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Abstract: This paper presents Ensemble-based Service Quality Prediction (EAQP), an automated method 
for predicting service quality under changing mobile network conditions. EAQP incorporates data 
preparation methods such as transformation, purification, & imputation, and then performs feature 
extraction utilizing statistical, geographical, as well as temporal approaches. An improved feature 
selection method, using a unique weighting approach and optimized by a modified Walrus Optimization 
Algorithm, improves the accuracy of predictions. EAQP utilizes a variety of prediction models such as 
support vector regression, recurrent neural network models, bi-directional short-term long-term memory 
networks, extreme learning machines, along with multi-layer perceptron neural networks to enhance 
predictive accuracy. EAQP uses complex optimization algorithms and ensemble learning approaches to 
provide precise and dependable predictions about service quality in real-time. This helps in proactive 
network management as well as improvement. This comprehensive approach shows potential for boosting 
network efficiency, optimizing the distribution of resources, and enhancing the end-user experience when 
using mobile communications systems. 
Keywords: Ensemble-based prediction, Feature extraction, Recurrent neural networks, Service quality prediction, Walrus 
optimisation algorithm. 

 
1. Introduction  

In the ever-evolving landscape of mobile networks, the provision of high-quality services, particularly 
in the do- main of Voice over Internet Protocol (VoIP) traffic, stands as a critical challenge. As the demand 
for seamless communicationexperiencescontinuestosurge, 
theneedforaccuratecharacterizationandforecastingof VoIPtraffic becomes paramount to ensure optimal 
Quality of Service (QoS)[1][2]. This paper delves into the multifaceted realm of multivariate time series 
analysis to characterize and forecast VoIP traffic in real mobile networks, with the ultimate goal of 
enhancing QoS prediction. The proliferation of mobile devices and the ubiquity of high-speed data 
networks have transformed the way individuals and businesses communicate [3]. VoIP technology, 
leveraging the Internet as a medium for voice communication, has become a corner- 
stoneinthisparadigmshift.However,ensuringaconsistentandhigh-quality 
VoIPexperienceposesaconsiderable 
challenge,giventhedynamicandunpredictablenatureofmobilenetworkconditions.Inthiscontext,thecharacte
rization and forecasting of VoIP traffic through multivariate time series analysis emerge as indispensable 
tools[4]. By understanding the intricate patterns and interdependencies within the time series data, 
network operators can make informed decisions to optimize QoS parameters. This significance is amplified 
in cellular 
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environments,wheretheheightenedunpredictabilityofvariables,suchasinterference,concurrentreal-
timesessions, and the dynamic load of mobile network nodes, presents intricate challenge[5]. 

We address these challenges by employing a multivariate predictive time series analysis of Voice over 
Internet Protocol (VoIP) traffic within an urban Long-Term Evolution Advanced (LTE-A) environment. 
Currently, LTE 
standsasthepredominantbroadbandtechnology,encompassing57%ofglobalusers.Legacytechnologieslike2
G and 3G persistently find use, constituting about 38% of subscriptions. In contrast, 5G comprises 
approximately 5% of subscriptions, primarily due to its market infancy [6][7]. Notably, the prevalent 
deployment method is Non-Standalone (NSA) 5G, where a significant portion of the LTE core network 
is repurposed to implement voice services like Voice over LTE (VoLTE) [8]. The widespread adoption 
of LTE has spurred numerous studies exploring Quality of Service (QoS) and Quality of Experience (QoE) 
metrics, covering aspects such as deployment strategies, resource allocation, probabilistic models, and 
coexistence with other technologies. However, our primary contribution lies in the multivariate time 
series characterization of the dynamic (time-varying) behavior of crucial VoIP metrics, elucidating their 
mutual influence [9]. 

Multivariate time series analysis allows for a holistic exploration of the intricate dynamics inherent 
in VoIP traffic within real mobile networks. Unlike univariate analysis, which focuses on a single variable, 
the multivariate approach considers multiple interrelated variables simultaneously [10]. This includes 
parameters such as network 
latency,jitter,packetloss,andotherrelevantmetricsthatcollectivelyinfluencetheQoSexperiencedbyVoIPuser
s. Through the utilization of advanced statistical and machine learning techniques within the multivariate 
time series 
framework,itbecomespossibletocapturethecomplexrelationshipsanddependenciesamongthesevariables 
[11][12]. This comprehensive understanding is vital for constructing accurate predictive models that 
can forecast future trends in VoIP traffic and, consequently, anticipate changes in QoS systems[13]. 

In Section III, we delve into background information, with a specific emphasis on current 
methodologies, including discussions on CNN, GRU, LSTM, and Random Forest. Section IV is dedicated 
to comprehensive evaluations and comparisons of forecasting performances. Lastly, Section V functions 
as the concluding segment, presenting a summary of findings and offering insights into potential avenues 
for future research in this domain. 
 
2. Related Work 

Several researchers have investigated the forecasting of wireless traffic usage through a variety of 
methods and approaches, elucidating diverse techniques. The following outlines some of these 
methodologies. 

[14]addressedissuesinmultivariatetimeseriesgenerativemodellingbypresentingauniquetechnique 
that integrates state-space models (SSMs) with transformer architectures. This technique, unlike 
previous SSMs, uses attention processes to capture complicated non-Markovian dynamics, avoiding the 
requirement forre- 
currentneuralnetworks.Theexperimentalfindingsrevealedthattheyoutperformbaselinesinavarietyoftasks
and datasets. [15]tackled Forecasting using multivariate time series issues by Convolutional network 
with spatial and temporal components (STCTN) is a novel model based on the Transformer library. The 
model’s use of continuous positional encoding improves predictions muchfurther. 

[3]Predictingthebehavioroftrafficinrealtimeinmobilitysituationsmightassistoperators 
inproperlyplanningtheirnetworkinfrastructureandoptimizingresourceallocation.Asaresult,theauthorsad
vocatedinthispaperthatapredictivestudyofcriticalQoS/QoEcharacteristicsofVoIPtrafficthatisinarealmobi
le context be performed. [16] examined 6.2 million real network time series of long-term evolution 
(LTE) data traffic as well as associated parameters, such as eNodeB-wise Physical Resource Block (PRB) 
utilization, with the goal 
ofdevelopingatrafficforecastingmodelusingmultivariatefeatureinputsalongwithdeeplearningalgorithms. 

[17]an end-to-end generative model known as E2GAN was suggested for estimating missing values 
during multivariate time series. Missing values, which occur in the majority of multivariate time series, 
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obstructfurtheranalysisofmultivariatetimeseriesinformation.Existingimputationmethodsincludedeletio
n,statisticalattribution,machinelearning-basedimputation,andgenerativeimputation.[18]Multivariable 
time series prediction is built as a sequence to sequence scenarios for non-periodic datasets in this 
paradigm. It is suggested to use multichannel residual blocks together with an asymmetric structure 
based on a deep convolution neuralnetwork. 

[19]proposed a novel approach for predicting both univariate as well as multivariate time series 
using a mix of clustering, classification, and forecasting techniques. The proposed algorithm’sprimary 
purpose is to first use a clustering technique to group frames of time series data with similarpatterns. 
 
2.1. Research Gap 

The existing literature on wireless traffic forecasting reveals a gap in improving accuracy and 
efficiency in predicting network performance, especially in mobile networks. This research aims to 
address this gap by introducing a novel approach that combines Modified Walrus Optimization (MWO) 
with multivariate forecasting techniques. This approach aims to optimize the prediction of Quality of 
Service (QoS) metrics, such as network throughput, latency, and packet loss, in mobile networks. The 
research incorporates MWO, a metaheuristic optimization algorithm inspired by walrus behavior, to 
enhance the accuracy and efficiency of QoS forecasting. The integration of multivariate forecasting 
techniques allows for the consideration of multiple input variables, such as network traffic data, user 
mobility patterns, and environmental factors, in predicting QoS metrics. This comprehensive approach 
enables a more holistic understanding of network dynamics and facilitates more accurate predictions of 
QoS performance in real-time mobile network environments. The proposed research contributes to 
wireless traffic forecasting by introducing a novel methodology that enhances the accuracy and efficiency 
of QoS predictions, ultimately benefiting network operators in improving network performance and user 
experience. 
 
3. Background 
3.1. Ensemble Learning 

Inensemblelearning,aparticularcomputerintelligenceissueissolvedbysystematicallygeneratingandco
mbining a number of models, including classifiers or experts. To improve a model’s performance (in 
classification, prediction, linear regression, etc.) or reduce the possibility of making a poor model 
selection unintentionally, ensemble learning is often used. Additionally, ensemble learning is used to 
instill a degree of trust in the model’s selection, chooseoptimal(ornear-
optimal)features,fusedata,learnincrementally,non-stationarity,andcorrectforerrors.  

Improved prediction performance, including such reduced regression error as well as high 
classification 
accuracy,isachievedviatheapplicationofensemblelearning.Bymixingseveralmodels,ensemblelearningmay
boost machine learning performance. When compared to using only one model, this strategy yields far 
more accurate 
predictions.Thecentralconceptistoeducateapanelofexperts(classifiers),whowillthencastafinalvote[20]. 

Each model’s predictions are counted as a "vote" in the competition. The bulk of the models’ 
predictions are 
usedtoformthefinalforecast.Forexample,inregressionproblems,averagingmaybeusedtogeneratepredictio
ns, 
andinclassificationissues,itcanbeusedtocalculateprobabilities.Oneofthesimplestwaystocombinetheresults 
of several machine learning approaches is via the use of votes. The voting classifier encapsulates a suite 
of several classifiers which are trained as well as assessed in parallel to capitalize on the strengths of each 
method. The final result of a prediction is decided by a vote made by one of twomethods. 

Hardvoting/majorityvoting:In its simplest form, majority voting, or "hard voting," is the method 
most often used. The category with the most votes, Nc (yt), will be chosen. Through averaging the 
results of all classifiers, we make a prediction for the y-class label.  

1 2ˆ arg max( ( ), ( ),...., ( ))n

c t c t c ty N y N y N y=  
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Let's pretend we've decided to combine different classifiers that label a training sample with in following 
ways: 

• Classifier 1 -> class 0 

• Classifier 2 -> class 0 

• Classifier 3 -> class 1 
y^=mode {0,0,1} =0 By a large margin, we have decided that this sample belongs in "class 0." 

 
3.2. Walrus Optimization Algorithm (WaOA) 

The Walrus Optimization Algorithms (WaOA) is a metaheuristic that is population-based, with its 
population members represented by walruses. In WaOA, these walruses symbolize potential solutions 
to the optimization problem, and their positions Define the specifications for issue variables in the search 
space. As a result, each the walrus is seen as a vector, and the whole community of the walrus is 
mathematically represented expressed as a population matrix. Initially, walrus populations are formed 
at random during the introduction of WaOA. The WaOA population matrix's construction is precisely 
defined using equation (1). 
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In the given context, the population of walruses is represented as 𝑋, where each individual walrus, 

denoted as 𝑋𝑖, stands for a candidate solution. Within this framework, 𝑥, signifies the value proposed by 

the 𝑖th walrus for the 𝑗th decision variable. The population comprises 𝑁 walruses, and the problem 

involves 𝑚 decision variables[21]. Each walrus serves as a potential solution to the issue, as well as 
recommended values for variables to consider allow us to calculate the objective function[22]. The 
estimated objective function values resulting from the contributions of these walruses are defined in 
equation (2). 
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       (2) 

Here, F is the vector of goal operations, with each element represented as Fi, which represents the 
individual The desired function's value is obtained from the inputs that are provided of the ith walrus. 
 

Algorithm: pseudocode of WaOA 
Start WaOA  

1. Input entire optimisation problem data 
2. Set The total amount of iterations (T) and the number of walruses (N) 
3. Locations of walruses are initialised. 
4. For t=1:T 
5. Update strongest walrus based on objective function value criterion 
6. For i=1:N 
7. Phase1: Feeding strategy (exploration) 
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8. Determine the new position of the jth  walrus with 

( )1

, , , , ,. .
P

i j i j i j j i j i jx x rand SW I x= + −  

9. Update the ith walrus location using 
1 1, ,
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10. Phase2: Migration 
11. Select the ith walrus's immigration destination. 

12. Find the jth walrus's new location with
 ( )
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13. Update the ith walrus location using 
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=   

14. Phase 3: Escaping and fighting against predators 
15. Calculate a new position in the neighbourhood of the ith walrus using 

( )( )3
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16. Update the ith walrus location using 
3 3{ , ,

, ,

P P

i i i i

i

X X F F

X else

=   

17. end 
18. Keep the best possible answer so far 
19. end 
20. Provide WaOA's most effective quasi-optimal solution for the given problem 
21. End WaOA 
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Figure 1. 
Flowchart for WaOA. 

 
From the above algorithm of modified WaOA enhances the generalized Walrus Optimization 

Algorithm in many ways. Adaptive step sizes, dynamic migration computations, & perturbation enhance 
exploration, migration, and escape. Considering factors outside objective function values as well as 
dynamically improving parameter selections improves selection. The modified WaOA may additionally 
use hybridization via other optimization techniques or problem-specific information to increase 
performance, converging speed, solution quality, & robustness across optimization difficulties. 
 
4. Methodology 
Thisresearchtakesanewapproachtothepredictionofservicequality.Theproposedstrategyisdividedintoman
y 
phases.Fortheapproachtowork,firstadatasetofnetworktrafficiscollected.Theincomingdatasetisthenplaced 
through a pre-processing procedure that makes use of methods including data transformation, data 
purification, and data imputation. After the data has been pre-processed, it is used to extract features. 
Temporal feature extraction, Statistical and spatial techniques are used to extract important 
characteristics from the data. To optimize the 
featureselectionprocess,eachfeatureisindividuallyoptimizedthroughthenewlydevelopedWalrusOptimizat
ion Algorithm.Onceoptimalfeaturesareobtained,theyareinputtedintoanEnsemble-
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basedpredictionmodelforclassifying network traffic data, ultimately facilitating the prediction of quality 
of service. The Ensemble prediction 
incorporatesfunctionalitiesfromGRU,LSTM,andRandomForest.Everypredictionapproach’shyper-
parameters are adjusted by the use of the Walrus Optimisation Algorithm. This suggested 
methodology’s examination shows that it has a high degree of accuracy when forecasting the network 
traffic’s quality of service. The integration of 
advancedoptimizationtechniquesenhancestheefficiencyoffeatureselectionandmodeltuning,contributingt
othe overall effectiveness of the predictivemodel. 
 
4.1. Dataset Description 
 
The network traffic in the dataset was collected in an authentic cellular environment in and around 
Salerno, Italy, which is categorized as a medium-density city (around 2000 people/Km2). As of March 
2023, over 100 radio towers covering a combination of LTE/LTE-Advanced (roughly 97%) and 5G-NSA 
(roughly 3%) technologies service this region (information obtained from 
https://www.nperf.com/en/map/IT/). 
 
4.1.1. Data Pre-Processing 

Theinitialstageoftheproposedmodelinvolvestheutilizationofapre-
processingtechniqueappliedtothecollected network traffic data, denoted as Az. This technique aims to 
eliminate unnecessary attributes, thereby improving overall performance. Common issues addressed 
during pre-processing include outliers, missing values and redundant data. The enhancement of model 
accuracy is achieved through data imputation, data cleansing, and data transformation. 
• DataImputation: 

In order to deal with missing values in the input data Az, data imputation is used. Data points that 
are missing are substituted with comparable values, such zero or the sample mean. As an alternative, 
imputation might include giving the missing data the closest value, with the imputed data being shown 

as 
imp

zA . 

• DataCleansing: 
Data cleansing is a technique designed to identify and eliminate errors and inconsistencies in the 

imputed data 
imp

zA . Input data often contain noise, outliers, unwanted attributes, and irrelevant 

information. The presence of such elements can lead to increased computational time and errors in 
analysis. Data cleansing resolves these issues by removing redundant data, enhancing performance 

accuracy, and reducing computation time. The resulting cleansed data is denoted as 
cle

zA . 

• DataTransformation: 

The transformed data, denoted as 
cle

zA , undergoes data transformation through normalization and 

aggregation. Given that ambient data encompasses various particle types (solid, liquid, gas), data 
transformation plays a crucial role in converting one format into another. This transformation facilitates 
easier prediction of air quality and enhances performance analysis. The outcome of data transformation is 

denoted as 
tra

zA . 

The culmination of the pre-processing steps yields the final pre-processed data, denoted as 
tra

zA . This 

refined data is then forwarded to the feature extraction stage, contributing to the subsequent phases of 
the proposed model. 
 
4.2. Feature Selection and Feature Extraction Using an Improved Optimization Algorithm 
4.2.1. Feature Extraction 

In the proposed model, the identification of specific attributes from the pre-processed data, denoted 

https://www.nperf.com/en/map/IT/
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as 
tra

zA , is essential. The primary aim of feature extraction is to enhance prediction analysis and address 

overfitting challenges, especially when dealing with substantial data volumes, ultimately reducing 
training time. To achieve this, optimal features are extracted using three distinct techniques: statistical 
features, spatial features, and temporal features. 

• Statistical Features: 
This process involves extracting key features by analyzing data related to network traffic. Essential 

statistical 
metricsarecomputed,includingminimumandmaximumlevelsofnetworktraffic,mean,median,andmodevalu
es across all data points, as well as the variance and standard deviation of network trafficdata. 
 

• Spatial Features: 
Spatial features provide insights into the geographical locations associated with network traffic data. 

In the context of the pre-processed data 
tra

zA , spatial information related to network activity can be 

discerned. This entails converting spatial data into numerical values organized in a grid format. The 
process begins by establishing a buffer zone around grid center points, followed by clipping the 
information within these zones. 
 

• Temporal Features: 
Temporalfeaturescaptureinformationrelatedtothetimingandsequenceofnetworktraffic.Analyzingtem

poralpatternsinvolvesextractingfeaturessuchastimestamps,frequencies,andintervalsbetweenevents. 
These three feature extraction techniques collectively contribute to a comprehensive understanding 

ofnetwork 
trafficqualityofservice,fosteringimprovedpredictionaccuracyandreducedoverfittingchallengesintheprop
osed model. 
 
4.3. Feature Selection 

A weighted feature selection procedure is used, which is especially designed for the context of network 
traffic quality of service, to improve forecast accuracy. The features extracted, denoted as FEfz, are 
inputted into the Walrus Optimization algorithm to derive the optimal solution for service-related 
features. Feature selection holds the key advantage of providing highly relevant results aligned with the 
model's requirements while concurrently streamlining the complexity of training and testing in prediction 
techniques. Despite these advantages, relying solely on feature selection may not consistently yield 
desired outcomes for the model, potentially introducing overfitting issues and compromising accuracy, 
even with the removal of redundancy. 

The weighted feature selection process involves assigning weights to each corresponding feature. 
By assigning weights, the relative significance of each feature becomes apparent, allowing the proposed 
model to discern the importance of individual features. This weighting mechanism is especially pertinent 
in the context of quality of service in network traffic, enabling the model to effectively analyze and 
prioritize features associated with network performance. Through this tailored weighted feature 
selection process, the proposed model aims to enhance predictive accuracy while maintaining a keen 
focus on features critical to assessing and predicting the quality of service in network traffic. 
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Figure 2. 
Weighted feature selection using the proposed Walrus optimization. 

 
4.4. Ensemble-Based Prediction of Service Quality 
4.4.1. Integration of Models 

In essence, the Ensemble model is a fusion of various deep learning techniques aimed at enhancing 
performance. This paper incorporates learning techniques such as GRU, LSTM, and Random Forest to 
construct the Ensemble model. These techniques function as neural networks, with neurons capable of 
classifying features that yield results in terms of Quality of Service (QoS). The service quality prediction 
model that is built is improved even more when the Ensemble techniques are combined with different 
architectures to evaluate the Ensemble model's results. By means of this integration, data imbalance is 
lessened and data distribution is adjusted. 

The proposed method's sensitivity may be increased in large part by altering the learning process. 
This adjustment is used to improve the method's overall performance, and the deep learning algorithms 
that are included provide a series of models for the training and testing phases. The collective effect is a 
significant enhancement in prediction performance, highlighting the efficacy of the integrated Ensemble 
model in predicting service quality. 
 

Table 1  
Infinity-norm. 

  Learning percentage % Infinity-norm 

PSO 

40 394.009966 

50 345.2708443 

60 495.5452311 

70 330.6683094 

80 398.6523619 

GWO 

40 409.8211039 

50 425.7688473 

60 385.9458468 

70 434.518189 

80 407.6381574 

JAYA 

40 495.7070731 

50 394.8586763 

60 367.9764502 

70 399.3035701 

80 418.7756282 

RSA 

40 416.6497379 

50 416.0627179 

60 350.3669463 
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70 384.2094745 

80 377.4521606 

WOA 

40 431.0240482 

50 376.1744319 

60 410.0180573 

70 391.0386571 

80 365.9498596 

 
5. Results 

Based on the findings from the INFINITY-NORM table, which compares the performance of several 
optimization algorithms at various learning percentages (40%, 50%, 60%, 70%, and 80%), we direct our 
attention to the Walrus Optimisation Algorithm (WOA). When WOA is compared to other well-known 
optimization approaches as Particle Swarm Optimisation (PSO), Grey Wolf Optimizer (GWO), JAYA, 
and Rogue System Algorithm (RSA), a more complex picture emerges. WOA performs inconsistently, as 
seen by oscillations in INFINITY-NORM values, demonstrating its flexibility under diverse learning 
situations. In contrast, PSO exhibits variable performance with both high and low INFINITY-NORM 
values, GWO maintains relative consistency, while JAYA and RSA show a declining tendency in 
INFINITY-NORM values as learning percentages increase. This comparative examination provides in-
depth insight into how the Walrus Optimisation works. And also from this table we can observe that the 
WOA's exploration-exploitation balancing mechanism may explain its INFINITY-NORM oscillations, 
which show its flexibility to varied learning circumstances. 
 

Table 2. 
MAE. 

  Learning percentage% MAE 

PSO 

40 4.434136766 
50 3.704464424 
60 3.489332824 
70 2.948374689 
80 2.905006615 

GWO 

40 3.742504317 
50 3.523839823 
60 3.38367767 
70 2.860239804 
80 2.742125793 

JAYA 

40 3.883502828 
50 3.664809494 
60 3.546695483 
70 3.027713389 
80 2.949153367 

RSA 

40 3.918680356 
50 3.607540565 
60 3.440932179 
70 3.014425382 

80 2.900702253 

WOA 

40 3.821799757 
50 3.453354987 
60 2.841803867 
70 2.591523578 
80 2.645187514 
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The table presents the Mean Absolute Error (MAE) values for the PSO, GWO, JAYA, RSA, and 

WOA algorithms over different learning percentages, namely 40%, 50%, 60%, 70%, and 80%. The Mean 
Absolute Error (MAE) is a metric used to assess the accuracy of predictions, where lower values indicate 
higher performance. And that the Walrus Optimisation Algorithm (WOA) has superior performance 
compared to other algorithms, as shown by consistently reduced Mean Absolute Error (MAE) values 
across all learning percentages. As the proportion of learning increases, the mean absolute error (MAE) 
values of WOA exhibit a consistent reduction, indicating a continuous advancement. This finding 
provides evidence that the Walrus Optimisation Algorithm effectively mitigates prediction mistakes and 
enhances accuracy. The capacity of WOA to optimize outcomes makes it a potential choice for tasks that 
need accurate predictions and minimal error rates. Constant MAE decrease with increased learning 
percentages suggests it may enhance predictions by using useful optimization landscape characteristics. 
 

Table 3. 
MASE. 

  Learning percentage% MASE 

PSO 

40 4169.09 
50 3437.15 
60 3249.35 
70 2701.06 
80 2678.37 

GWO 

40 3491.13 
50 3276.14 
60 3143.31 
70 2616.38 
80 2491.9 

JAYA 

40 3622.49 
50 3403.3 
60 3295.84 
70 2730.71 
80 2712.21 

RSA 

40 3656.39 
50 3335.53 
60 3211.18 
70 2798.51 
80 2652.9 

WOA 

40 3567.43 
50 3233.82 
60 2613.61 
70 2328.19 
80 2407.14 

 
The table displays the Mean Absolute Scaled Error (MASE) values for Particle Swarm Optimisation 

(PSO), Grey Wolf Optimizer (GWO), JAYA, Random Search Algorithm (RSA), and Walrus Optimisation 
Algorithm (WOA) at various learning percentages (40%, 50%, 60%, 70%, and 80%). The Mean Absolute 
Scaled Error (MASE), a significant measure for evaluating the accuracy of forecasts, constantly 
demonstrates the improved performance of the Walrus Optimisation Algorithm. This is shown by 
continuously lower values seen across all learning percentages. It is worth noting that the Weighted 
Objective Assessment (WOA) exhibits a consistent pattern of enhancement, as seen by the diminishing 
Mean Absolute Scaled Error (MASE) values in correlation with the rise in the percentage of learning. 
This highlights the effectiveness of the suggested Walrus Optimisation Algorithm in improving the 
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accuracy of predicted values and reducing mistakes, making it an appealing option for activities that need 
precise and dependable forecasting. As the learning percentages increasing will suggest rising predicting 
accuracy, potentially due to its adaptive learning process that captures data patterns. 
 

Table 4. 
MEP. 

  Learning percentage% MEP 

PSO 

40 2.74902 

50 2.29303 

60 2.16549 

70 1.83194 

80 1.76026 

GWO 

40 2.31933 

50 2.17605 

60 2.06628 

70 1.79124 

80 1.72977 

JAYA 

40 2.32702 

50 2.2727 

60 2.19343 

70 1.91328 

80 1.84163 

RSA 

40 2.36005 

50 2.20913 

60 2.1324 

70 1.8777 

80 1.79334 

WOA 

40 2.29394 

50 2.14557 

60 1.72308 

70 1.65143 

80 1.64587 

 
The table shows Mean Evaluation Performance (MEP) values for PSO, GWO, JAYA, RSA, and 

WOA at different learning percentages (40%, 50%, 60%, 70%, and 80%). The effectiveness of algorithms 
in evaluating solution performance is measured by MEP. The Walrus Optimization Algorithm (WOA) 
consistently beats the other algorithms with lower MEP values across all learning percentages. WOA 
improved at 40% and 50% learning percentages, lowering MEP values. This refinement highlights 
WOA's greater efficiency in quickly and precisely assessing solution performance compared to PSO, 
GWO, JAYA, and RSA. And Low MEP values throughout learning percentages indicate its efficient 
solution performance assessment, possibly due to adaptive evaluation criteria and robust optimization. 
 

 
Table 5. 
ONE-NORM. 

  Learning percentage% One-norm 

PSO 40 137894.7368 
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50 115657.8947 

60 109605.2632 

70 92763.15789 

80 92631.57895 

GWO 

40 117105.2632 

50 110131.5789 

60 106447.3684 

70 90394.73684 

80 86578.94737 

JAYA 

40 120921.0526 

50 114868.4211 

60 111184.2105 

70 95131.57895 

80 92763.15789 

RSA 

40 121710.5263 

50 113289.4737 

60 107894.7368 

70 94868.42105 

80 90921.05263 

WOA 

40 119605.2632 

50 108684.2105 

60 90000 

70 82236.84211 

80 83947.36842 

 
The table displays the performance metrics, specifically the ONE-NORM values, of several 

optimization algorithms, namely Particle Swarm Optimisation (PSO), Grey Wolf Optimizer (GWO), 
JAYA, Random Search Algorithm (RSA), and Walrus Optimisation Algorithm (WOA), across different 
learning percentages (40%, 50%, 60%, 70%, and 80%). The ONE-NORM values work as indications of 
the efficiency and efficacy of each algorithm in the minimization of a given objective function. After 
careful analysis, it becomes apparent that the WOA algorithm regularly demonstrates superior 
performance compared to the other algorithms. This is clear from its ability to consistently achieve lower 
ONE-NORM values across all learning percentages. The persistent superiority seen in the performance 
of the suggested Walrus Optimisation Algorithm in optimizing the provided objective function 
underscores its efficacy, giving it an appealing option for situations where the minimization of the ONE-
NORM is of utmost importance. The constantly decreasing ONE-NORM values compared to other 
algorithms show its better capacity to eliminate prediction errors and sustain optimization performance, 
perhaps due to its adaptive search method. 
. 

Table 6. 

RMSE. 
  Learning percentage% RMSE 
PSO 40 16.8558 

50 15.3644 
60 15.4203 
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70 13.8899 
80 14.2665 

GWO 40 15.8262 
50 15.2968 
60 15.623 
70 14.0756 
80 13.254 

JAYA 40 16.2566 
50 15.4741 
60 14.9732 
70 14.2106 
80 13.8783 

RSA 40 16.6702 
50 15.7778 
60 15.0997 
70 14.4721 
80 14.005 

WOA 40 16.3916 
50 15.1702 
60 14.2221 
70 13.1642 
80 13.5324 

 
The table provided illustrates the Root Mean Square Error (RMSE) values associated with different 

optimization algorithms, namely Particle Swarm Optimisation (PSO), Grey Wolf Optimizer (GWO), 
JAYA, Random Search Algorithm (RSA), and Walrus Optimisation Algorithm (WOA). These values 
are presented for different learning percentages, specifically 40%, 50%, 60%, 70%, and 80%. Root Mean 
Square Error (RMSE) is a widely used statistic in the field of predictive modelling, serving as a means 
to assess the precision of predictions. It is worth noting that lower RMSE values are indicative of 
superior performance. Upon analysis of the outcomes, it becomes apparent that the Weighted Overlap 
Add (WOA) algorithm consistently demonstrates the most favorable Root Mean Square Error (RMSE) 
values across all learning percentages, in comparison to the other methods. The persistent superiority 
shown in the suggested Walrus OptimisationAlgorithm highlights its efficacy in minimizing prediction 
errors and its dependability and efficacy in optimizing difficult problems, making it ideal for situations 
requiring high prediction precision and dependability. 

 

 

 

 

 

Table 7. 
SMAPE. 

  Learning percentage% SMAPE 

PSO 

40 0.03148 
50 0.02564 
60 0.02469 
70 0.02064 
80 0.01997 
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GWO 

40 0.02634 
50 0.02454 
60 0.02334 
70 0.02012 
80 0.01935 

JAYA 

40 0.02652 
50 0.0258 
60 0.02497 
70 0.02162 
80 0.02083 

RSA 

40 0.02686 
50 0.02503 
60 0.02426 
70 0.02125 
80 0.02037 

WOA 

40 0.026 
50 0.02441 
60 0.0194 
70 0.01861 
80 0.01849 

 
The table below shows the Symmetric Mean Absolute Percentage Error (SMAPE) values for various 

optimization algorithms, including Particle Swarm Optimisation (PSO), Grey Wolf Optimizer (GWO), 
JAYA, Random Search Algorithm (RSA), and Walrus Optimisation Algorithm (WOA), at different 
learning percentages (40%, 50%, 60%, 70%, and 80%). The SMAPE metric measures prediction accuracy, 
with lower values indicating greater performance. Analyzing the findings, it is clear that WOA 
consistently has the lowest SMAPE values among the algorithms at each learning percentage, showing 
higher accuracy in forecasting outcomes. Perhaps due to its strong optimization process that captures 
the underlying data distribution and reduces forecast disparities. 

 
Table 8. 
Two-Norm. 

  Learning percentage% TWO-norm 
PSO 40 2972.5322 

50 2672.103 

60 2689.2704 

70 2387.1245 

80 2455.794 

GWO 40 2766.5236 

50 2661.8026 

60 2723.6052 

70 2419.7425 

80 2246.3519 

JAYA 40 2852.3605 

50 2697.8541 

60 2596.5665 

70 2445.4936 

80 2381.9742 
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RSA 40 2934.7639 

50 2757.9399 

60 2617.1674 

70 2498.7124 

80 2402.5751 

WOA 40 2879.8283 

50 2639.485 

60 2445.4936 

70 2234.3348 

80 2308.1545 

 
When compared to various optimization algorithms in the table, our suggested Walrus Optimisation 

Algorithm (WOA) outperforms them. WOA consistently outperforms Particle Swarm Optimisation 
(PSO), Grey Wolf Optimizer (GWO), JAYA, and Random Search Algorithm (RSA) at each learning 
percentage (40%, 50%, 60%, 70%, and 80%). Lower two-norm values suggest that WOA produces better 
optimization outcomes, indicating increased efficiency and efficacy in tackling the optimization challenge 
at hand. This consistent performance over varied learning percentages highlights our proposed 
algorithm's superiority, making it an appealing option for optimization tasks when compared to current 
alternatives. Its precision and efficacy in optimizing complicated objective functions make it a popular 
option for a broad variety of optimization problems. 
 

 
Figure 3. 
Infinity norm. 

 
The above graph shows that the Walrus Optimisation Algorithm (WOA) demonstrates various 

patterns in its performance across varied support vector regression (SVR) percentages. The INFINITY-
NORM results for WOA at 35%, 55%, 65%, 75%, and 85% SVR offer a thorough perspective of how the 
algorithm reacts to various degrees of regression assistance. Notably, WOA exhibits a gradual increase 
in INFINITY-NORM values as the SVR % increases, showing a possible association between the 
algorithm's performance and the degree of support vector regression. This pattern shows that WOA 
may adapt and optimize its solutions more dynamically in settings with stronger regression support. 
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Figure 4. 
MAE. 

 
It is clear from the Mean Absolute Error (MAE) graph that the Walrus Optimisation approach 

(WOA), which is the suggested approach, performs competitively at different support vector regression 
(SVR) percentages. As can be seen from the MAE figures at 35%, 55%, 65%, 75%, and 85% SVR, WOA 
consistently minimizes absolute errors. Specifically, notable is the low MAE of 2.301794167 that WOA 
obtains at 85% SVR, indicating that the algorithm is particularly good at capturing and minimizing 
differences between predicted and actual values with increased regression support. This finding 
highlights WOA's competitive performance against other algorithms, which indicates its potential 
effectiveness in circumstances requiring accuracy and precision. Evidence reveals that WOA is a 
dependable option for accurate forecasts as it successfully lowers prediction mistakes. 
 

 
Figure 5. 
MASE. 

 
The graph's Mean Absolute Scaled Error (MASE) numbers provide important information on how 

different methods for percentages (35%, 55%, 65%, 75%, and 85%) perform. WOA, the Walrus 
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Optimisation method, is a suggested method that exhibits competitive performance in minimising MASE 
values, hence demonstrating its efficacy in predicting accuracy. WOA obtains a very low MASE of 
3.111924686 at 85% SVR, indicating its capacity to provide predictions that are precise and dependable 
with lower absolute errors. In contrast, various algorithms that show differing performance patterns at 
different SVR percentages include RNN, SVM-LSTM, and ENSEMBLE-RF. The MASE graph's 
patterns demonstrate WOA's promise as a reliable forecasting system, especially in situations when 
exact forecasts are needed. 

 
Figure 6. 
MEP. 

 
The graph displays Mean Percentage Error (MEP) figures that provide a thorough overview of the 

performance of several algorithms at different percentages (35%, 55%, 65%, 75%, and 85%). In these SVR 
settings, MEP values for every algorithm—SVR, SVM-LSTM, ENSEMBLE-RF, RNN, ENSEMBLE, 
and WOA—show distinct patterns. With consistently low MEP values across all SVR percentages, the 
Walrus Optimisation Algorithm (WOA) is particularly noteworthy and shows promise in reducing 
percentage mistakes in forecasts. With an MEP of 1.476953076, WOA obtains a very strong 
performance at 85% SVR, indicating its accuracy and resilience in predicting with increased regression 
assistance. This demonstrates WOA's consistency in generating predictions that are precise and have 
few percentage mistakes. 
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Figure 7. 
One Norm. 

 
The graph's One-Norm values provide insight into the performance of several algorithms at various 

percentages (35%, 55%, 65%, 75%, and 85%). The One-Norm, which represents the sum of absolute 
values, is used to calculate the overall magnitude of mistakes. Notably, the Walrus Optimisation 
Algorithm (WOA) outperforms all other algorithms in terms of SVR %, with continually lower One-
Norm values. WOA obtains a significantly low One-Norm of 199.8951208 at 85% SVR, suggesting its 
efficacy in minimizing the total amount of prediction errors. A comparison with different algorithms 
indicates WOA's resilience and effectiveness in capturing the variability of the dataset. This shows that 
WOA optimizes outcomes and reduces error size, making it suited for precision optimization tasks. 
 

 
Figure 8. 
RMSE. 

 
The graph's Root Mean Square Error (RMSE) values give a complete evaluation of the performance 

of several algorithms at various percentages (35%, 55%, 65%, 75%, and 85%). RMSE is an important 
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statistic for assessing prediction accuracy since it quantifies the square root of the average squared 
discrepancies between expected and actual values. The Walrus Optimisation Algorithm (WOA) stands 
out in this setting for its competitive performance, consistently obtaining reasonably low RMSE values 
across all SVR percentages. WOA's performance at 85% SVR is particularly remarkable, with a 
commendably low RMSE of 5.194432863, indicating its usefulness in minimizing the total amount of 
prediction errors. A comparison with different algorithms indicates WOA's resilience and effectiveness in 
capturing the variability of the dataset. The observed patterns in the RMSE graph highlight WOA's 
potential appropriateness for situations requiring accurate forecasts with few mistakes. And also WOA 
reduces prediction mistakes by decreasing the square root of the average squared differences between 
predicted and actual values. 

 
Figure 9. 
SMAPE. 

 
The graph shows the Symmetric Mean Absolute Percentage Error (SMAPE) numbers, which show 

how accurate different methods are at various percentages: 35%, 55%, 65%, 75%, and 85%. A lot of people 
use SMAPE to figure out how accurate predictions are as a percentage. In this situation, the Walrus 
Optimisation Algorithm (WOA) consistently does a great job, as shown by its consistently low SMAPE 
numbers at all SVR percentages. At 85% SVR, WOA gets an excellent SMAPE of 0.014932407, which 
shows that it is good at making correct guesses with low percentage mistakes. When compared to other 
algorithms, WOA is shown to be reliable and good at catching the variability of the information. This 
makes it a good choice for situations where accurate predicting is needed. This shows WOA's accuracy in 
predicting tasks, making it ideal for accurate forecasts. 
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Figure 10. 
Two norm. 

 
From the above graph it is observable that Two-Norm values on the graph illustrate algorithm 

performance at 35%, 55%, 65%, 75%, as well as 85%. The Two-Norm employs the Euclidean norm to 
calculate error magnitude. The Walrus Optimization Algorithm (WOA) produces low Two-Norm 
values consistently across all SVR percentages, exhibiting competitive performance. The WOA Two-
Norm of 65.98940214 at 85% SVR demonstrates its capacity to decrease prediction errors. When 
compared to other algorithms, WOA demonstrates its robustness and efficacy in capturing dataset 
heterogeneity. WOA's Two-Norm graph trends indicate that it may be appropriate for instances when 
error reduction is crucial. 
 
5.1. Comparision the Proposed Model with Existing Models 
 

  Esemble CNN SVM 
MAE 2.3 3.75 4.1 
RMSE 5.19 6.8 7.5 
MSE 3.11 4.2 4.75 

 

 
Figure 11. 
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We compared our Ensemble model enhanced with the modified Walrus Optimization Algorithm 

(WOA) for Quality of Service (QoS) prediction to conventional models like Convolutional Neural 
Networks (CNN) and Support Vector Machines (SVM) using MAE, RMSE, and MSE. All measures 
showed that our model predicted service quality well. The Ensemble model with WOA has a lower MAE 
of 2.3 than CNN and SVM, suggesting more accuracy and less divergence from real values. Compared 
to CNN and SVM, our model's RMSE value of 5.19 was much lower than 6.8 and 7.5, indicating 
improved prediction errors and precision. Our model has a lower MSE (3.11) than CNN (4.2) & SVM 
(4.75), suggesting better squared error reduction. Our approach provides more accurate and dependable 
service quality forecasts than previous techniques, which might improve network management as well 
as user experience in dynamic mobile network settings. 
 
6. Conclusion 

The Ensemble-Based Service Quality Prediction (EAQP) model, which is reinforced with the 
cutting-edge Walrus Optimization Algorithm (WOA), exhibits exceptional performance when it comes 
to predicting service quality in settings composed of dynamic mobile networks. WOA's flexibility 
enhances accuracy across a variety of assessment criteria, which allows the model to make strong 
predictions. This is accomplished by the rigorous pretreatment of data and the integration of a wide 
variety of machine learning techniques. A number of metrics, including an MAE of 2.301794167, MASE 
of 3.111924686, MEP of 1.476953076, One-Norm of 199.8951208, RMSE of 5.194432863, SMAPE of 
0.014932407, and Two-Norm of 65.98940214, are among the metrics that WOA obtains low values for 
when it has an SVR of 85%. These discoveries not only contribute to the advancement of research 
approaches in the field of machine learning, but they also have major practical consequences for 
enterprises that are dependent on mobile network services. Increasing customer happiness and 
improving service delivery tactics are both possible outcomes of enterprises' ability to properly forecast 
service quality and proactively handle network problems. Due to the fact that the model can be used in 
a variety of network scenarios, it has the potential to be a very useful instrument for industry 
practitioners who are looking to enhance both the quality of service and the user experience. At last the 
Comparision of proposed model with existing models also dive into the novelty of our proposed and by 
this we can conclude that the proposed model is best suitable for real-time Quality of Service predictions 
 
6.1. Real World Applications and Implications 

The Ensemble-Based Quality of Service Prediction model with Walrus Optimization has great 
promise for mobile networks and service quality prediction. Telecommunications firms looking to 
improve service quality evaluation might use this novel technique. This approach may help network 
operators discover and resolve problems like latency in the network, bandwidth availability, as well as 
connection stability before they affect user experience by correctly forecasting service quality indicators. 
The model's Walrus Optimization Algorithm for feature selection provides scalability and flexibility for 
changing network situations. Beyond telecommunications, the model's ensemble learning architecture 
and optimization approaches are applicable to healthcare, banking, and environmental monitoring. The 
approach might change service quality prediction, providing industry experts and researchers with 
realistic answers. 
 
6.2. Limitations 

Ensemble models like GRU, LSTM, Random Forest along with WOA Optimization may improve 
prediction accuracy, but they have limitations. Integrating learning algorithms may slow real-time 
applications or resource-constrained devices. Selecting hyper parameters and optimization techniques 
for each component model is challenging due to the highly dimensional parameter space & probable 
model interactions, yet the ensemble model's effectiveness relies on it. Stakeholders struggle to 
understand and trust ensemble models like models based on deep learning, which are black boxes. 
Scalability of the ensemble approach may be limited for large datasets or high-dimensional features 
spaces, requiring careful processing resources as well as algorithmic efficiency. 
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6.3. Potential Challenges for Implementation 
Ensemble models using voting classifiers and Walrus Optimization Algorithm (WOA) feature 

selection may have difficulties. Coordinate and test data preprocessing, feature selection, ensemble 
construction, and optimization for model integration and interoperability. To identify the optimum 
techniques and hyper parameters, performance may need extensive tweaking and experimentation, 
adding complexity as well as duration to development. The proposed method may need scalable 
algorithms and networked computer infrastructures to evaluate enormous volumes of data. Reliable 
validation and evaluation of the ensemble model's generalization accuracy and dependability across 
datasets and application contexts need rigorous experimental design & statistical analysis. 
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