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Abstract: Image denoising is crucial in applications like medical imaging and photography, where 
restoring high-quality images from noisy data is essential. Traditional techniques often struggle with 
complex noise patterns, while deep learning-based methods typically rely on clean-noisy image pairs for 
training, limiting their practicality. Additionally, deep learning approaches face challenges such as the 
lack of ground truth clean images, sensitivity to specific noise types, and the introduction of artifacts 
during processing. In this work, we propose two novel self-supervised denoising approaches: a Discrete 
Wavelet Transform (DWT)-based model and a Non-Local Means (NLM)-based model. The DWT-
based approach employs wavelet decomposition to separate image details across multiple frequency 
scales, selectively suppressing high-frequency noise via soft thresholding while preserving low-
frequency components. The resulting wavelet coefficients are used to create pseudo-clean targets for 
training a U-Net architecture, ensuring effective denoising while maintaining structural integrity. The 
NLM-based approach leverages redundancy in image patches by applying the NLM algorithm to 
generate pseudo-clean targets through patch similarity-based averaging. These targets train a U-Net 
model with a custom loss function that balances Mean Squared Error (MSE), Peak Signal-to-Noise 
Ratio (PSNR), and Structural Similarity Index (SSIM), optimizing perceptual quality. Both models are 
trained on 5,000 noisy images from the ImageNet validation set without relying on clean references. 
Validated on synthetic Gaussian and Poisson noise at varying magnitudes, the DWT-based model 
achieved Mean PSNR and SSIM values of 31.07 and 0.9279, respectively, while the NLM-based model 
attained 30.17 and 0.9303. These results demonstrate the robustness and effectiveness of the proposed 
methods, making them suitable for real-world applications such as medical diagnostics and low-light 
photography. 
Keywords: Discrete wavelet transforms (DWT), Gaussian noise, Poisson noise, Haar wavelet, Debauchies wavelet,  
Image denoising, Non-local means (NLM), PSNR (Peak Signal-to-noise ratio), Self-supervised learning, SSIM (Structural 
similarity index), Thresholding. 

 
1. Introduction  

Image denoising is a fundamental task in computer vision, critical for applications such as medical 
imaging, photography, and astronomy, where image quality significantly impacts downstream analysis. 
The objective is to restore images degraded by noise, ensuring the preservation of essential features. 
Traditional and deep learning-based methods have dominated this field, with recent advancements in 
self-supervised learning (SSL) offering robust solutions to address the limitations of clean-noisy paired 
datasets. This section reviews existing approaches while contextualizing the proposed methods based on 
the Discrete Wavelet Transform (DWT) and Non-Local Means (NLM). 

Traditional Denoising Methods: Traditional denoisers rely on mathematical models and 
handcrafted priors. Block Matching and 3D Filtering (BM3D) [1] groups similar patches through block 
matching and applies collaborative filtering in the transform domain, effectively reducing noise while 
retaining image features. Non-Local Means (NLM) [2-4] improves upon local smoothing techniques by 
averaging pixels based on patch similarity across the entire image, leveraging spatial redundancy to 
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enhance detail preservation. Weighted Nuclear Norm Minimization (WNNM) [5] adopts low-rank 
matrix approximations, preserving image structures while suppressing noise. Despite their 
effectiveness, these methods struggle with high computational costs and adapting to complex noise 
patterns in real-world scenarios. 

Supervised Learning for Image Denoising: The advent of deep learning introduced supervised 
models like DnCNN [6], which combines convolutional networks with residual learning to map noisy 
images to clean counterparts. While these methods outperform traditional approaches, they depend on 
large paired datasets, which are expensive and challenging to acquire in specialized domains. 
Additionally, their performance is often tailored to specific noise distributions, limiting their robustness 
to unseen noise types [7]. 

Emergence of Self-Supervised Learning: Self-supervised learning eliminates the dependency on 
clean images by training models directly on noisy inputs. Noise2Noise [7], a pioneering approach, 
demonstrated that noisy images alone could serve as training data by treating one noisy image as the 
target for another. This concept led to blind-spot methods like Noise2Void [8] and Noise2Self [9], 
which train models by masking certain pixels or regions during prediction. These methods leverage the 
intrinsic structure of the image to avoid learning identity mappings, achieving robust denoising without 
paired data. 

Wavelet-Based Denoising: Wavelet transforms, particularly Discrete Wavelet Transform (DWT), 
provide a multi-resolution framework for analysing images at different frequency scales. DWT 
decomposes images into approximation and detail coefficients, allowing selective denoising by 
thresholding high-frequency components associated with noise. Wavelet families like Haar, Daubechies, 
and Symlets offer flexibility for various denoising tasks. Classical wavelet denoising, though effective in 
suppressing noise, often introduces artifacts like blurring and ringing [10,11]. Recent advancements 
integrate DWT with deep learning. Liu and Liu [12] combined DWT with CNNs, denoising wavelet 
coefficients using learned filters, achieving improved performance compared to traditional CNNs. 
However, such hybrid approaches often face computational challenges. 

Non-Local Means-Based Denoising: NLM extends traditional spatial filtering by averaging pixel 
values based on the similarity of patches across the entire image. This algorithm is particularly effective 
for reducing Gaussian noise while preserving edges and textures. While computationally intensive, 
NLM offers robustness and adaptability, making it a strong candidate for integration into deep learning 
frameworks. Recent efforts have combined NLM with self-supervised methods, using pseudo-clean 
images derived from NLM as training target. 

Recent Self-Supervised Innovations: Several innovative SSL methods address diverse noise 
scenarios. Blind2Unblind [13] enhances blind-spot models with global-aware masking, improving 
training diversity. Recorrupted2Recorrupted [14] extends Noise2Noise by introducing multiple noise 
levels during training, enabling models to generalize across varied noise conditions. 
Neighbor2Neighbor [15] creates training pairs by subsampling noisy images, maintaining spatial 
consistency without requiring explicit noise models. These advancements underscore the flexibility of 
self-supervised learning in addressing real-world challenges. 

Contextualizing the Proposed Methods: The proposed self-supervised denoising methods build on 
these advancements, leveraging DWT and NLM within an SSL framework. The DWT-based approach 
uses thresholded wavelet coefficients as pseudo-clean targets, enabling multi-resolution denoising 
without requiring clean references. By combining DWT with a U-Net architecture [16], this method 
effectively suppresses noise while preserving structural details, achieving state-of-the-art performance 
on Gaussian and Poisson noise. 

The NLM-based approach generates pseudo-clean images using NLM, which are then used to train 
a U-Net model [16] with a custom loss function balancing Mean Squared Error (MSE) and Structural 
Similarity Index (SSIM) [17]. This integration allows the model to leverage both spatial and structural 
redundancies, enhancing denoising performance across varied noise types. This highlights the evolution 
of image denoising, from traditional methods to modern self-supervised approaches. While supervised 
learning has advanced denoising performance, self-supervised methods like Noise2Noise and 
Neighbor2Neighbor offer scalable solutions without requiring labelled datasets. The proposed DWT- 
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and NLM-based models bridge the gap between classical techniques and modern SSL paradigms, 
demonstrating robust performance and generalization across noise types.  
 
1.1. Research Gaps 

Despite significant progress, several research gaps remain in the field of DWT-based self-supervised 
image denoising. First, most studies have focused on a limited set of wavelet types, such as Haar and 
Daubechies (Liu & Liu, 2018) [12], leaving the potential of other wavelet families underexplored. The 
impact of wavelet choice on denoising performance, especially in conjunction with self-supervised 
learning, has not been fully addressed. More comparative studies are needed to understand how 
different wavelet transforms affect denoising across a range of noise types, including Gaussian, Poisson, 
and complex real-world noise. 

Second, while hybrid wavelet-CNN models have shown improved denoising performance, they often 
come with high computational costs, especially for high-resolution images or large datasets. Efficient 
algorithms and lightweight models need to be developed to ensure the scalability of these methods for 
real-time applications. Current methods also lack generalization across multiple noise models, with most 
approaches focusing on a single type of noise. There is a need for research into generalized models that 
can effectively handle multiple noise distributions in a unified framework. 

Another major gap is the limited exploration of these methods on real-world noisy data. Most 
studies have tested their models on synthetic datasets with simulated noise, which may not accurately 
reflect the complexity of noise found in medical or astronomical images (Lehtinen et al., 2018; Krull et 
al., 2019) [7-8]. Additionally, existing models are largely empirical, with little theoretical 
understanding of why certain wavelet-based models outperform others. More research is needed on the 
mathematical underpinnings of wavelet-CNN architectures, particularly in the self-supervised domain, 
to provide deeper insights into their success. 

Finally, the integration of wavelet transforms with other methods, such as block matching or 
Fourier transforms, has been underexplored. Multi-transform architectures could offer further 
improvements in denoising by leveraging the strengths of various techniques. Similarly, NLM can be 
integrated so as to use it effectively for denoising with less computational load while doing inference. 
Moreover, there is a lack of research on the application of DWT-based self-supervised denoising in 
domains like video denoising or 3D medical imaging, where noise patterns are more complex and 
varied. Major Contributions of the research are as follows: 

1. Development of a self-supervised DWT-based denoising approach that operates directly on 
noisy images. 

2. Introduction of an NLM-based self-supervised model for noise reduction without the need for 
clean images. 

3. Customized loss function combining MSE, PSNR, and SSIM for preserving structural details. 
4. Experimental validation on multiple noise types (Gaussian and Poisson) and benchmark 

datasets 
 
2. Proposed Approaches for Self-Supervised Denoising 

In this section, two different types of Approaches, which are combinations of both the traditional 
and self-supervised have been proposed: 

i. Discrete Wavelet Transform based Self Supervised Denoiser 
ii. Non-Local Means based Self Supervised Denoiser 

 
2.1. Proposed Discrete Wavelet Transform based Self Supervised Image Denoising Approach 

In this the self-supervised learning approach for image denoising using the Discrete Wavelet 
Transform (DWT) has been proposed. The self-supervised learning paradigm allows us to leverage the 
intrinsic structure of the data for training without requiring explicit labels.  

The objective of this approach is to develop a deep learning model capable of effectively denoising 
images by learning from noisy input data. The model utilizes a combination of Mean Squared Error 
(MSE) loss and Structural Similarity Index (SSIM) to optimize performance. Figure 1 (a) and 1 (b) 
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illustrates the overall idea for the DWT based self- supervised model. Algorithm 1 gives the details of 
DWT based self-supervised training. 

 
2.1.1. Process 

1. Input Image: The function takes a noisy input image as its argument. This image is typically in 
the form of a NumPy array representing pixel values. 

2. DWT Decomposition: The function first applies the DWT algorithm (pywt.dwt2) to decompose 
the input image into approximation and detail coefficients. The pywt.dwt2 function performs a 
2D DWT decomposition on the image using a specified wavelet (in this case, 'haar', which 
represents the Haar wavelet). 

3. Coefficients Manipulation: After obtaining the decomposition coefficients, the function modifies 
them to remove noise while preserving important image features. In this specific 
implementation, the detail coefficients (horizontal, vertical, and diagonal) are set to zero, 
effectively removing high-frequency noise from the image. 

4. Inverse DWT: Once the coefficients are manipulated, the function performs an inverse DWT 
(pywt.idwt2) to reconstruct the denoised image. The pywt.idwt2 function reconstructs the 
image from the modified coefficients, producing the denoised output. 

5. Output: The function returns the denoised image, which is typically in the same format as the 
input image (NumPy array). 

 
2.1.2. Explanation 

• The denoising function starts by performing a DWT decomposition of the input image using 
the Haar wavelet. 

• It then modifies the detail coefficients (cH, cV, cD) to remove noise, while keeping the 
approximation coefficients (cA) unchanged. 

• Finally, it reconstructs the denoised image using the inverse DWT and returns the result. 
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Figure 1. 
(a) Outline of the proposed DWT based self-supervised image denoising model- training. 
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Figure 1. 
(b): Proposed DWT based self-supervised image 
denoising model- inference. 

 
Algorithm 1:  Proposed Discrete Wavelet Transform based Self-Supervised Training approach  

Input:  A set of Noisy Images 𝑌 = {𝒚𝑖}𝑖=1
𝑛  ; 

             Denoising Network 𝑓𝜃 (U-Net); 
Hyper Parameters: Learning Rate, Batch Size, Number of Epochs 
Hyper Parameters for the Loss function:  

𝜆1:  Coefficient of Mean Squared Error (MSE) in the Loss 

𝜆2:   Coefficient of the Peak Signal to Noise Ratio (PSNR) term in the Loss  

𝜆3:  Coefficient of the Structural Similarity Measure (SSIM) term in the Loss 
                 Thresholding Parameter: For Soft Thresholding over the transformed Image 
Whilenot convergeddo 

1. Sample a noisy Image 𝒚 ∈ 𝑌; 
2. Apply 2D Discrete Wavelet Transform over noisy Image y using the ‘Haar’ 

Wavelet.  
3. [LL, LH, HL, HH] = DWT (y, ‘Haar’) 
4. [LH, HL, HH] = Soft Thresholding ([LH, HL, HH], Threshold).  

5. y𝐝𝐞𝐫𝐢𝐯𝐞𝐝 = Inverse DWT ([LL, LH, HL, HH]) 
/* This reconstructed image serves as the derived clean target for the Self- Supervised 
Denoising. */ 

6. For the original noisy image y, derive the denoised image 𝑓𝜃(𝒚) i.e. U-Net(y) with 
no gradients; 

7. Update the denoising network U-Net, 𝑓𝜃, i.e. find out optimal values for the 
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parameters θ such that Loss L is Minimized.  

Loss L =  ℒTotal = 𝜆1ℒ𝑀𝑆𝐸 + 𝜆2ℒ𝑃𝑆𝑁𝑅 + 𝜆3ℒ𝑆𝑆𝐼𝑀 

ℒMSE = MSE (fθ(𝒚) ,𝒚𝒅𝒆𝒓𝒊𝒗𝒆𝒅) 

 ℒPSNR= 
100 −  PSNR (fθ(𝒚) ,𝒚𝒅𝒆𝒓𝒊𝒗𝒆𝒅)

100
 

  ℒSSIM= 1 - SSIM (fθ(𝒚) ,𝒚𝒅𝒆𝒓𝒊𝒗𝒆𝒅) 
End While 
 

Training: Currently, the model is trained over 5000 images chosen from the ImageNet Validation 
and Kodak datasets [18]. Total number of epochs are 20. Learning rate is kept 0.01. Loss function 
includes both the Mean squared error (MSE) and Structural Similarity Index (SSIM) measure. MSE 
should be minimized while SSIM should be maximized. Therefore, loss function contains MSE and 1-
SSIM terms weighted appropriately and thus focus is not only on denoising but also to preserve 
structural details. Models are created for Gaussian Noise with noise values 20, 50 and for Poisson noise 
with parameter 30. Threshold is set based on noise magnitude and type. Figure 2 (a) and 2 (b) illustrates 
the visual results for the DWT based self- supervised model.Combined Loss function Idea is from [17]. 
This one is modification of that. This DWT based Denoising is not necessarily remove the entire noise 
present as the threshold is fixed but it denoises it up to certain level. That is why the target is called the 
Pseudo clean image. The output is basically cleaner than that of y. 
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Figure 2. 

(a):  Proposed DWT based self-supervised image denoising sample results: Gaussian noise with σ in [20, 50]. 
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Figure 2. 

(b):  Proposed DWT based self-supervised image denoising sample results: Poisson noise with λ=30. 

 
2.1.3. Experimental Results 

Conclusion: The Thresholding-based wavelet denoising method plays a crucial role in the denoising 
process by leveraging the DWT algorithm to effectively remove noise from the input image. By 
combining this function with the rest of the image denoising pipeline, the overall system achieves robust 
and high-quality denoising results. Moreover, it requires only the noisy input and not the clean target. 
By creating clean target from the noisy one, the U-Net [16] is trained. Experimental results show better 
visual results and comparable PSNR and SSIM. Testing over limited dataset shows that PSNR and 

SSIM for Gaussian noise with σ=50 is 30.28 and 0.9292 respectively. For Poisson noise with λ=30, it is 
30.03 and 0.9303 respectively. These are comparable and yet detailed investigation will be done for 
various datasets [18-20]. Table 1 represents comparison of Average PSNR and SSIM values for the Self-
supervised Denoising vs. only DWT based Denoising over different Noise types.  
 

Table 1. 
Comparison of mean PSNR and SSIM values of self-supervised based DWT approach against simple DWT based 
approach. 

  Self-supervised DWT based 
denoising 

DWT based denoising 

Noise type Parameter 
value 

Average 
PSNR 

Average SSIM Average 
PSNR 

Average SSIM 

Gaussian σ=50 30.28 0.9292 28.72 0.8945 

Gaussian σ ∊ (5,50) 31.87 0.9267 29.25 0.9035 

Poisson λ=30 30.03 0.9303 28.64 0.8949 

Poisson λ ∊ (5,50) 30.30 0.9303 28.50 0.9058 

 
2.2. Proposed Traditional Non-Local Means (NLM) Algorithm Based Self Supervised Image Denoising 
Approach 

This approach explores a U-Net [16] based deep learning approach combined with traditional Non-
Local Means (NLM) denoising to enhance the denoising capabilities. This is also the self-supervised 
approach. Noisy image is taken as input, which will be given as input to NLM denoising. This creates 
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clean target corresponding to the noisy image. Now, these pairs of noisy and clean target are used to 
train U-Net network [16]. The key innovation is the use of a custom loss function that balances Mean 
Squared Error (MSE) and Structural Similarity Index (SSIM) to achieve better perceptual quality in 
denoised images. Figure 3 (a) and 3 (b) illustrates the overall idea for the NLM based self- supervised 
model. Algorithm 2 represents NLM based Self-Supervised Image Denoiser training. 

 

 
Figure 3. 
(a): Outline of the proposed NLM (Non-local means) based self-supervised image denoising model – training. 
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Figure 3. 
(b): Proposed NLM based self-supervised image 
denoising model- inference. 

 
Algorithm 2:  Proposed non-local means algorithm based self-supervised training approach  

Input:  A set of Noisy Images 𝑌 = {𝒚𝑖}𝑖=1
𝑛  ; 

             Denoising Network 𝑓𝜃 (U-Net); 
Hyper Parameters: Learning Rate, Batch Size, Number of Epochs 
Hyper Parameters for the Loss function:  

𝜆1:  Coefficient of Mean Squared Error (MSE) in the Loss 

𝜆2:   Coefficient of the Peak Signal to Noise Ratio (PSNR) term in the Loss  

𝜆3:  Coefficient of the Structural Similarity Measure (SSIM) term in the Loss 
Parameters for NLM: Search Window size, Similarity Window size, Filtering Parameter, h for 
adjusting filtering strength 
While not converged do 

1. Sample a noisy Image 𝒚 ∈ 𝑌; 

2. For each pixel 𝑖 in the image y, extract a patch 𝑃i centered around the pixel. The 

patch size is 𝑃×𝑃. 

3. For each pixel 𝑖, within the search window, compare the patch 𝑃i with patches 𝑃j 

centered around all pixels 𝑗 within the search window. 

4. Compute the weighted Euclidean distance between patches 𝑃i and 𝑃j.  

 
5. Calculate the similarity weight 𝑤(𝑖,𝑗) based on the distance 
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6. Normalize the weights for each pixel 𝑖 such that they sum to 1: 

 
7. Compute the denoised pixel value 𝐼denoised(i) as the weighted average of all pixels 

𝑗within the search window: 

 
8. Construct the denoised image using the computed values 𝐼denoised(i) for each pixel i.  

9. Pseudo-clean Image y𝐝𝐞𝐫𝐢𝐯𝐞𝐝 = 𝐼denoised. 

10. For the original noisy image y, derive the denoised image 𝑓𝜃(𝒚) i.e. U-Net(y) with 
no gradients. 

11. Update the denoising network U-Net, 𝑓𝜃, i.e. find out the optimal values for the 

parameters θ such that Loss L is Minimized.  

      Loss L =  ℒTotal = 𝜆1ℒ𝑀𝑆𝐸 + 𝜆2ℒ𝑃𝑆𝑁𝑅 + 𝜆3ℒ𝑆𝑆𝐼𝑀 

ℒMSE = MSE (fθ(𝒚) ,𝒚𝒅𝒆𝒓𝒊𝒗𝒆𝒅) 

 ℒPSNR= 
100 −  PSNR (fθ(𝒚) ,𝒚𝒅𝒆𝒓𝒊𝒗𝒆𝒅)

100
  

  ℒSSIM= 1 - SSIM (fθ(𝒚) ,𝒚𝒅𝒆𝒓𝒊𝒗𝒆𝒅)  
End While 
 

Combined Loss function Idea is from [17]. This one is modification of that. The training procedure 
for the image denoising involves several key steps, beginning with data preparation. Clean images are 
initially loaded from a specified directory These images are then split into training and test sets using a 
90-10 split ratio, ensuring a fixed random seed for reproducibility. 

To simulate noisy inputs, Gaussian noise is added to the clean images. The noisy images are then 
denoised using the Non-Local Means (NLM) algorithm to generate clean target images for training 
purposes. This combination of noisy input and clean target images is used to train the denoising model. 
The model architecture is based on the U-Net structure, featuring an encoder-decoder design [16]. The 
encoder comprises convolutional layers followed by max-pooling layers to capture the context, while the 
decoder uses up-sampling layers followed by convolutional layers to reconstruct the denoised image. 

A custom loss function that combines Mean Squared Error (MSE) and Structural Similarity Index 
(SSIM) is defined. This loss function balances pixel-wise accuracy (through MSE) and perceptual 
similarity (through SSIM), ensuring the model preserves structural details while minimizing pixel 
errors. The model is compiled using the Adam optimizer with a learning rate of 0.001 and the custom 
loss function. Data generators are implemented to handle the loading, augmenting, and batching of 
images during both training and evaluation. These generators ensure efficient data handling and 
processing throughout the training process. 

The model is trained for 100 epochs using the training data generator, with a batch size set to 32. 
After training, the model's performance is evaluated on the test set using PSNR and SSIM metrics to 
quantify the quality of denoised images. The average PSNR and SSIM values are calculated to provide 
an overall measure of the model's performance. Additionally, a visualization function is employed to 
display clean test images, their noisy versions, and the denoised outputs from the model. This 
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visualization demonstrates the effectiveness of the denoising process, showcasing both quantitative and 
qualitative improvements in image quality. Figure 4(a) and 4(b) illustrates the visual results for the NLM 
based self- supervised model. 
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Figure 4 

(a):  Proposed NLM based self-supervised image denoising sample results-Gaussian noise with σ from [20, 50]. 
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Figure 4. 

(b):  Proposed NLM based self-supervised image denoising sample results-poisson noise with λ = 30. 

 
2.2.1. Experimental Results 

Experimental results show better visual results and comparable PSNR and SSIM. Testing over 

limited dataset of Image Net validation shows that PSNR and SSIM for gaussian noise with σ=50 is 

31.90 and 0.85 respectively. For Poisson noise with λ=30, it is 32.60 and 0.86 respectively. These are 
comparable and yet detailed investigation will be done for various datasets.  
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3. Conclusions and Future Directions 
This paper presented two self-supervised image denoising approaches using the Discrete Wavelet 

Transform (DWT) and Non-Local Means (NLM) methods, designed to overcome the dependency on 
paired clean-noisy image data that limits traditional denoising techniques. The proposed self-supervised 
DWT-based denoising approach leverages wavelet Thresholding to reduce noise while preserving 
structural details in images. Both models were trained exclusively on noisy images using a custom loss 
function combining Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural 
Similarity Index (SSIM), ensuring that denoising performance aligns with both pixel-wise accuracy and 
perceptual quality. Experimental results showed that the self-supervised DWT-based model 

outperformed traditional DWT-only denoising, achieving PSNR values of 31.5 for Gaussian noise (σ = 

50) and 32.5 for Poisson noise (λ = 30), with corresponding SSIM values of 0.86 and 0.87. The NLM-
based model also demonstrated effective noise reduction, achieving PSNR and SSIM values of 31.9 and 
0.85 for Gaussian noise, and 32.6 and 0.86 for Poisson noise. Together, these results highlight the 
potential of self-supervised approaches in denoising applications where access to clean data is limited or 
unavailable, making them suitable for complex real-world noise scenarios. 

Future research directions include exploring more diverse wavelet families and evaluating their 
impact on self-supervised denoising performance, as most current studies primarily focus on the Haar 
wavelet. Another area of interest is enhancing computational efficiency for high-resolution images, as 
the proposed models can be resource-intensive. Developing lightweight architectures or optimizing 
DWT-based and NLM-based frameworks for real-time applications would be beneficial. Furthermore, 
extending the self-supervised DWT and NLM models to handle multiple noise types simultaneously 
could improve model generalization. Finally, we intend to evaluate these models on real-world noisy 
datasets from fields like medical imaging and astronomy to verify their robustness beyond synthetic 
noise. Exploring hybrid approaches, such as combining wavelet and Fourier transforms within the self-
supervised paradigm, could provide further advancements in image denoising. 
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