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Abstract: The subject of regression is one of the subjects that has become widely applied by those 
interested in various social and economic sciences, because it describes the relationship between 
variables in the form of an equation. The linear equation that includes explanatory variables is called the 
linear regression equation. To describe any phenomenon using regression models, the model 
assumptions must be met, as well as the importance of the accuracy of the data and its analysis on the 
accuracy of the results to be achieved in any scientific research. Hence, the interest in studying the 
integrity of the data, which is considered a necessary issue for the integrity of the results. It is obvious 
in any scientific research that we purify the data from outliers, if any, and then the presence of outliers 
in the selected sample helps to shade the results of the statistical analysis, and certainly the shading is 
greater the greater the number of those values or the greater the deviation of these values from the rest 
of the observations of the selected sample. The importance of this research came in estimating the 
parameters of the regression model using the usual methods (least squares) and robust methods (M 
method and MM method). The methods were compared using the root mean square error criterion 
using the simulation method, where different sample sizes were generated with four different ratios of 
outlier’s values. It was noted that the superiority of robust methods was observed for all ratios of 
outlier’s values and sample sizes. 
Keywords: M and MM methods, Outliers values, Robust methods. 

 
1. Introduction  

The main steps of statistics were divided into several stages, and each stage became a major field of 
its fields, and the most important stages on which the accuracy of the results expected from the 
statistical model adopted in the study is based is the stage of estimating the parameters of the model, 
because the capabilities of the parameters of the model are what give the character of the phenomenon 
to be studied, and it has been suggested There are several statistical methods or methods to estimate the 
unknown parameters of the statistical model in the event that a number of assumptions or basic 
conditions are met. Among the most famous of these methods is the Ordinary Least Squares (OLS) 
method and the maximum likelihood method that is used to estimate the parameters of the linear 
regression model due to the good characteristics of the estimators of these methods. It is characterized 
as the best unbiased linear estimate that has the least variance among other unbiased linear estimates. 
However, the development taking place in the field of scientific research has imposed itself in this field, 
and the ideas and methods proposed for estimation methods have become very numerous, as some of 
them were designed to treat cases related to some phenomena, and another section was developed when 
some values of a phenomenon behave in a special way that differs from their peers, which is what is 
called outliers. The first idea or article published about the disturbances caused by outliers of the least 
square’s method was by researcher Legendre in 1815. [7][9] 
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1.1. Research Objective 
The research objective is to compare the classical methods represented by the least squares method 

with the robust methods represented by the M and MM methods using the simulation method using the 
statistical indicator mean square error (MSE). 
 
1.2. Outlier Observation 

It is that observation that is distant from the rest of the group’s data for any of the variables of a 
phenomenon or a group of phenomena in terms of that value being large or small and located at one end 
of the group of observations arranged in ascending or descending order. 
It is statistically defined as the observation that comes from a community different from the study 
population, but mathematically it is the observation whose Studentized Residual (RI) value is large 
compared to other observations in the data set.[6][12][14] 

Anomalous observations can appear in more than one variable, as in the case of multivariate. The 
anomalous observation takes the form of a vector or part of a sub-vector. 
 
1.3. Linear Regression Models 

The study of linear regression models came to determine two points: the first is to define the 
relationship between the two variables from the graph of the shape of the regression line, and the second 
is to specify the linear parameters in the model. Most statistical studies and research are concerned with 
the second point. 
 
2. Estimation Methods 
2.1. Classic Methods of Estimation 

There are several methods for estimating the parameters of the regression model, but these methods 
are considered vulnerable, meaning that the presence of anomalies in the data used affects the properties 
of their outputs. Among these methods are the least squares method, which are among the most famous 
and most used methods in estimating the parameters of the regression model. In order to understand 
the method.[3] 

 
2.2. Least Square Method 

As it is known that the least squares method is based on the idea of minimizing the sum of squares 
of errors or residuals, and the same idea has been adopted in the case of linear models, so we can express 
the sum of squares of residuals, also called classical least squares, and this method is one of the widely 
used methods in statistical applications and depends on the existence of a relationship between two or 
more variables. The principle of this method is based on finding the straight line that passes through the 
points of the diffusion shape in a way that makes the sum of the squares of the points' dimensions as 

little as possible, i.e., determining the value (β) that makes this sum as little as possible. The final 
formulas for the estimated parameters of the regression model are:[1][7] 

β̂1 =
∑ XiYi

n
i=1 − Ȳ ∑ Xi

n
i=1

∑ Xi
2 − X̄ ∑ Xi

n
i=1

n
i=1

            or          β̂1 =
Sxy

Sxx
                                           (1) 

∴ β̂0 =
∑ Xi

2n
i=1 ∑ Yi

n
i=1 − (∑ Xi)(∑ XiYi

n
i=1 )n

i=1

n ∑ Xi
2 − (∑ Xi)

2n
i=1

n
i=1

      or      β̂0 = Ȳ − β̂1X̄            (2) 

This means that the value (�̂�1) of what is nothing but the quotient of the common variance between 
(y, x) divided by the variance of (X). 

The values of (�̂�1 ) determine the best straight line that cuts through the diffusive shape, expressing 

the relationship between (Y, X). it is noted that both �̂�0 and �̂�1 are a function of the measurements of the 

sample items (𝛽). Estimators can be obtained by the least square method, which will be as follows: 

β̂ = (X′X)−1(X′Y)                    (3) 
 
 



8508 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 8506-8513, 2024 
DOI: 10.55214/25768484.v8i6.3825 
© 2024 by the authors; licensee Learning Gate 

 

2.3. Robust Estimation 
Following classical methods in estimating model parameters is not safer than applying robust 

estimation methods because the conditions required to apply classical methods are not easy, such as the 
absence of outliers or following a random error distribution other than the distribution that suits the 
method adopted in estimation, and the presence of a single outlier observation may destroy the good 
advantages of least squares estimators.[12][17] 

 
2.4. M-method  

This method is considered one of the most famous robust methods and is based on replacing the 

square of the residuals (ri
2) used in the least square’s method with another function for the residuals 

while maintaining the main objective of the method, which is to make the amount ∑ ρ(ri)
n
i=1  The least 

possible. Note that ρ(⋅)is a symmetric function with a single minimum endpoint at zero. Deriving this 
function relative to the regression parameters produces:[2][5] 

∑ ψ(ri)xi

n

i=1

= 1                   (4) 

Where ψ(⋅) is the derivative of ρ(⋅) and is called the influence function, while xi is the set of values 
of the explanatory variables for observation i. 

In the end, the M estimators are obtained by solving nonlinear equations, which are numbered by 
the number of model parameters. This method has advantages, the most important of which are: 

1- M-estimators are identical to OLS estimators when ψ(t) = t. 
2- The M method is identical to the L1regression method when 𝜓(𝑡) = sin(𝑡) 
3- The M estimators do not have the characteristic of (Scale Invariant). In order for these estimators 

to have this characteristic, the random errors must be standardized by subtracting the 
arithmetic mean of these errors from them and dividing them by the standard deviations, which 

is calculated in a robust manner. One of the most reliable methods for calculating 𝜎
∧
is the MAD 

(median absolute deviation) method, according to which the formula for 𝜎
∧

 is as follows:  𝜎
∧

 =
 c med ( | ri –  med ri | )     i =  1,2, … , n   

Where c is a constant quantity and equals 1.4826. 

4- Since the resulting robust estimators depend on the function ρ(⋅), several formulas for this 
function have been proposed. The following are the derivatives of some of these proposed 
formulas:[8][11] 

 

• Huber Minimax function 

ψ(t) =  {
t                                  if | t |  <  b

b  sign (t)                 if | t |  ≥  b
         (5) 

Where b is a constant. 
 

• Descending Minimax function 

ψ(t) =  {

t                                                                       if | t |  <  a

b sign (t) tan h [
1

2
b (c - [ t ] )]               if a ≤  | t |  <  c

c                                                                             o.w.

             (6) 

Where a, b, and c are constants. 

• Hampel function 

ψ(t) =  {

t                                                                      if | t |  <  a

a sign (t)                                                      if a ≤  | t |  <  b

{ ( c - | t | ) / ( c - d )} a sign (t)             if b ≤  | t |  <  c

o                                                                           o.w.

               (7) 
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Where a, b, and c are constants. 

• 4) Andrew function 

ψ(t) =  {
Sin (t)                   if  -π ≤  t <  π
o                                  o.w.

           (8) 

• Tukey function 

ψ(t) =  {t( 1 - ( t / c )2 )2                if  | t |  <  c

o                                                 o.w.
                   (9) 

 
2.5. MM Estimator of Regression 

Before we begin to define the estimator of MM, we will make some remarks about the estimation of 
(MM) in the framework of standard regression. We assume that (X) is a data matrix of size nxp 
containing the explanatory variables in columns, and we assume that the data of (Y) of size nx1 contains 
the dependent variables, and the ith row of Y, X contains information about the ith sample, which is 
denoted by ((Yi,Xi respectively). Let us assume a linear regression model, and the least squares 

estimator of β is defined as follows:[4] 

β̂Ls   =  argmin ∑( yi   −  xiβ )2

n

i=1

                          (10) 

It is known as the optimal estimator because it has the least variance and is an unbiased estimator if 
the error term is distributed normally. In the event that the error comes from other distributions such 
as heavy-tailed distributions, the least squares estimators lose their optimality in reaching the best 
estimators. The robust estimators known as (MM) estimators are obtained by replacing the square of 

the residuals in the above equation used in the least square method with the outlier function ρ.[10] 

β̂M   =  argmin ∑ ρ ( yi   −  xiβ )2

n

i=1

                      (11) 

The outlier function must be symmetric and non-decreasing (increasing) and be 

ρ(u)   =   u2        (12) 
Let  ri  =   yi   −   xiβ  

It refers to the residuals in the objective function. The weight for observation i is defined as follows: 

Wi
r   =  ρ(ri) / ri

2            (13) 

β̂M   =  argmin ∑ Wi
r ( yi   −  xiβ )2

n

i=1

                  (14) 

The estimator (MM) represents the weighted least squares (LS) and the weights depend on the 

estimator β. the MM regression estimator provides immunity against only vertical outliers which are 
within the error range. The other types of outliers are the leverage points which come from 
observations xi which are within the prediction range. The MM robust estimator provides protection 
against both vertical outliers and leverage points. Therefore, the MM robust estimator is as 
follows:[6][18] 

β̂RM = argminβ ∑ wir

n

i=1

wix( yi   −  xiβ )2       (15)  

 
2.6. Data Generation 

There are several methods for generating random data that follow a normal distribution, including 
the Box-Muller method and the approximate asymptotical method, and the Box-Muller method is more 
popular for its ease of use and accuracy of its results, and for generating data distributed according to a 

multivariate normal distribution with a mean vector μ and a variance matrix , X  N (μ, ), by 
following the following algorithm: 
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1. Generating zi values using the (Box Muller) method 

        Zi  N (0, 1),  i= 1, 2, … P 

        Z  MNp (0, 1)   Since Z is an nxp matrix. 

2. Partition of the variance matrix  using the (Cholesky decomposition) method to obtain C. C′C 

=   where C is a lower triangular matrix of PxP order and is the square root of the matrix . 
The segmentation process takes place as follows: 
a) The di vector is calculated by the following formula: 

di = aij − ∑ ℓik
2j−1

k=1 dk ;   ℓij = [(aij − ∑ ℓikℓik
j−1
k=1 dk)] dj

−1, j, k= 1,2, …, P  

b) The C matrix is extracted according to the following formula: 

𝐶 = [𝐿𝐷
1

2]  where D = diag (di) and L = [ℓ𝑖𝑗] 

3. To calculate the matrix X whose data is distributed in a multivariate normal distribution with a 

mean vector  and a covariance matrix and covariances is  the following formula is used:   X′ =

μ + CZ′  and   X  MNp (μ, ) 
 
2.7. Generating Regression Model Data 

In addition to generating the X matrix, which represents the explanatory variables. The random 

error that follows a normal distribution is generated with a mean (0) and a variance (
2

e
). Then the 

values of the response variable are calculated from the following linear relationship: Y = X  + e 

The values of  are imposed according to the model to be studied and in a manner consistent with 
the nature of the studied phenomenon, depending on the theoretical background of the phenomenon. 

The sample: Four sample sizes were used, small, medium, two sizes, then large, as follows (60, 100, 
150), and the error variance was in four values (1, 1.5), and we will address the problem of data outlier 
and the case of the MAR outlier mechanism with outlier rates of 2%, 6%, 10% and 15% and by repeating 
the experiment 500 times in order to determine which algorithms are more efficient. 
 
2.8. Analyzing the Results of Simulation Experiments 
 

Table 1. 

MSE for the model to the estimation methods and outlier ratios when (e  N (1,1)) and sample size 60. 

              Outlier ratio  
Methods %2 %6 %10 %15 

Huber minimax estimators 1.563 1.508 1.598 1.583 
Descending minimax estimators 1.593 1.608 1.519 1.599 
Hampel estimators 1.569 1.527 1.582 1.518 
Andrew estimators 1.611 1.500 1.567 1591 
Tukey estimators 1.572 1.549 1.578 1.611 
MM estimators 1.583 1.609 1.658 1.681 
OLS estimators 1.892 1.916 1.698 1.627 
Best Huber minimax Andrew Descending minimax Hampel 
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Table 2. 

MSE for the model to the estimation methods and outlier ratios when (e  N (1,1)) and sample size 100. 

                 Outlier ratio  
Methods %2 %6 %10 %15 

Huber minimax estimators 1.537 1.588 1.512 1.514 
Descending minimax estimators 1.558 1.569 1.583 1.513 
Hampel estimators 1.521 1.534 1.502 1.593 
Andrew estimators 1.602 1.514 1.594 1.528 
Tukey estimators 1.511 1.631 1.528 1.575 
Mm estimators 1.796 1.761 1.541 1.566 
Ols estimators 1.899 1.927 1.863 1.983 
Best Tukey Andrew Hampel Descending minimax 

 
Table 3. 

MSE for the model to the estimation methods and outlier ratios when (e  N (1,1)) and sample size 150. 

                 Outlier ratio  
Methods %2 %6 %10 %15 

Huber minimax estimators 1.293 1.298 1.295 1.237 
Descending minimax estimators 1.236 1.269 1.263 1.284 
Hampel estimators 1.248 1.246 1.312 1.213 
Andrew estimators 1.313 1.254 1.297 1.211 
Tukey estimators 1.263 1.284 1.225 1.243 
Mm estimators 1.285 1.214 1.247 1.277 
Ols estimators 1.585 1.692 1.758 1.581 
Best Descending minimax MM Tukey Andrew 

 
Table 4. 

MSE for the model to the estimation methods and outlier ratios when (e  N (1,1.5)) and sample size 60. 
              Outlier ratio  
Methods %2 %6 %10 %15 

Huber minimax estimators 1.626 1.694 1.658 1.677 
Descending minimax estimators 1.641 1.683 1.673 1.688 
Hampel estimators 1.708 1.708 1.638 1.676 
Andrew estimators 1.703 1.708 1.593 1.612 
Tukey estimators 1.703 1.708 1.695 1.607 
Mm estimators 1.636 1.669 1.663 1.684 
Ols estimators 1.948 1.946 1.912 1.913 
Best Huber minimax Descending minimax Andrew Tukey 

 
Table 5. 

MSE for the model to the estimation methods and outlier ratios when (e  N (1, 1.5)) and sample size 100. 

             Outlier ratio  
methods %2 %6 %10 %15 

Huber minimax estimators 1.437 1.438 1.462 1.414 
Descending minimax estimators 1.458 1.469 1.483 1.413 
Hampel estimators 1.421 1.434 1.422 1.493 
Andrew estimators 1.412 1.484 1.494 1.448 
Tukey estimators 1.512 1.431 1.428 1.475 
Mm estimators 1.526 1.431 1.441 1.366 
Ols estimators 1.899 1.727 1.863 1.883 
Best Andrew Tukey Hampel MM 
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Table 6. 

MSE for the model to the estimation methods and outlier ratios when (e  N (1, 1.5)) and sample size 150. 

               Outlier ratio  
 methods %2 %6 %10 %15 

Huber minimax estimators 1.098 1.095 1.037 1.039 
Descending minimax estimators 1.069 1.063 1.084 1.036 
Hampel estimators 1.046 1.052 1.013 1.099 
Andrew estimators 1.054 1.097 1.011 1.084 
Tukey estimators 1.084 1.025 1.043 1.078 
MM estimators 1.114 1.047 1.077 1.089 
OLS estimators 1.292 1.258 1.361 1.438 
Best Hampel Tukey Andrew Descending minimax 

 
2.9. Analysis of the Results of Simulation Experiments of Outlier Patterns 

First: In the case of the error variance, it is 1, From Tables (1,2 and 3) a, we note the following: 
In the case of a sample size of 60 we notice that the Huber Minimax method gave the best results 

for all outlier ratios %2, and the Andrew method gave the best results for all outlier ratios %6, and the 
Descending Minimax method gave the best results for all outlier ratios %10, and the Hampel method 
gave the best results for all outlier ratios %15. 

In the case of a sample size of 100 we notice that the Tuky method gave the best results for all 
outlier ratios %2, and the Andrew method gave the best results for all outlier ratios %6, and the Hampel 
method gave the best results for all outlier ratios %10, and the Descending Minimax method gave the 
best results for all outlier ratios %15. 

In the case of a sample size of 150 we notice that the Descending Minimax method gave the best 
results for all outlier ratios %2, and the MM method gave the best results for all outlier ratios %6, and 
the Tuky method gave the best results for all outlier ratios %10, and the Andrew method gave the best 
results for all outlier ratios %15. 

Second: In the case of the error variance, it is 1.5, From Tables (4,5 and 6) a , we note the following: 
In the case of a sample size of 60 we notice that the Huber Minimax method gave the best results 

for all outlier ratios %2, and the Descending Minimax method gave the best results for all outlier ratios 
%6, and the Andrew method gave the best results for all outlier ratios %10, and the Tuky method gave 
the best results for all outlier ratios %15. 

In the case of a sample size of 100 we notice that the Andrew method gave the best results for all 
outlier ratios %2, and the Tuky method gave the best results for all outlier ratios %6, and the Hampel 
method gave the best results for all outlier ratios %10, and the MM method gave the best results for all 
outlier ratios %15. 

In the case of a sample size of 150 we notice that the Hampel method gave the best results for all 
outlier ratios %2, and the Tuky method gave the best results for all outlier ratios %6, and the Andrew 
method gave the best results for all outlier ratios %10, and the Descending Minimax method gave the 
best results for all outlier ratios %15. 

Given the difficulty of providing all the assumptions of the linear model in experiments, and to 
reduce the effect of outliers if they are present in the data, the research recommends using the studied 
methods according to the sample size and benefiting from the scientific programs prepared by the 
researcher in applying these methods. 
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