research centred on a product with 
unpredictable demand, with the aim of determining the optimal order and reorder quantities while 
considering the preferences of loyal consumers. In this context, we utilise a Markov chain model to 
guide our inventory strategy, which incorporates two distinct order sizes (X1 and X2) and two distinct 
reorder levels (r1 and r2). The order size X1 is configured in accordance with a conventional 
replenishment strategy upon reaching the reorder level r1. Similarly, when the reorder level r2 is 
attained, the order represented by X2 is also triggered. This latter order is essential for promptly 
meeting restocking requirements. 

Discrete-time, which operates within a countable space, and continuous-time, which functions 
within a continuous space. The results of Markov's experiment suggest that, as noted by Chatys (2020), 
the dynamics of a system over a specified period can be characterised by an indexed collection of random 
or arbitrary variables {Xt} = (X0, X1, X2, X3). In the context of inventory management, consider a 
specific example: the demand for mobile phones during a particular week, represented by the variable 
Xt. It is pertinent to note that Xt follows a Poisson distribution with a mean of 1. Several academic 
publications indicate that employing various Markov chain models may facilitate the resolution of 
inventory management challenges. In a multistage manufacturing and production process, the 
mathematical capability to estimate the dispersion of inventory variations can be achieved by applying 
the Spatio-temporal Markov Chain Model (STMCM) alongside probability chain adjustment (Akhlaghi 
and Malkhalifeh, 2019). 

Here, the concept of processes is being considered. To put it simply, processes are the building 
blocks of any the following procedure is used to estimate a Markov chain in a typical scenario, as stated 
by Ahiska, Appaji, Russell, King, and Warsing (2013): 

• The geographical and temporal dimensions are used to produce the mathematical representation 
of the condition of transition probability matrices.  

• To increase the precision of the (STEMCM) predictions, it is necessary to define the probability 
chains and joint state probabilities. 

• Genetic algorithm that optimizes the probability weights in STEMCM using self-adaptive 
mutation techniques. 

The outcome of the aforementioned procedure, which is predicated upon data procured from the 
factory, has the potential to provide inventory managers with enhanced inventory plans, thereby 
facilitating the attainment of optimal inventory management (Althaqafi, 2023). The utilisation of the 
Markov chain in the realm of inventory management encompasses intricate processes and protocols 
aimed at addressing the challenge of predicting inventory fluctuations. This investigation is conducted 
within the context of a genuine inventory system, which may encompass multiple production stages 
within a manufacturing firm's factory. 
 
3.1. Inventory Management 

In light of the significant level of uncertainty associated with the inventory process, Haung, Meng, 
Liu, Liu, and Huang (2022) assert that inventory management has become an integral component of 
modern business operations. Numerous elements must be meticulously evaluated to achieve efficient 
inventory management. These factors include product selection, timeliness, and temporal 
considerations. Charls et al., 2024 explained that the management of medical and surgical items in 
healthcare facilities is a multifaceted task that necessitates the collaborative efforts of physicians, ward 
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nurses, pharmacists, and inventory managers to ensure the consistent availability of medical and 
surgical supplies. This article introduces an innovative inventory management model that draws upon 
Hidden Markov Models (HMMs) and infinite horizon Markov Decision Processes (MDPs) to derive 
optimal inventory policies. The authors' methodological contributions have been significant for 
operations research in healthcare. The researchers estimated the optimal number of demand states in 
HMMs using a systematic search and examined its interaction with infinite horizon MDPs when 
developing an inventory management model for non-stationary and highly volatile hospital supplies. 
The researchers illustrated that the Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) of the HMM for the demand model excessively penalise the model's complexity, leading 
to increased inventory costs. Instead, we propose integrating the HMM and MDP within a simulation 
framework and using the expected cost of the system to determine the optimal system design. The 
investigators observed an optimal number of demand states in the model, beyond which there is no 
benefit in increasing the model's complexity. It is crucial to emphasise that different formulations of 
HMMs may yield varying representations of demand patterns. Therefore, a cautious approach is 
necessary when employing formulations that lack explicit characterisation to derive optimal policies. 
Additionally, it is essential to consider the potential limitations of cost estimates that arise from model 
formulations that are not accurately specified. This consideration is vital to ensure that the assessment 
of inventory management strategies is both accurate and reliable. 

Zhang et al. (2024) assert that the present study successfully develops and analyses the decision-
making and coordination mechanisms of a closed-loop supply chain for power batteries, employing a 
Markov Decision Process (MDP) model. The principal contribution of this research is the development 
of a comprehensive modelling framework that addresses the uncertainties and dynamics present within 
the supply chain while also providing coordination strategies for the various decision-makers involved. 
This study validates the efficacy of the proposed model and illustrates the application of dynamic 
programming and reinforcement learning under different conditions. The results indicate that the 
constructed Markov Decision Process (MDP) model can significantly enhance the overall efficiency and 
effectiveness of the closed-loop supply chain for power batteries, offering novel perspectives and 
solutions for supply chain management. The findings reveal the optimal strategies that all parties in the 
supply chain should adopt under varying decision cycles and probability distributions, as well as 
methods to maximise overall efficiency through coordination mechanisms. This research presents an 
innovative approach to decision-making and coordination in the closed-loop supply chain for power 
batteries and outlines directions for future research. The results are not only theoretically significant 
but also serve as a valuable reference for practical supply chain management. 

Francesco et al. (2024) presents an innovative heuristic aimed at enhancing supply chain inventory 
management within a divergent two-echelon supply chain framework. The proposed method employs a 
deep reinforcement learning (DRL) algorithm to determine the number of batches to produce, while 
integrating multi-stage stochastic programming (MSP) to optimise the quantities of batches shipped to 
each distribution warehouse. This dual approach effectively combines the model-based capabilities of 
MSP for immediate logistics decisions with the simulation-optimisation features of DRL for long-term 
production planning. The researchers conducted a thorough evaluation of the heuristic's performance 
through a series of numerical experiments. In smaller settings, where optimising solutions was feasible, 
the DRL-based heuristic (DRLBD) demonstrated performance remarkably close to that of exact 
methods. In larger and more complex scenarios, where finding an optimal solution proved challenging, 
DRLBD consistently outperformed both the Proximal Policy Optimisation (PPO) algorithm and the 
(Q)-policy benchmark, showcasing its robustness. To further validate the results, the researchers 
performed a sensitivity analysis by varying specific demand parameters. This analysis confirmed the 
stability of the results across multiple value combinations and highlighted that situation with lower 
peak frequencies and minimal deterministic components can be more difficult to manage. From a 
computational perspective, DRLBD offers rapid action computation, although the DRL training phase 
may serve as the primary bottleneck. This efficiency enables decision-makers to utilise the heuristic for 
conducting what-if analyses within a practical timeframe. Overall, the results demonstrate that the 
proposed heuristic not only consistently outperforms conventional deep reinforcement learning 
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algorithms but also significantly reduces total costs, paving the way for more effective supply chain 
management strategies. 

As previously articulated by Costantino, Gravio, Shaban, and Tronci (2015), unplanned 
circumstances possess the capacity to induce unpredictability regarding inventory quantity, quality, and 
the duration required to fulfil orders. Furthermore, challenges associated with inventory management 
may arise from a variety of internal variables (Karim and Nakade, 2020). Among these factors are 
unanticipated workloads, protocols for equipment repair and calibration, labour strikes, transportation 
disruptions due to vehicle breakdowns, accidents, adverse weather conditions, natural disasters, market 
dynamics, price alterations, inflationary price fluctuations, and inadequate supply relative to demand. It 
is important to note that this enumeration is not exhaustive. 

According to Ahiska et al. (2013), successful inventory management necessitates careful 
consideration at every operational level. Effective inventory management is particularly crucial for 
factories employing multitasking production and complex multi-stage smoothing manufacturing 
processes. This effectiveness not only enables the continuous production of goods but also facilitates the 
prompt fulfilment of online orders for both finished and unfinished products. Traditional physical-based 
and manual models may prove inadequate in accurately estimating or approximating inventory 
management due to the inherent uncertainties and delays associated with the procurement and delivery 
of goods (Althaqafi, 2023). Consequently, there is a pressing need for industrial sector companies to 
adopt innovative solutions that leverage the principles of Markov chains. 

According to Silbermayr and Minner (2014), inventory management software provides efficient 
control and oversight of the procurement of raw materials, the production process, the storage of raw 
materials, and their utilisation. This facilitates the execution of manufacturing processes that are both 
error-free and more efficient. For manufacturing firms, it is imperative to implement an effective supply 
chain management system to ensure the seamless integration of production operations and inventory 
management. Sharma and Vishwakarma (2014) assert that such a system adopts a systematic approach 
to the procurement, storage, and timely delivery of components, raw materials, and finished products. 
Consequently, it enhances both the profitability and scalability of the business. 
 
3.2. Markov Chain and Inventory Management 

Researchers have examined the relationship and interaction between Markov chains and inventory 
management within businesses that are engaged in supply chain and inventory management challenges. 
According to Huang, Meng, Liu, Liu, and Huang (2022), the Markov chain serves as a fundamental 
mathematical model that can assist those facing difficulties in inventory management. There are 
numerous practical applications of the Markov chain in the business domain. One such application 
involves utilising the current state of equipment to predict the quantity of defective goods that will be 
produced on the assembly line. Researchers Lotfi, Kargar, Hoseini, Nazari, Safavi, and Weber (2021) 
concluded that the implementation of Markov chains enhances inventory management, thereby 
facilitating the prediction of the bad debt conversion rate of commercial receivables, as evidenced by 
their findings. Furthermore, Myers, Wallin, and Wikstrom discovered in their 2017 study that the 
application of Markov chains led to improvements in inventory management. Their services enable the 
estimation of future brand loyalty based on an existing customer pool, employing Markov chain analysis 
to forecast stock and option prices. This underpins their assertion. 

Research on the applicability of Markov chain analysis yields contradictory findings and 
perspectives from a variety of stakeholders. A study conducted in the field of multistate steel production 
by Akhlaghi and Malkhalifeh (2019) and Huang et al. (2022) examined the efficacy of the spatio-
temporal Markov model regarding its ability to forecast inventory management in manufacturing 
processes. In the course of these investigations, variations and inventory fluctuations in steel 
manufacturing enterprises were taken into consideration. The research revealed that the spatiotemporal 
Markov model significantly outperformed steel-adaptive mutation techniques in comparison to 
traditional Markov chain approaches. This superiority is attributed to the former’s greater stability. In 
their 2014 study, Silbermayr and Minner found that Markov chains are adversely affected by certain 
factors. Furthermore, their research indicated that, while Markov chain analysis is a robust method for 
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generating predictions, it does not account for every forecast it produces. According to Ahiska et al. 
(2013) and Silbermayr and Minner (2014), Markov chains possess considerable limitations, as they fail 
to adequately elucidate the underlying causes of most anticipated events. 

• The Importance of Markov Chains for Stock Control 

• It streamlines procedures for managing inventories. 

• Reliability of out-of-sample predictions is guaranteed.  

• Companies who have mastered the Markov chain may use this basic approach.  

• Compared to other complex mathematical models, this mathematical instrument helps 
management with forecasts to a greater extent. 

• Its analytical approach, which amounts to formulaically calculating the system dependability 
parameters, gives it the benefit of speed and precision. 

There is a wide variety of Markov chain models that have been published in academic journals. 
1. The Markov chain is an approximation of the Markov process. 
2. Net model of queueing 
3. Impart a semi-Markov model.  
4. Network model for stochastic automata 
5. Tempored-Petri net simulation  
6. Variegated Petri dishes 
7. Random Petri dish  
8. Poisson queueing 
9. Model for evaluating performance.  
10. Mini-Max Algebra and Process Algebra 

 
3.3. Challenges Associated with the Markov Chain 

• Inaccurate performance estimations can arise from a multitude of factors, including challenges 
in lead time analysis, the reliability of sensitivity analysis, and behaviours associated with data 
analysis. 

• Design challenges necessitating problem-solving skills encompass buffer allocations, workload 
distributions, and topical network architectures. 

• In instances where organisations are incompatible with the existing Markov model, 
optimisation issues related to replacement policies and quality enhancement may emerge. 

• Concerns regarding capacity planning, management, monitoring strategies, quality control, and 
difficulties related to multistage and multi-allocation inventory are all intricately connected to 
issues of production planning and control. 

• Challenges in sequencing and scheduling of production tasks, as well as issues pertaining to 
route variety, fleet size, and the quality of maintenance schedules, are also significant. 

 
3.4. Theoretical Framework 

The esteemed Russian mathematician Andrey Markov established the significant Markov Chain 
Theory in 1922, as noted by Abellan-Nebot, Liu, Subiron, and Shi (2012). Within the mathematical 
framework referred to as "Markov chains," a system is demonstrated to transition between states 
according to predefined probabilistic rules. Markov chain theory posits (Abellan and Liu, 2013) that, 
given any arbitrary initial value, the chain will converge to an equilibrium point if operated for a 
sufficiently extended duration. The mathematical construct known as a "Markov chain" is named in 
honour of the distinguished Andrey Markov, who proposed a model that could be employed to 
comprehend and analyse systems that evolve according to specified probabilities. This theoretical 
framework asserts that it is possible to make predictions about future events based on historical data. 
Predictions concerning phenomena such as stock market trends or weather patterns, for instance, tend 
to extend significantly into the future (Akumu, 2014; Ambreen & Aftab, 2016), although the accuracy of 
these predictions may vary. The highly regarded mathematical construct of the Markov chain has 
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numerous applications in statistical modelling. Notable examples of real-world processes where these 
applications are relevant include animal population dynamics, customer queuing systems at airports, and 
the fluctuating values of currencies. 

The examination of stochastic models that elucidate a sequence of potential occurrences, in which 
the probability of each event is contingent solely on the preceding one, is referred to as Markov chain 
theory (Babai, Boylan, Syntetos & Ali, 2016). Probabilistic models that illuminate a series of probable 
events are termed Markov chains or Markov processes. This theory is characterised by the principle 
that the state attained in the preceding event is the sole determinant of the probability of each 
subsequent event. In more accessible language, this can be described as the notion that future 
occurrences are dependent on present conditions. The Markov chain, a robust mathematical construct, 
finds extensive application in statistical modelling. Numerous real-world processes demonstrate these 
applications, including dynamics of animal populations, customer queue formation at airports, and the 
fluctuating landscape of currency exchange rates. As a widely utilised concept across various disciplines, 
the Markov chain constitutes a cornerstone of stochastic processes and probability theory. Fields such 
as physics, genetics, mathematics, economics, as well as data science and machine learning, are 
encompassed within this discussion. Notably, this argument is substantiated by the citations of 
Chaipradabgiat, Jin, and Shi (2009) and Chatys (2020). 

The theory of information foraging is currently a prominent topic of discussion. The concept, which 
emerged in the early 1990s, is generally attributed to esteemed scholars Stuart Card and Peter Pirolli. 
Information foraging theory investigates the intricate dynamics of human behaviour by drawing 
parallels between the cognitive processes of Homo sapiens and the instinctual hunting patterns of 
various animal species. This intriguing hypothesis posits that, akin to other animals, humans possess an 
inherent drive to seek out and acquire new knowledge in order to more effectively address and 
surmount existing challenges. Research conducted by Ching, Fung, and Ng (2002) indicates that the 
information foraging hypothesis elucidates the natural curiosity exhibited by humans, who are 
perpetually in pursuit of novel learning opportunities. This inquisitiveness is attributable to the 
utilisation of innate foraging capabilities, which evolved to assist animals in locating sustenance. In their 
study, Ahmed, Hasan, Hoque, and Alam (2018) assert that information foraging theory encompasses a 
range of information technologies and methodologies developed through extensive research on human 
behaviour to fulfil diverse needs and overcome various obstacles. The mathematical inclination to 
explore potential solutions to inventory-related issues serves as the connection between Markov chains 
and inventory management (Isik, Unal, & Una, 2017). The fundamental premise of information foraging 
theory is the attempt to draw parallels between the strategies employed by animals to procure food in 
their natural environments and the analogous approaches utilised by humans to seek information. This 
comparison is made to illustrate how Markov chain analysis serves as a representation of how data can 
enhance individuals' predictive capabilities, thereby enabling them to anticipate events such as future 
stock price fluctuations and the likelihood of overdue bills. 

This discussion addresses the topic of optimum inventory management theory. The urgent 
necessity to efficiently handle merchants' requests led to Harris's groundbreaking concept of optimal 
inventory in 1913. This necessity arose from the need to accurately predict consumer demands to 
mitigate discontent associated with stockouts. Harris expressed significant concern regarding the 
substantial budget allocated to inventories. Unfortunately, it was observed that consumer requests were 
sometimes not met satisfactorily, resulting in product spoilage. This adverse outcome can be attributed 
to the procurement of excessive inventory without an adequate storage system, as highlighted by Qiu, 
Tan, and Xu (2017). According to the principle of optimum inventory, managers should strive for a 
stock level that is appropriately balanced—sufficient to meet demand without incurring unnecessary 
costs or complications. Optimal inventory theory focuses on establishing efficient methods for inventory 
management, as discussed in the research conducted by Lang, Stulz, and Walkling (1991). The objective 
of this concept is to adopt a more systematic approach to anticipating consumer demands and 
developing effective storage and replenishment strategies. The primary aim is to identify an equilibrium 
between over-investment in inventory and insufficient stock levels. This is achieved through the 
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implementation of efficient storage management strategies, the estimation of the ideal inventory level, 
and the determination of reorder points and quantities. 
 
3.5. Research Gap 

The theory achieves this by proposing a Markov Decision Process (MDP) model that incorporates 
both the direct consideration of the perishability of the provided items and the stochastic nature of needs 
and donations. The MDP facilitates a straightforward approach to long-term operations, enabling the 
presentation of a clear solution plan that is confined to the storage level. This study addresses a 
significant gap in the existing literature concerning the mitigation of the potentially devastating effects 
of long-term operations, such as epidemics, on populations that are already vulnerable. In such 
circumstances, it is essential to deliver perishable supplies, including food and vaccines, to those in need. 
The utilisation and implementation of the proposed tool is manageable for practitioners. 
 
4. Methodology 

Due to the authors' proficiency in the language and its widespread availability, C# was selected for 
its user-friendliness and accessibility. Although C# is a proprietary language, the model could also be 
developed using alternative programming languages such as Python or C++. Moreover, the Value 
Iteration Algorithm can be readily implemented by individuals within an organisation possessing 
programming skills, utilising free programming languages available in the company. This algorithm is 
well-established and widely acknowledged within the field. 

In this stage of the process, it is essential to recognise that our model operates under the assumption 
of an infinite time horizon. Consequently, at the commencement of the humanitarian operation, when 
the parameters governing contribution distribution and the required commodities are established, only a 
single execution is necessary throughout the duration of the operation. As Puterman (1994) indicates, 
the resultant policy is an ideal stable policy that delineates the most effective course of action for each 
state at every decision epoch. Modifications to any of the parameters, such as shelf life, demand, or 
contribution distributions, will necessitate the formulation of a new stationary policy to accommodate 
the changes that have transpired during the process. Moreover, given that the model will be executed 
infrequently—specifically at the onset of operations and whenever the input parameters undergo 
significant alterations—the efficiency of the programming language selected for model construction is 
of minimal importance. This is due to the infrequency of model execution. 
 
4.1. Design of Experiments 

To substantiate the efficacy of our proposed strategy, we have devised a small-scale experiment that 
specifically scrutinises inventory management practices within a blood facility. This establishment bears 
the significant responsibility of procuring and distributing units of vital life-sustaining fluid not only to 
local medical institutions but also to philanthropic endeavours. The data regarding the demand for and 
donations of blood packs has been generated stochastically, under the assumption that the demand for 
blood packs exceeds the quantity of donations. The degradation of blood packs, in conjunction with 
factors such as demand and donation, constitutes a pivotal occurrence that has the potential to induce 
alterations in the inventory level. This, in turn, facilitates the transition between various states of the 
system. The states under investigation in this experimental study encompass the numerical 
representation of blood packs within the inventory, ranging from zero to two thousand packs. 

The demand for blood packs conforms to a Poisson distribution, characterised by a mean value of 90 
packs per week. The act of donating blood is inherently stochastic, exhibiting characteristics that align 
with a Poisson distribution. Specifically, the mean number of blood packs donated per week is estimated 
to be 60. If deemed necessary, the blood centre possesses the capability to dispatch vehicles to remote 
districts to stimulate donations, thereby augmenting the quantity of blood packs contributed and 
amassed to align with the prevailing demand. At the blood centre, there exist a total of four distinct 
vehicles available to facilitate the retrieval of blood packs. Regarding each vehicle, it is postulated that 
the quantity of blood packs gathered every week adheres to a Poisson distribution, wherein the average 
number of packs amassed per day is 20. Therefore, we shall consider a collection of five potential control 



7856 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 7846-7864, 2024 
DOI: 10.55214/25768484.v8i6.3714 
© 2024 by the author; licensee Learning Gate 

 

actions, namely the dispatch of zero, one, two, three, or four vehicles for pick-ups. Each dispatched 
vehicle shall be capable of collecting blood packs at a rate of 0, 20, 40, 60, or 80 units, respectively. Thus, 

it can be observed that the set denoted by 𝐴 = {0, 20, 40, 60, 80} represents the collection of control 
actions available to conduct this particular experiment. 
 
4.2. Quick Cost Feature 

The cost criteria for this particular experiment are widely acknowledged and embraced within the 
relevant literature. The aforementioned parameters encompass the inventory holding cost denoted as 
"h," the transportation costs associated with each vehicle employed for blood pack pick-ups, represented 
as "ta," the costs incurred for disposing of deteriorated items referred to as "dc," the projected disposal 
cost denoted as "E(dc)," and, lastly, the shortage costs associated with each blood pack. The cost of 
inventory exhibits a direct proportionality to the quantity of packets present in stock. Conversely, the 
expenditures related to transportation and pick-up may vary depending on the number of vehicles 
employed for these operations. 

Furthermore, it is noteworthy that there exists a modest monetary incentive associated with the 
utilisation of each vehicle to facilitate pick-up operations. Each individual vehicle employed in this 
endeavour receives a modest remuneration of $60,000 from governmental entities, with the primary 
objective of incentivising the act of blood donation. The cost incurred by refraining from sending a 
vehicle represents the opportunity cost arising from the foregone receipt of this government incentive. 

The calculation of the anticipated cost of disposal takes into account the projected quantity of blood 
packs that will deteriorate before consumption. This projection is based on the current inventory level 
at each decision epoch, as demonstrated by the equation. 

(1) 
The probability symbolized as P(V = i|s, a), serves as a measure of the likelihood that I blood packs 

will undergo deterioration before consumption. This probability is contingent upon the present 
inventory levels and the cost associated with disposing of each pack, denoted as p. 
Furthermore, the utilization of current inventory levels serves as a basis for determining the projected 
inadequacy of blood packs, subsequently incorporated into the computation of anticipated deficit costs. 
Given the current pursuit within the realm of blood center inventory management, it is strongly advised 
that the inventory level should not be permitted to reach a state of complete depletion. In the 
hypothetical scenario wherein the availability or sufficiency of blood products becomes limited, the 
implementation of this prudent approach assumes paramount importance to circumvent potential 
complications. Accordingly, as illustrated in table (1), the financial outlay of the blood center is 
susceptible to a significant penalty (referred to as "sc") if a demand is not satisfied. 
The calculation of the total expected shortage cost is demonstrated in the following equation: 

                                          (2) 
The probability of encountering a shortage of i blood packets, denoted as P(O = i, y), is represented 

based on the current inventory level s. In the event of a scarcity, the cost per pack shall be represented 

as 𝑠𝑐.  
Henceforth, the ensuing equation shall denote the cost function for the particular experiment at 

hand, denoted as 𝑅(𝑠, 𝑎): 

                  (3) 
Table 1 provides a comprehensive overview of the cost structure of the experiment at hand, 

effectively presenting the respective values assigned to each parameter. It is of utmost significance to 
underscore that the costs employed in this experimental endeavor were derived from arbitrary 
numerical values. 
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Table 1. 
Costs of the experiment. 

Transportation and pick-up expenses that might change 
over time 

Price 

One automobile $ 120,00.0 / automobile 
Two automobiles $ 85,00.0 / automobile 
Three automobiles $ 75,00.0 / automobile 
Four automobiles $ 70,00.0 / automobile 
Cost of retaining inventory $ 1,00.0 / bundle 
Price of disposal (p) $ 1000,00.0 / bundle 
A shortage's cost $ 1000,00 / bundle 

 
4.3. Rates of Degradation 

Blood packs undergo a process of deterioration precisely 42 days after their collection, establishing 
their deterioration rate as deterministic. Typically, blood packs are rendered immediately employable 
upon their availability. In the context of continuous humanitarian aid operations, it is essential to 
consider that these operations frequently occur in underdeveloped countries where local collection is not 
feasible. Consequently, the blood packs utilised in such operations may originate from various global 
locations, thereby directly impacting their shelf life. To effectively address this issue, we conducted a 
simulation encompassing four distinct scenarios, each relating to varying lead times and their 
consequential impact on the shelf life of blood packs. In each scenario, it is imperative to maintain a 
constant set of parameters regarding demand, donation, and cost. In the initial scenario, we considered a 
confined assemblage, wherein the temporal duration of viability for a blood pack is established as 42 
days. In the subsequent scenarios, we accounted for lead times of 21 days, 28 days, and 35 days, 
resulting in corresponding shelf lives of 21 days, 14 days, and 7 days for the blood packs. 
It is of utmost significance to acknowledge that blood packs are subject to a distinct supply chain 
management system commonly referred to as the cold chain or cold supply chain. Regrettably, the 
present study does not delve into the intricacies of this system. Furthermore, it is imperative to 
underscore that the lead times serve exclusively as a means to illustrate the disparities in ordering 
strategies contingent upon fluctuating rates of deterioration or shelf lives. Consequently, the 
aforementioned factors do not exert a direct influence on the fluctuations observed in inventory levels, 
thereby resulting in a model that fails to incorporate the temporal delay associated with lead time. 
 
5. Results and Discussion 

Upon conducting a thorough examination of the model, we successfully discerned the optimal 
ordering procedures for the four scenarios delineated in the preceding section. A concise presentation of 
the findings can be observed in Figure 1 and Table 3. The actions generated by our model correspond to 
the tasks to be executed during each decision epoch, determined by the inventory level at the 
commencement of the current decision epoch. More precisely, each individual action within the 
aforementioned scenario aligns with a distinct numerical value denoting the number of blood packets 
that must be acquired. The procurement process commences at the onset of each week, taking into 
account the initial quantity of blood packs available in the inventory at the beginning of that week. 

The model we have developed provides the decision maker with the optimal quantity of blood 
packets to procure for every conceivable inventory level within the stock. The objective is to effectively 
reduce the mean expenditures associated with the administration of inventory for the humanitarian 
endeavour. The optimal strategy for procurement or ordering, in terms of operational efficiency, is the 
utilisation of a comprehensive collection of ideal actions, each corresponding to a specific inventory 
level. 

According to the experimental set comprising five potential actions, our model has formulated a 
prescription for an optimal ordering policy in the initial scenario. It is important to note that this 
scenario assumes a proposed shelf life of 42 days, as elaborated upon in section 4.3. The optimal strategy 
entails deploying a fleet of four vehicles in the event that the inventory level of blood packs reaches or 
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falls below the threshold of 340 units. The consequence of this action will manifest in the acquisition of 
an average of 80 supplementary units of blood packs. To acquire an additional 60 units of blood packs, it 
is advised that a convoy consisting of three vehicles be dispatched when the inventory level falls within 
the range of 341 to 364 units. To procure an additional 40 units of blood packs, it is recommended to 
dispatch a pair of vehicles once the inventory level reaches the range of 365 to 390 blood packs. To 
acquire an additional 20 units of blood packs, it is recommended that a singular vehicle be dispatched 
when the inventory level falls within the range of 391 to 428 units. When the inventory level surpasses 
429 blood packs, it becomes imperative to abstain from dispatching any vehicles, thereby effectively 
preventing the procurement of any further blood packs. In this scenario, it has been determined that the 
minimum weekly average cost amounts to $62.38. The decision maker ought to embrace the 
aforementioned ordering procedure not only to mitigate average inventory costs but also to avert the 
deterioration and scarcity of blood packs. 

In summary, Table 2 presents the optimal ordering strategies for the four proposed scenarios 
concerning shelf life. The aforementioned procedure elucidates the process by which the determination 
is made regarding the most advantageous quantity of vehicles required and the corresponding volume of 
blood packs to be gathered, while duly considering the existing levels of inventory. Table 2 exhibits the 
fluctuations in the mean inventory cost concerning alterations in the shelf life of blood packs. 
 

Table 2. 
Best practices for placing orders in the provided situations. 

  
Shelf life = 

42 
Shelf life = 21 Shelf life = 14 Shelf life = 7 

Vehicles 
used 

Blood packs 
pick-ups 

Inventory level available between 

4 80 0.0 – 340.0 0.0 – 87.0 0.0 – 1.0 - 
3 60 341.0 – 364.0 88.0 – 122.0 2.0 – 41.0 - 
2 40 365 .0– 390.0 123.0 – 148.0 42.0 – 70.0 0.0 – 5.0 
1 20 391.0 – 428.0 149.0 – 180.0 71.0 – 100.0 6.0 – 32.0 
0 0 429.0– 2000.0 181.0 – 2000.0 101.0 – 2000.0 33.0 – 2000.0 
Costs on a weekly 

average 
$ 62,38.0 $ 97,45.0 $ 109,14.0 $ 120,85.0 

 
As anticipated, and as delineated in Table 2 and Figure 1, it is observed that an increase in 

inventory levels corresponds with a decrease in the number of blood pack pick-ups required. As the 
probability of a shortage approaches zero, it becomes evident that the costs associated with 
transportation and inventory holding significantly exceed the anticipated costs of shortages. 
Furthermore, it is noteworthy that as the shelf lives of products diminish, there is a corresponding 
increase in average inventory costs. This phenomenon is primarily attributable to the fact that 
perishable items tend to expire at a faster rate, thereby necessitating higher disposal costs. This 
relationship is clearly illustrated in Table 2. 

Moreover, Figure 1 illustrates the inverse relationship between the number of blood packs collected 
and the corresponding inventory level across the four distinct scenarios examined during the 
experiment. The provided graphic effectively demonstrates that as the shelf life (V) increases, there is a 
gradual decrease in the quantity of blood packs collected. This reduction is implemented as a 
precautionary measure to avert potential shortages. It is important to note that the costs associated with 
disposing of expired items are relatively insignificant compared to the costs incurred from shortages, 
primarily due to the low probability of deterioration. 

Furthermore, it is important to note that while we consider the imposition of a substantial penalty 
for the scarcity of blood packs, the anticipated costs associated with the disposal of expired items 
increase significantly in conjunction with the likelihood of spoilage. It is crucial to recognise that as the 
shelf lives of blood packs decrease, there is a corresponding rise in the volume of blood packs that are 
discarded due to deterioration. This phenomenon occurs concurrently with an increase in inventory 
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levels, resulting in heightened disposal costs and, consequently, a reduction in the overall collection of 
blood packs. 

 

 
Figure 1. 
Ideal procedures for collecting blood packs. 

 
It is essential to recognise that, in the context of isolated societies where the acquisition of blood 

packs or other perishable commodities is challenging or impractical, the depletion of supplies and the 
limited capacity for blood pack retrieval or procurement—due to the transient nature of these items—
may indeed present a significant threat to the well-being of the community and the effectiveness of 
humanitarian efforts. 

While our model seeks to determine optimal policies by considering the minimal operation costs, it 
is crucial for managers to consistently remember that the primary aim of a humanitarian operation is to 
protect and preserve human life. Therefore, to ensure the smooth functioning of operations and mitigate 
potential risks, researchers must be able to identify and strategise the operational expenditures that 
most appropriately align with the desired objectives in the model's objective function. 
 
5.1. Analysing Sensitivity 

The evaluation of the model's robustness is conducted through the utilisation of sensitivity analysis, 
a method that examines the impact of parameter variations on the optimal ordering strategy. Given the 
aforementioned assumptions regarding the spectrum of potential actions and cost parameters, as well as 
the specific scenario involving a 42-day lifespan for blood packs and a fixed weekly parameter of 60 
blood packs for distribution through donations, we shall now proceed to scrutinise the ramifications of 
altering the demand distribution parameter on both the ordering policy and the objective function. 

In the course of our investigation, we engage in a sequence of model iterations wherein we 

systematically manipulate the demand distribution parameter (𝜆) within the range of 60 to 100 blood 
packs per week. To effectuate this particular modification, it is imperative to note that for each iteration, 
the aforementioned parameter undergoes an incremental augmentation of precisely five units of blood 
packs each week. The findings are visually presented in Figure 2, while the numerical data is organised 
in Tables 3 and 4. 
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Figure 2. 
Effect of demand parameter change on the ideal average prices. 

 
Table 3. 
Best practices for ordering and typical expenses for weekly demand parameters ranging from 60 to 80 units of blood. 

  𝜆 = 60 𝜆 = 65 𝜆 = 70 𝜆 = 75 𝜆 = 80 
Vehicles 

used 
Blood packs 

pick-ups 
Availability of inventory levels 

4 80 0 – 115 0 – 153 0 – 191 0 – 230 0 – 269 
3 60 116 – 155 154 – 193 192 – 230 231 – 265 270 – 300 
2 40 156 – 197 194 – 230 231 – 262 266 – 294 301 – 326 
1 20 198 – 234 231 – 266 263 – 298 295 – 330 327 – 363 
0 0 235 – 2000 267 – 2000 299 – 2000 331 – 2000 364 – 2000 
Average Costs/week $ 139,72 $ 126,30 $ 109,14.0 $ 100,46 $ 86,24 

 
Table 4. 
Best practices for ordering and typical expenses for weekly demand parameters ranging from 85 to 100 units of blood. 

  𝜆 = 85 𝜆 = 90 𝜆 = 95 𝜆 = 100 

vehicles used 
Blood packs 

pick-ups 
Inventory level available between 

4 80 0 – 305 0 – 340 0 – 374 0 – 407 
3 60 306 – 332 341 – 364 375 – 397 408 – 429 
2 40 333 – 358 365 – 390 398 – 422 430 – 454 
1 20 359 – 396 391 – 428 423 – 462 455 – 495 
0 0 396 – 2000 429 – 2000 463 – 2000 495 – 2000 
Average Costs/week $ 74,18 $ 62,38 $ 48.67 $ 36,85 
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The tables presented, specifically Tables 3 and 4, illustrate the diverse strategies that can be 
employed in the collection of blood packs, taking into consideration fluctuations in demand variability. 

For a given value of the demand parameter (𝜆), it can be observed that the quantity of blood packs 
required to prevent shortages increases in direct proportion. Based on the data presented in Table 4, it 
is evident that when the inventory level of blood packs reaches 306 units, the number of required blood 
pack collections decreases from 80 to 60. This reduction in demand is significant, as the average demand 
stands at 85 units. Conversely, it is imperative to maintain an inventory level of 408 blood packs in 
order to observe a reduction in required collections when the average demand is increased to 100. 

It can be inferred that while there would be an increase in the price associated with the procurement 
of blood packs, there would be a corresponding decrease in the expenses incurred due to shortages. 
Furthermore, it is noteworthy that in the scenario of increased demand, there would be a reduction in 
the amount of product wastage and a subsequent decrease in the costs associated with disposal. 
Therefore, the analysis presented in Figure 2 demonstrates that the average costs of the system exhibit 

an inverse relationship with the mean demand (𝜆). This implies that as the value of 𝜆 increases, the 
corresponding costs decrease. 

It is of utmost significance to acknowledge that, within the context of this study, the costs 
associated with disposal and shortages significantly influence inventory costs, given their substantial 
impact on the system. Consequently, the reduction of both expense categories would result in a 
considerable decline in mean expenditures. Additionally, the effects resulting from alterations in the 
duration of the goods' shelf life are clearly illustrated in Table 2 and Figure 1. 
 
6. Conclusion 

In summary, the aforementioned research paper thoroughly investigated the utilisation of Markov 
Decision Processes (MDPs) in the domain of inventory control as it pertains to the intricate dynamics of 
the supply chain. The implications of this research hold considerable significance for both academia and 
the industrial sector. The application of Markov Decision Processes (MDPs) in inventory control 
provides a robust framework for comprehending and addressing the complexities associated with 
inventory management within supply chains. The findings possess the potential to offer valuable 
guidance to practitioners in inventory control, enabling them to implement strategies that optimise 
their operational performance and enhance customer satisfaction effectively. Future research directions 
may focus on the comprehensive investigation and enhancement of the scalability and computational 
efficiency of techniques based on Markov Decision Processes (MDPs). Additionally, the integration of 
real-time data and advanced analytics could be pursued to improve the accuracy of inventory control 
models. Furthermore, a thorough examination of the application of Markov Decision Processes (MDPs) 
in various supply chain scenarios, including multi-echelon inventory systems and collaborative supply 
chains, has the potential to yield significant findings and solutions for enhancing inventory management 
on a larger scale. 
 
6.1. Limitations 

The purpose of this study was to investigate the connection that exists between the Markov chain 
and the inventory management practices of industrial organisations. Insight and a comprehensive 
understanding of the Markov chain were provided by the review, which represents a novel contribution 
to the existing corpus of Markov chain research. Given that the Markov chain is utilised for inventory 
management by a limited number of manufacturing organisations, the research design employed in this 
study was exploratory, and the quantitative research methodology utilised data from manufacturing 
firms. Consequently, the study is accompanied by several limitations. 
 
6.2. Future Directions and Scope of the Present Work 

Should the model be expanded to incorporate a greater number of sources of commodities, it would 
facilitate a more accurate representation of the challenges and requirements faced by humanitarian 
organisations. This expansion would enhance the likelihood that goods with varying shelf lives would 
arrive at the disaster site during the same determination period. In future iterations, modifications to the 
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model may consider the inclusion of multiple warehouses and collaboration among groups to establish a 
fair distribution of donated (and/or purchased) resources and optimise total operating expenditures. 
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© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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