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Abstract: Energy management in Wireless Sensor Networks (WSNs) remains a critical challenge, 
particularly in clustering processes. This article compares three optimization algorithms—Grasshopper 
Optimization Algorithm (GOA), Bat Algorithm (BA), and Whale Optimization Algorithm (WOA)—to 
achieve energy-efficient clustering and extend network lifetime. Initial cluster head placement is 
performed using K-means clustering, and a novel cost function is introduced that considers energy 
consumption and node distribution, enhancing the network’s efficiency and resilience. The algorithms 
are evaluated across three scenarios with varying base station (BS) placements. In the simplest scenario, 
with the BS centrally located, GOA slightly outperforms WOA in extending network lifetime, although 
WOA remains competitive. BA, while energy-efficient, lags behind GOA and WOA. As complexity 
increases with BS placement at the edge, WOA demonstrates superior energy management, delaying 
node death and extending network lifetime more effectively than GOA and BA. In the most challenging 
scenario, where the BS is placed in a remote corner, WOA emerges as the most effective algorithm, 
maintaining network performance and balancing energy consumption for the longest duration. GOA, 
while relatively strong, shows faster network lifetime decline, particularly in later stages, whereas BA 
faces significant challenges, leading to quicker node failures. Overall, this study highlights the 
importance of efficient clustering and optimization for prolonging WSN lifetimes. WOA excels in 
complex scenarios, while GOA leads in simpler environments. Integrating K-means clustering with the 
novel cost function enhances algorithm performance, contributing to the development of resource-
efficient WSNs, especially in resource-constrained settings. 
Keywords: Bat algorithm, Clustering, Whale optimization algorithm, Wireless sensor network. 

 
1. Introduction  

In the era of rapidly advancing technology, Wireless Sensor Networks (WSNs) have become 
integral to various applications, from environmental monitoring to industrial automation. However, the 
energy limitations of sensor nodes remain a critical challenge, directly affecting network performance 
and lifetime [1]. Efficient energy management is essential, particularly in clustering processes, which 
play a pivotal role in optimizing data transmission and reducing energy consumption [2]. Traditional 
clustering methods often fall short in addressing the dynamic and resource-constrained nature of 
WSNs, necessitating the adoption of advanced optimization techniques. 

Recent advancements in metaheuristic algorithms, such as Grasshopper Optimization Algorithm 
(GOA), Bat Algorithm (BA), and Whale Optimization Algorithm (WOA), have shown promise in 
solving multi-objective optimization problems [3]. These algorithms offer innovative approaches to 
energy-efficient clustering by balancing node energy consumption and improving network resilience. 
Despite their potential, a comparative analysis of these methods under diverse network conditions 
remains limited. 

This Article addresses this gap by evalsuating GOA, BA, and WOA in energy-efficient clustering 
for WSNs. By integrating K-means clustering for initial cluster head placement and introducing a novel 
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cost function that considers energy distribution and node placement, the research aims to enhance the 
network’s overall efficiency and lifetime. The findings contribute to developing sustainable WSNs, 
especially in resource-constrained environments. 

Multiple studies have proposed methods to improve the energy efficiency of clustering in Wireless 
Sensor Networks (WSNs). 

Subramani, N et al.in paper [3] focuses on the design of a clustering approach based on 
metaheuristics with a routing protocol for Underwater Wireless Sensor Networks (UWSN), named 
MCR-UWSN. The goal of the MCR-UWSN solution is to select an efficient set of Cluster Heads (CHs) 
and a path to the destination. The MCR-UWSN solution involves designing clustering strategies based 
on the Cultural Emperor Penguin Optimization (CEPOC) algorithm to form the clusters. Additionally, 
a multi-hop routing solution, combined with a Grasshopper Optimization Algorithm (MHR-GOA), is 
derived using multi-input components. The performance of MCR-UWSN was validated, and the results 
are evaluated based on various metrics. Experimental results highlighted the advanced performance of 
the MCR-UWSN approach in comparison to recent state-of-the-art methods. 

Saadati, M et al. In article [4], the importance of wireless sensor networks (WSNs) and the 
challenges related to their energy limitations are discussed. Clustering and multi-hop routing methods 
are introduced as effective solutions for increasing WSN lifespan. This article proposes a method using 
Graph Neural Networks (GNN) to create static clusters of equal size, aiming to balance energy 
consumption among nodes. Additionally, a distributed cluster head selection scheme and a centralized 
routing protocol are implemented to establish dedicated routes to the base station, preventing node 
overheating. Simulation results show that this approach outperforms similar protocols in terms of 
lifespan and coverage. 

Sulthana, N et al. In article [5], wireless sensor networks (WSNs) are highlighted for their broad 
applications and advantages, yet energy consumption remains a major challenge. Addressing this, the 
study proposes the Energy-Efficient Lifetime-Aware Cluster-Based Routing (EELCR) technique to 
improve energy efficiency in WSNs. The EELCR utilizes the modified Giant Trevally Optimization 
(MGTO) algorithm for balanced clustering to reduce energy consumption, while the Optimal Squirrel 
Search (OSS) algorithm is applied to select the best cluster head (CH), extending network lifespan. Each 
CH employs optimal selective Huffman compression to minimize area overhead. Additionally, a hybrid 
deep learning model combining Deep Neural Networks (DNN) and Granular Neural Networks (GNN), 
called DGNN, is used to optimize data transmission from CHs to the base station. Simulations show 
that EELCR improves the average compression rate by 9.346% and significantly extends network 
lifetime by 51.88% in node density scenarios and by 52.625% over simulation rounds compared to 
existing methods. 

Debasis, K et al. In article [6], the Energy-Efficient Clustering Algorithm (EECA) is proposed to 
extend the lifetime of wireless sensor networks (WSNs) by reducing unnecessary energy consumption. 
Since sensor nodes rely on small batteries, idle listening can deplete energy quickly. The EECA model 
divides the target area into small regions, with an Artificial Neural Network (ANN) selecting one node 
in each region as the cluster head (CH). Only nodes with a minimum energy level participate in the CH 
selection, with ANN scoring candidates based on residual energy, detected events, distance to the base 
station, and neighbor count. The node with the highest score becomes the CH, and a limit on cluster 
size prevents overly large clusters. To further conserve energy, only nodes near an event transmit data 
to the CH, reducing redundant communication. Additionally, CHs briefly check for incoming signals at 
the beginning of each slot, turning off the radio if no transmission is detected, minimizing idle listening. 
Experimental results demonstrate that EECA achieves greater energy savings compared to other 
medium access control protocols. 

Nedham, W et al. In article [7], the growing importance of Wireless Sensor Networks (WSNs) 
across various applications, including smart cities, the Internet of Things (IoT), and environmental 
monitoring, is discussed. Given WSNs' energy constraints, the study emphasizes the need for energy-
aware protocols to sustain network performance. Hierarchical techniques, particularly clustering, are 
highlighted as effective strategies for improving network scalability, reducing latency, and enhancing 
energy efficiency. Clustering divides the network into sub-networks with Cluster Heads (CH) that 
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manage communication within clusters, thus extending network lifespan. This study provides a 
comprehensive review of various clustering techniques, classifying and evaluating them based on cluster 
characteristics, CH attributes, and clustering methodologies, offering insights into their effectiveness for 
large-scale WSNs. 

El Khediri, S. In paper [8], a comprehensive review of several clustering protocols proposed for 
Wireless Sensor Networks (WSNs) is presented. The clustering algorithms are classified into four 
categories: (1) Cluster-based protocols for homogeneous nodes, (2) Cluster-based protocols for 
heterogeneous nodes, (3) Clustering protocols based on fuzzy logic methods, and (4) Clustering 
protocols based on heuristic methods. This classification is based on the network organization of these 
protocols and the strategies used to manage clustering procedures. To evaluate the performance of these 
protocols, the features, performance, and clustering methods are used as the main parameters to 
compare the four categories of clustering approaches. 

Surenther, I. et al. In article [9], a Deep Learning based Grouping Model Approach (DL-GMA) is 
proposed to address the energy constraints of Wireless Sensor Networks (WSNs), which limit network 
lifespan. DL-GMA utilizes deep learning, specifically Recurrent Neural Networks (RNN) with Long 
Short-Term Memory (LSTM), to optimize energy efficiency in cluster formation, Cluster Head (CH) 
selection, and CH maintenance. Evaluated on metrics such as Energy Efficiency (88.7%), Network 
Stability (90.8%), Network Scalability (87.1%), Congestion Level (18.3%), and Quality of Service (QoS) 
(93.4%), DL-GMA significantly improves WSN energy utilization, network longevity, and data 
transmission efficiency. This model offers a promising solution to extend WSN lifespan and optimize 
network performance through intelligent grouping and deep learning. 

Mittal, M et al. In paper [10], two energy-efficient protocols, namely the Adaptive Low-Energy 
Clustering Hierarchy and Energy-Efficient Sensor Routing, are redesigned with consideration of 
current application scenarios. Neural networks are integrated to improve the energy efficiency results, 
with a Levenberg-Marquardt Neural Network (LMNN) employed. Additionally, a sub-clustered 
protocol derived from LEACH is proposed for further enhancement. Simulation results show that Sub-
LEACH with LMNN outperforms its competitors in terms of energy efficiency. Moreover, end-to-end 
delay is evaluated, with Sub-LEACH proving to be the best among the existing strategies. 

Dinesh, K et al. In article [11], a trust-aware neuro-fuzzy-based clustering approach combined with 
the Sparrow Search Optimization Algorithm (NF-SSOA) is introduced to address energy efficiency and 
secure data transmission challenges in Wireless Sensor Networks (WSNs). Due to the resource 
limitations and vulnerability of WSNs, the NF-SSOA protocol aims to enhance energy optimization 
while ensuring secure communication. The protocol uses neuro-fuzzy clustering for effective node 
grouping and the sparrow search algorithm for optimized routing. Additionally, an ECC-based digital 
signature provides lightweight key management, encryption, and node authentication, with pseudo-
random identity generation for anonymous data transmission. Implemented on the NS3 simulator, the 
protocol demonstrates improvements in energy consumption, throughput, network delay, network 
lifetime, and packet delivery ratio compared to existing protocols. The NF-SSOA protocol shows 
notable resilience against security threats and enhances the overall quality of service in WSNs. 

Lilhore, U et al. In article [12], a depth-controlled energy-balanced routing protocol is proposed, 
which can adjust the depth of low-energy nodes and swap them with higher-energy nodes to ensure 
balanced energy usage. This energy-efficient routing protocol is based on an advanced Genetic 
Algorithm (GA) and data fusion techniques. The proposed protocol improves an existing GA by adding 
encryption, crossover, and mutation strategies, helping to specify nodes and optimize routing decisions. 
It uses an enhanced backpropagation neural network for data fusion operations, leveraging a highly 
optimized momentum strategy that aids in selecting only energy-efficient nodes, thus reducing 
redundant selections and minimizing data transmission energy. The protocol also incorporates an 
advanced cluster head node selection strategy capable of analyzing the remaining energy and directions 
of participating nodes. Simulation results show that the proposed model achieves 86.7% packet delivery 
ratio, 12.6% energy consumption, and a 10.5% packet loss ratio, outperforming depth-based and energy-
efficient depth-based routing methods in underwater wireless sensor networks. 



8585 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 8582-8610, 2024 
DOI: 10.55214/25768484.v8i6.3848 
© 2024 by the authors; licensee Learning Gate 

 

Wireless Sensor Networks (WSNs), with their extensive applications in fields such as the Internet 
of Things (IoT), smart agriculture, and environmental monitoring, have become a critical area of 
research in information and communication technology. However, the energy constraints of sensor 
nodes remain a fundamental challenge in extending network lifetime. Previous studies have 
demonstrated that clustering nodes and selecting appropriate cluster heads can optimize energy 
consumption and enhance communication efficiency. Nonetheless, existing methods face significant 
challenges. 

Many traditional clustering algorithms, such as LEACH, while improving energy consumption, 
struggle to maintain optimal performance when the network scales or nodes are unevenly distributed. 
Metaheuristic algorithms, including Genetic Algorithms and Particle Swarm Optimization, have also 
been employed. However, these methods often exhibit limitations, such as a tendency toward local 
search or requiring complex configurations, particularly in multi-objective optimization. Furthermore, 
in multi-objective optimization approaches, achieving a balance between energy consumption and 
network lifetime is often inadequately addressed. 

To overcome these limitations, this research proposes the use of two advanced metaheuristic 
algorithms—Whale Optimization Algorithm (WOA) and Bat Algorithm (BA)—for energy-efficient 
clustering in WSNs. The Whale Optimization Algorithm, inspired by the hunting behavior of whales, 
excels in global search and is well-suited for cluster formation optimization. Conversely, the Bat 
Algorithm, which mimics the echolocation behavior of bats, performs better in local search and is 
effective in fine-tuning clustering parameters. 

The proposed method combines the advantages of these two algorithms to deliver optimized 
performance. It simultaneously optimizes criteria such as energy consumption, distance to the base 
station, and node workload, resulting in more stable clustering. Simulation results demonstrate that this 
approach significantly improves network lifetime and optimizes energy consumption compared to 
similar methods. 

This method is not only applicable to WSNs with uneven node distributions but also performs 
effectively in scalable scenarios. By reducing computational overhead and extending network lifetime, 
the proposed approach presents a practical and efficient solution for real-world WSN applications. 

The structure of this paper is organized as follows: Section 2 provides the basic concepts needed for 
understanding the proposed method. Section 3 introduces the proposed methodology, detailing the 
design and implementation of the Whale Optimization Algorithm (WOA) and Bat Algorithm (BA) for 
energy-efficient clustering. Section 4. Provides configuration and settings. Section 5 presents the results 
and analysis, including a comparison of WOA and BA in terms of energy efficiency, network lifespan, 
and cluster performance under different scenarios. Section 6 Provides a general discussion of the three 
scenarios performed.section 7 provides a comparative analysis between the proposed algorithms and 
existing approaches from the literature, highlighting the advantages and limitations of each method. 
Finally, Section8 concludes the paper by summarizing the findings and suggesting future research 
directions in the field of energy-efficient clustering in WSNs. 

 
2. Basic Concepts 

In this section, a detailed overview of the fundamental principles and key concepts required to 
understand the proposed method is presented. 
 
2.1. Whale Optimization Algorithm (WOA) 

The Whale Optimization Algorithm (WOA) is a metaheuristic algorithm inspired by the hunting 
behavior of humpback whales. These whales employ a unique hunting strategy known as bubble-net 
feeding, where they create spiral-shaped bubbles around their prey to encircle and move towards it. The 
WOA, introduced by Ali Mirjalili and colleagues in 2016, simulates this hunting strategy to search for 
optimal solutions in complex optimization problems [13]. 

The primary purpose of the Whale Optimization Algorithm is to find the best solution for complex, 
non-linear optimization problems where the objective function may have multiple peaks and valleys. In 
such cases, traditional methods struggle to locate global optima. WOA, like other metaheuristic 
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algorithms, explores a wide solution space to approximate the best or nearly optimal solution. This 
algorithm is widely applied in fields like engineering optimization, artificial intelligence, neural network 
training, routing optimization, and energy management problems [14]. 

The WOA algorithm operates through three main mechanisms: 
1. Encircling the prey: Whales encircle their prey and move toward it. 
2. Bubble-net attacking: Whales move towards their prey in a spiral, simulating the bubble-net 

strategy. 
3. Searching for prey: Whales explore the search space to find new hunting positions. 

Each mechanism is explained in detail below, with relevant mathematical formulas. 
 
2.1.1. Encircling the Prey 

In their hunting, humpback whales first encircle their prey before moving towards it. In WOA, the 
best solution found so far is assumed to be the prey (or optimal solution), and other whales move toward 
this position. This encircling process is mathematically modeled as follows: 

�⃗⃗� = |𝐶 . 𝑋 ∗ − 𝑋 (𝑡)|                                     (1) 

𝑋 (𝑡 + 1) = 𝑋 ∗ − 𝐴 . �⃗⃗�                                (2) 
where: 

• 𝑋 ∗   is the position of the best solution (prey). 

• 𝑋 (𝑡)is the current position of the whale at iteration t. 

• �⃗⃗�    represents the distance between the whale and the prey. 

• 𝐴   and 𝐶   are coefficient vectors calculated as follows: 

𝐴 = 2. 𝑎 . 𝑟 − 𝑎                          (3) 

𝐶 = 2. 𝑟                                     (4) 
where: 

𝑎  is linearly decreased from 2 to 0 over the course of iterations. 

𝑟  is a random vector with values between 0 and 1. 
 
2.1.2. Bubble-net Attacking Method (Exploitation Phase) 
This phase simulates the bubble-net feeding behavior of humpback whales, where they spiral around 
their prey while gradually closing in. Two movement patterns are used, selected with a 50% probability: 
shrinking encircling mechanism and spiral updating position. 
 
2.1.2.1. Shrinking Encircling Mechanism 
In this approach, whales directly move towards their prey by reducing the distance, calculated with the 
encircling formulas mentioned above. 
 
2.1.2.2. Spiral Updating Position 

Whales move in a spiral path towards the prey. The mathematical representation of this spiral path 
is: 

𝑋 (𝑡 + 1) = 𝐷′⃗⃗  ⃗. 𝑒𝑏𝑙 . cos(2𝜋𝑙) + 𝑋 ∗             (5) 

 
where: 

𝐷′⃗⃗  ⃗ = |𝑋 ∗ − 𝑋 (𝑡) | represents the distance between the whale and the prey. 
b is a constant that defines the spiral shape. 
l is a random number in the range [-1 , 1]. 
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2.2. Search for Prey (Exploration Phase) 
In this phase, whales are encouraged to explore the search space to discover new potential solutions. 

This is achieved by generating random positions in the search space when |𝐴 > 1| guiding whales 
towards random solutions. This feature helps the WOA avoid getting trapped in local optima and 
explore the search space more effectively. 

The exploration phase is mathematically represented as: 

�⃗⃗� = |𝐶 . 𝑋 𝑟𝑎𝑛𝑑 − 𝑋 (𝑡)|           (6) 

𝑋 (𝑡 + 1) =  𝑋 𝑟𝑎𝑛𝑑 − 𝐴 . �⃗⃗�           (7) 
where: 

𝑋 𝑟𝑎𝑛𝑑 is a randomly selected whale’s position. 
 
2.3. The General WOA Algorithm Steps are as Follows 

1- Initialize: Set up the whale population, number of iterations, and parameters 𝑎  , 𝐴  and 𝐶 . 
2-  Objective Function Evaluation: Evaluate the objective function for each whale. 
3- Identify Best Whale: Select the whale with the best objective value as the current best solution. 
4-  Update Whale Positions: 

If |𝐴 |<1| : Execute encircling and bubble-net methods. 

If |𝐴 |>1| : Perform the exploration phase. 

5- Update Parameter �⃗⃗� : Decrease  𝑎  with each iteration for convergence. 
6- Termination: If the stopping condition (e.g., maximum iterations) is met, stop and return the 

best solution. 
 
2.4. Grasshopper Optimization Algorithm (GOA) 

The Grasshopper Optimization Algorithm (GOA) is a metaheuristic optimization algorithm 
inspired by the social behavior and movement patterns of grasshoppers. This algorithm is designed to 
find optimal points in complex optimization problems by mimicking the collective movement and food-
searching behavior of grasshoppers. GOA is particularly useful in solving nonlinear and complex 
optimization problems, as it combines two main behaviors—random movement and targeted 
movement—to explore the search space extensively and find optimal solutions [15]. 

In nature, grasshoppers live in large groups to survive and find food sources. Their group 
movement helps them discover better paths and resources. In GOA, this behavior is divided into two 
main parts: random movement and targeted movement [16]. 

Random Movement: This type of movement allows grasshoppers to explore the search space more 
broadly, finding new and different solutions. In the GOA algorithm, this movement helps prevent the 
algorithm from getting trapped in local optima. 
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Targeted Movement: In this type of movement, grasshoppers move toward food sources (optimal 
points). In the algorithm, this movement helps guide the search toward optimal areas and leads to 
convergence to the best solution. 

GOA Algorithm Stages 
The GOA algorithm consists of three main stages [17]: 
1. Initial Population Setup: First, a population of grasshoppers is randomly created in the search 

space. Each grasshopper is considered a possible solution, represented by a feature vector. 
2. Fitness Calculation: For each grasshopper in the population, the value of the objective function 

is calculated. This value determines the performance or success rate of the grasshopper in 
reaching the goal. The goal in the GOA algorithm is typically to minimize or maximize an 
objective function. 

3. Position Update of Grasshoppers: To update the position of each grasshopper, the algorithm 
uses two factors: 

• Random Movement: To maintain diversity and prevent getting stuck in local optima. 

• Targeted Movement: To guide the grasshoppers toward desirable areas in the search space. 
 
2.5. Grasshopper Movement Equation 

To update the position of the grasshoppers, the following equations are used: 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝐴. 𝑋𝐺
𝑘 − 𝑋𝑖

𝑘 + 𝑅. (𝑋𝑖
𝑘 − 𝑋𝑗

𝑘)     (8) 

In this equation: 

• 𝑋𝑖
𝑘   is the position of the i grasshopper at the k iteration. 

• 𝑋𝐺
𝑘 is the best-known position at the k iteration. 

• 𝐴 is a random value that controls the grasshopper's targeted movement. 

• 𝑅 is a random value that determines the grasshopper's random movement. 

• 𝑋𝑖
𝑘 is the position of another grasshopper considered as a neighbor. 

 
2.6. Bat Algorithm 

The Bat Algorithm (BA) is a metaheuristic optimization algorithm inspired by the echolocation 
behavior and social behavior of bats. The algorithm mimics the bats' ability to move in groups and 
search for food, aiming to find optimal solutions in complex optimization problems. BA is particularly 
useful in solving nonlinear and complex optimization problems and works by combining two main 
behaviors: random movement and targeted movement, which allows it to explore the search space 
extensively to find optimal solutions [18]. 

The Bat Algorithm utilizes two key features observed in bats' behavior for moving in their 
environment: 

1.    Echolocation: Bats use sound waves to locate themselves and their surroundings. 
2. Ability to vary sound intensity and frequency: Bats adjust their sound intensity and 

frequency to navigate effectively and locate food. 
The Bat Algorithm consists of three main stages: 
1. Initial Movement of Bats: Initially, a population of bats is randomly distributed in the search 

space. Each bat represents a potential solution and is characterized by a vector of features. 
2. Calculate Fitness and Update Position: The fitness of each bat is continuously updated based 

on the quality of the solution it represents. The fitness function is typically the objective 
function to be minimized or maximized 

3. Update Positions and Velocities: The position of each bat is updated based on two factors: 
Random Movement: To maintain diversity and avoid premature convergence. 
Movement towards Best Positions: To guide the bats towards optimal regions of the search space. 
In the Bat Algorithm, the position and velocity of each bat are updated continuously during 

iterations. The primary equations are as follows: 
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2.6.1. Velocity Update 
 

𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + (𝑥𝑖
𝑘 − 𝑥𝑔

𝑘). 𝛼 + 𝛽. (𝑥𝑖
𝑘 − 𝑥𝑖

𝑏𝑒𝑠𝑡)  (9) 
 
Where: 
 

𝑣𝑖
𝑘+1: Updated velocity of bat iii at iteration k+1. 

𝑣𝑖
𝑘: Current velocity of bat i at iteration k. 

𝑥𝑖
𝑘: Current position of bat i at iteration k. 

𝑥𝑔
𝑘: Global best position at iteration k. 

𝑥𝑖
𝑏𝑒𝑠𝑡 Best known position of bat i. 

𝛼 : Random factor controlling the movement. 

𝛽: Step size that controls frequency. 
 

2.6.2. Position Update 
 
 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                        (10) 

 
Where: 

 

𝑥𝑖
𝑘+1: Updated position of bat i at iteration k+1. 

𝑥𝑖
𝑘: Current position of bat i at iteration k. 

𝑣𝑖
𝑘+1: Updated velocity of bat i. 

 
2.6.3. Frequency and Intensity Update 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛). 𝜆         (11) 
 

𝐴𝑖 = 𝐴0. (1 − 𝑒−𝛾.𝑡)                    (12) 
 

Where: 
 

𝑓𝑖: 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑏𝑎𝑡 𝑖 
𝐴𝑖: 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑏𝑎𝑡 𝑖′𝑠 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡. 
𝑓𝑚𝑎𝑥 𝑎𝑛𝑑 𝑓𝑚𝑖𝑛: Minimum and maximum frequencies 

𝜆: Random factor for adjusting frequency. 

𝐴0: Initial intensity value. 

𝛾: Damping factor for intensity decay. 
t: Iteration step. 

 
2.7. K-Means 

The K-Means algorithm is an unsupervised learning method designed for clustering data into 
distinct groups or clusters by minimizing the variance within each cluster. This could be especially 
useful because it can offer a great initial answer by considering the node’s dispersion in the study area. 

The primary objective is to partition nodes into 𝑘 clusters, where each node is assigned to the cluster 
with the nearest centroid, which serves as the representative of the cluster [19]. 
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The algorithm begins with the initialization of 𝑘 cluster centroids, which can be selected either 
randomly or through specific initialization techniques. K-Means is very sensitive to the initialization of 
the centroids, as different starting points can lead to different clustering outcomes. Hence, the k-
means++ algorithm is used for initialization of cluster centroids in this study. 

The k-means++ algorithm uses a heuristic to find cluster centroids for k-means clustering. 
According to [54], k-means++ improves the running time of Lloyd’s algorithm, and the quality of the 
final solution. The k-means++ algorithm chooses cluster centroids as follows: 

1. Select an observation uniformly at random from all nodes. The chosen observation is the first 
cluster centroid and is denoted c1. 

2. Compute distances from each observation to c1. Denote the distance between cj and the 
observation m as d(xm,cj). 

3. Select the next centroid, c2 at random from all nodes with the probability defined in equation (13). 
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4. To choose center j: 
a. Compute the distances from each observation to each centroid, and assign each observation to its 

closest centroid. 
b. For m = 1, ..., nN and p = 1, ..., j – 1, select centroid j at random from all nodes with the following 

probability: 
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where Cp is the set of all observations closest to centroid cp and xm belongs to Cp. 
In other words, choose each next center based on a probability that is proportional to its distance 

from the nearest center you have already selected. 
5. Repeat step 4 until K cluster centroids are chosen. 
 Following initialization, the algorithm enters the assignment phase, where each node xi is assigned 

to the nearest centroid. This is determined using the Euclidean distance between the node and 
the centroid, calculated as: 

2

1

( , ) ( )
M

i j im jm

m

d x x 
=

= − (15) 

where xi represents the nodes’ location in the study area, μj denotes the cluster centroid, and M is 
the dimensionality of the data. The data point xi is assigned to the cluster Cj for which the distance d(xi, 

μj) is the smallest. 
After the assignment phase, the centroids are updated by calculating the mean of the data points 

within each cluster. The new centroid μj of cluster Cj is computed as: 
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i j

j i

x Cj

x
J




=  (16) 

where Cj is the set of nodes assigned to cluster j, and Jj is the number of nodes in that cluster. 
The algorithm iteratively alternates between the assignment and update steps until convergence. 

Convergence occurs when the centroids no longer change, or when 100 iterations are reached. The K-
Means algorithm seeks to minimize the within-cluster sum of squares (WCSS), also known as inertia. 
This function is defined as: 
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= − ‖ ‖                              (17) 

This function represents the sum of squared distances between each node and its assigned centroid, 
summed over all clusters. The algorithm's goal is to minimize this value, thereby ensuring that nodes 
are as close as possible to their respective centroids. 
 
3. Methodology 

In this paper, the proposed approach is developed to optimize energy consumption and extend the 
lifespan of Wireless Sensor Networks (WSNs). This hybrid method integrates the K-means clustering 
algorithm with three metaheuristic algorithms: the Grasshopper Optimization Algorithm (GOA), the 
Bat Algorithm (BA), and the Whale Optimization Algorithm (WOA). This combination aims to exploit 
the advantages of each method and address their limitations, thereby optimizing the clustering process 
and the selection of cluster heads. The proposed approach includes the following steps: energy 
modeling, cost function design, initialization using the K-means algorithm, and the application of three 
optimization algorithms to solve the clustering problem. 

First, the network energy model is designed. In WSNs, the transmitter-receiver unit of sensor 
nodes is typically the primary energy consumer. To better understand energy consumption, the 
transmitter-receiver is divided into three components: the power amplifier of the transmitter, the 
transmitter electronics, and the receiver electronics. Additionally, free-space channel models with power 

loss 𝑑2and multi-path channel models with power loss 𝑑4 are used to describe energy dissipation during 
transmission. As a result, the energy required for transmission (Etr) and reception (Ere)can be 
represented by the following equations: 
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re re elecE p e=                     (19) 

Where ptr  and 𝑃𝑟𝑒   represent the sizes of the transmitted and received packets, respectively. eelec   
denotes the energy consumed per bit by the radio electronics of the transmitter and receiver. The 
parameters efs and emp are related to the characteristics of the power amplifier, while d0 is the threshold 
distance, defined by the following equation: 

0

fs

mp

e
d

e
=                 (20) 

 
Additionally, if data aggregation is employed (e.g., by cluster heads that collect data from connected 

nodes), the cluster head incurs an energy cost for processing one bit of data. Therefore, the total energy 
cost of aggregation can be expressed by the following equation: 

da da agrE p e=                  (21) 

Where pda   represents the size of the data packets that need to be aggregated. 
By integrating these energy equations, the total energy consumption (energy dissipation) can be 
determined as follows: 

l tr re daE E E E= + +                (22) 

Then, the clustering objectives in wireless sensor networks (WSN) are defined as an optimization 
problem and then the proposed cost function to be solved using all three methods presented in this 
study is introduced. It is assumed that the maximum number of cluster heads is predefined.Hence, K 
decision variables with the lower and upper bounds equal to (0, nN] are considered in the proposed 
method, where nN is the number of nodes and K is the maximum number of the cluster heads. These 
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decision variables are first converted to integers using the ceiling function. Next, the repetitive values 
are discarded and a unique vector with a maximum length of K is obtained. The vector is the IDs of 
cluster heads that are selected in one scenario evaluation (a population member in an iteration). 
Moreover, since the repetitive values are discarded, the length of the vector can be varied from 1 to K. 
This makes the proposed method flexible in finding the optimal number of cluster heads. Once the 
cluster head IDs have been recognized, the nodes of each cluster can be determined by checking the 
distances between each node and cluster head. In other words, the nodes belong to the clusters where 
their cluster head is closer to them. After determining the cluster heads and links, the scenario should be 
evaluated. In this regard, the cost function is designed carefully by focusing on both energy 
consumption and energy distribution. Our first goal is to reduce the overall energy loss of the nodes. 
This is done by calculating the summation of energy loss of all nodes in the network. In a WSN, there 
are two categories of sensors. One is nodes that send data to cluster heads and do not receive any data. 
The other is cluster heads which send data to the base station and receive data from nodes of that 
cluster. For the normal nodes, the pre and pda are zero since they don’t receive any data while the ptr is 
equal to the packet size of a single node which is considered to be p0 for all nodes in this study. The 
cluster heads, however, consume both receiving and aggregating energies. Considering there are Jk 
nodes in the kth cluster, the pre and pda are determined as Jk. p0 and (Jk +1). p0, respectively. This is 
because there are Jk packages that are received in the kth cluster head but there are Jk +1 packages to 
be aggregated by counting the package size of the kth cluster head itself. Furthermore, the ptr of cluster 

heads can be calculated as (1+ρ.Jk). p0 where ρ is the data aggregation ratio. By calculating the energy 
consumption of each node, the first part of the cost function which is related to the energy consumption 
is calculated as follows: 
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                (23) 

 

where 
( , , )

,

k j r

l CME  is the energy loss for the jth cluster member of the kth cluster in the rth round and 

( , )

,

k r

l CHE  is the energy loss for the kth cluster head in the rth round 

By only focusing on the energy loss of the nodes, we are more likely to postpone the round of the 
first node death (FND). However, the network might lose its energy fast after the FND since it doesn’t 
forecast its situation in the next several rounds. This mostly happens when the nodes with critical 
positions die since the network had been relying on them to reduce the energy consumption in each 
round before the FND. Hence, we should keep energy distributed to prevent future undesirable 
consequences that arise from our decisions in each round. Most papers don’t consider this critical factor 
and some of them try to keep energy the same over the network or over the cluster [20]. However, 
neither of these approaches consider the best distribution of energy in the network. According to 
equation (23), the consumed energy of each node in each round is correlated with the square or the 
fourth power of its distance from the destination (dependent on the distance). Thus, the far nodes should 
keep more energy since they need it in the last rounds of the network lifetime. In this study, the 
predicted node energy of the next round based on the present configuration and links are considered for 
the evaluation of energy distribution. Generally, the predicted energy can be calculated as follows: 

( , 1) ( , ) ( , )i r i r i r

pre rem lE E E+ = − (24) 

Where 
( , 1)i r

preE +
is the predicted energy of the ith node in the (r+1)th round, 

( , )i r

remE  is the remained 

energy of the ith node in the rth round, and 
( , )i r

lE  is the lost energy (consumed energy) of the ith node in 

the rth round. 
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As mentioned earlier the consumed energy is correlated with the square of distance for near 
destinations and the fourth power of the distance for far destinations. Hence, we should consider one of 
these conditions as the final pattern of the remaining energy distribution. In this study, the square of 
distance is considered for the remaining energy distribution pattern. This decision is made based on a 
simple idea: to have less energy difference between sensors and increase their flexibility. 

Therefore, the ideal predicted energy of the next round would be as follows: 
2( , 1) ( ) ( , )i r r i b

preE d+ =  (25) 

Where α(r) is a fixed coefficient for all nodes in the rth round and d(i,b) is the distance between the ith 
node and the base station. Figure 1 shows the ideal energy distribution based on equation (26). 
However, keeping all nodes in a specific distribution in all rounds is practically impossible. Thus, the 
second part of the cost function to be minimized is described as: 

2( , 1) ( ) ( , )2 i r r i b

preF E d+= −   (26) 

Where α(r) can be obtained using equation (26) as follows: 
 

 
Figure 1. 
The energy distribution which is trying to be preserved using the proposed cost function. 
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Finally, by defining both parts of cost functions, the final optimization problem can be obtained as 
the weighted sum of them. However, it should be noted that these cost functions have different units, 
and adjusting weight is critical to letting both parts have their impact. Hence, the final cost function is 
described as follows: 

min [𝐹1 + 𝛽. 𝐹2]                (28) 
   

where β is the trade-off coefficient for the final cost function. 
When the optimization problem is completely formulated and the optimization algorithm and its 

decision variables are determined, we can solve the problem of WSN clustering. However, the crucial 
point to be noted is that the computational resources and time are limited in each round. Thus, we 
should solve the problem in the most efficient way. To make the problem more efficient we need to 
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restrict the population size or the maximum number of iterations in the optimization problem which 
might lead to achieving a suboptimal solution and reducing the overall performance. Therefore, another 
solution is proposed in this study to address this issue. In this regard, the K-means clustering algorithm 
is adopted to initially specify the location of cluster heads. K-means can propose a semi-optimal solution 
since the cluster heads would be properly distributed and the distances from cluster members are 
considered to be minimal. By initializing the population, we can start from a semi-optimized solution, 
preventing the optimization problem from investigating the odd and worthless solutions. This leads to a 
fast convergence and allows us to reduce the computational-related hyperparameters of the optimization 
algorithm without being concerned about reducing overall performance. 

The K-Means algorithm is an unsupervised learning method designed for clustering data into 
distinct groups or clusters by minimizing the variance within each cluster. This could be especially 
useful because it can offer a great initial answer by considering the node’s dispersion in the study area. 

The primary objective is to partition nodes into 𝑘 clusters, where each node is assigned to the cluster 
with the nearest centroid, which serves as the representative of the cluster. 

The time complexity of K-Means is O(nN⋅K⋅d⋅I), where nN is the number of nodes, K is the number of 
clusters, d is the dimensionality of the data, and I is the number of iterations. While K-Means is efficient 
for moderate-sized datasets, it can become computationally expensive for large datasets or high-
dimensional data. Since the data dimension is 2, the number of iterations is 100, and the number of 
nodes and the number of clusters is limited, it can be computationally efficient for the initialization of 
the optimization algorithm. 

In the first method, the Grasshopper Optimization Algorithm (GOA) is used to solve the problem. 
This algorithm simulates the swarming behavior of grasshoppers to guide the processes of exploration 
and exploitation. The positions of the grasshoppers are updated by combining social forces, gravity, and 
wind. By adjusting the control parameters, the algorithm achieves a suitable balance between 
exploration and exploitation, preventing it from getting trapped in local optima. 

The second method employs the Bat Algorithm (BA), which is inspired by the echolocation behavior 
of bats. In this algorithm, frequency, velocity, and cluster head indices are dynamically updated. A local 
search mechanism is also utilized to enhance accuracy and exploit the best solutions 

The third method is based on the Whale Optimization Algorithm (WOA), which simulates the 
social behavior of humpback whales. This algorithm leverages three main mechanisms: prey 
encirclement, spiral movement, and prey search. By adjusting control parameters and combining 
exploration and exploitation phases, WOA demonstrates excellent performance in optimizing the 
clustering process. 

Finally, all three methods are evaluated in a uniform simulation environment, and their results are 
compared in terms of energy consumption, energy balance, and network lifetime. 
 
4.1. Configuration and Setting  

In this section, the configurations and adjustments that we made which are needed for simulating 
the proposed method are presented. In this regard, the WSN focuses on a 200m×200m2 area with 100 
nodes that are randomly deployed in the sensing area. The maximum number of cluster heads (K) is 
considered equal to 10 which can be a rational choice based on the existence of a total of 100 nodes in 
the network. Furthermore, to model the energy consumption, the initial energy of each node is 
considered equal to 1J, the data packet size is equal to 500 bytes, the data aggregation ratio is 
considered 0.01, and other adjustments are reported in Table 1. Moreover, some other configurations 
are related to the proposed method. Beta is one important coefficient that makes a trade-off between two 

parts of the cost function. In this study, a β equal to 0.0008 is considered which gives a little more 
weight to the energy consumption part (F1). There are also some other parameters related to WOA, 
GOA, and BA, the detailed configuration of which is reported in Table 1. 
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Table 1. 
The parameters’ setting used in this study. 

Parameter Value 
WSN area 200m×200m 
Number of nodes 100 
Maximum number of cluster heads 10 
Initial energy 1J 
Data aggregation ratio 0.01 
Data packet size 500 bytes 
eelec 50 nJ/but 
efs 10 pJ/bit/m2 
emp 0.0013 pJ/bit/m4 
eda 10 nJ/bit/signal 
Population size of GOA 30 
Maximum iterations of GOA 50 
Population size of WOA 30 
Maximum iterations of WOA 50 
Population size of BA 30 
Maximum iterations of BA 50 

α 0.00125 

β 0.5 
 

4.2. Simulation Results 
In this section, the obtained results from a comprehensive evaluation of all three methods proposed 

in this study are presented. To evaluate the performance comprehensively, we consider three scenarios. 
Each scenario has a different sensor and base station deployment as follows: 

• Scenario 1: The BS is in the middle of the interesting area (the coordinate of (100,100)). 

• Scenario 2: The BS is located at a coordinate of (0,95) in the interesting area. 

• Scenario 3: The BS is located at the coordinate of (170, 180) in the interesting area. 
The performance of each method is evaluated in all three scenarios and will be compared to each 

other. The obtained results for each scenario are reported in the rest of this section. 
 
4.3. Scenario 1: Base Station Located at the Center of the Area 

In this scenario, the BS is centrally located, providing equal opportunity for all nodes to 
communicate with the BS. This balanced positioning reduces the energy consumption needed for 
communication, making it the least challenging scenario. Figure 2 illustrates the lifetime curves of all 
three methods (WOA, GOA, and BA). To compare the obtained results, the performance of the all 
methods is evaluated based on first node dying (FND), half node dying (HND), and last node dying 
(LND). 
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Figure 2. 
The lifetime curves of WOA, GOA, and BA using the proposed method in the first scenario. 

 
As can be seen, WOA exhibits a robust performance, with the FND recorded at 2415 rounds. This 

reflects a balanced energy distribution strategy that delays the first node's failure. WOA reaches HND 
at 2882 rounds, showing that half of the network's nodes remain active for a considerable time after the 
first node's failure. The LND occurs at 3364 rounds, indicating a gradual decline in network 
functionality as nodes deplete their energy. WOA’s relatively long network lifespan demonstrates 
effective energy management across all nodes. GOA shows slight differences compared to WOA. The 
FND is marginally later at 2417 rounds, indicating a very similar initial energy distribution as WOA. 
However, the HND occurs earlier than WOA at 2870 rounds, suggesting that nodes begin failing more 
rapidly during the middle stages of the network’s operation. Despite this, GOA outperforms WOA in 
terms of overall network longevity, with the LND occurring at 3402 rounds, which is 38 rounds longer 
than WOA. This difference highlights GOA’s ability to conserve energy in the latter stages of the 
network's life, resulting in a more prolonged overall lifespan. 

BA displays the earliest FND at 2399 rounds, showing a slight difference in energy distribution 
compared to WOA and GOA. BA’s HND occurs at 2858 rounds, indicating a quicker depletion of 
energy across half the network. Finally, the LND is recorded at 3308 rounds, making BA the algorithm 
with the shortest overall network lifespan in this scenario. The difference in performance between BA 
and the other algorithms suggests that BA is less efficient in conserving energy, leading to earlier 
network failures. However, the differences are relatively small, with BA trailing behind WOA by 56 
rounds and GOA by 94 rounds in terms of LND. 

Overall, GOA emerges as the best-performing algorithm in this scenario, with a longer overall 
network lifespan compared to WOA and BA. The difference in LND between GOA and WOA (38 
rounds) suggests that GOA is more effective in extending network life, particularly during the later 
stages. WOA maintains a strong performance, with only slight differences compared to GOA, 
particularly in HND, where WOA outlasts GOA by 12 rounds. BA, while still competitive, shows a 
more rapid decline in node life, with the differences in FND, HND, and LND pointing to slightly less 
efficient energy management. Despite these differences, all three algorithms perform well in this least 
challenging scenario, with GOA showing the most pronounced advantage in overall network longevity. 
Table 2 summarizes the findings of this section. Moreover, Figures 3, 4, and 5 illustrate the structure of 
WSN in the first four rounds using WOA, GOA, and BA, respectively. 
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Table 2. 
The obtained results of the first scenario. 

 FND HND LND 
WOA 2415 2882 3364 
GOA 2417 2870 3402 
BA 2399 2858 3308 

 

 
Figure 3. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving 
the proposed cost function using the WOA algorithm and K-means in the first scenario. 
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Figure 4. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving 
the proposed cost function using the GOA algorithm and K-means in the first scenario. 
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Figure 5. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving the 
proposed cost function using the BA algorithm and K-means in the first scenario. 

 
4.4. Scenario 2: Base Station Located at the Edge of the Area 

In this scenario, the BS is positioned at the edge of the area of interest, specifically at the coordinate 
(0,95). This location creates a more challenging environment for the network, as nodes farther from the 
BS require more energy to communicate, potentially leading to faster energy depletion. Figure 6 
illustrates the lifetime curves of all three methods (WOA, GOA, and BA) in this scenario. 
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Figure 6. 
The lifetime curves of WOA, GOA, and BA using the proposed method in the second scenario. 

 
As it can be observed, WOA shows strong performance in this scenario, with the FND occurring at 

718 rounds. This indicates that WOA effectively distributes energy across the network, even in this 
more demanding setting. The HND is recorded at 1729 rounds, meaning half of the network nodes 
continue functioning for a significant period after the first node's failure. Finally, the LND occurs at 
2492 rounds, demonstrating that WOA sustains the network for an extended time, even under the more 
challenging conditions of this scenario. GOA exhibits a performance similar to WOA but with slight 
differences. The FND is recorded at 716 rounds, almost identical to WOA. However, the HND occurs 
earlier at 1704 rounds, indicating that the network begins to lose nodes more quickly during the middle 
stages compared to WOA. GOA’s LND is observed at 2410 rounds, which is 82 rounds shorter than 
WOA, suggesting that GOA is somewhat less effective at managing energy in the later stages of the 
network’s operation. Nonetheless, GOA still performs well, maintaining network functionality for a 
substantial period. Finally, BA shows a more pronounced difference in performance compared to WOA 
and GOA according to Figure 4. The FND occurs earlier at 707 rounds, indicating that nodes begin to 
fail slightly sooner. BA's HND is recorded at 1440 rounds, a noticeable decline compared to both WOA 
and GOA, suggesting a quicker energy depletion across the network. The LND occurs at 2178 rounds, 
marking the shortest network lifespan among the three algorithms in this scenario. The differences in 
BA's performance suggest that it is less efficient at managing energy, especially in challenging scenarios 
like this one, where nodes farther from the BS consume more energy. In summary, WOA stands out as 
the top-performing algorithm in this more challenging scenario, achieving the LND of 2492 rounds. 
The difference of 82 rounds between WOA and GOA indicates that WOA is slightly more effective at 
extending the network’s life, particularly during the later stages. GOA, while close to WOA in 
performance, shows a quicker decline in HND and LND, reflecting a slightly less efficient energy 
management strategy. BA, with the earliest FND and shortest LND, demonstrates the most rapid 
energy depletion, making it less suitable for scenarios where nodes are farther from the BS. Despite 
these differences, all three algorithms show their strengths in different aspects, with WOA providing 
the best overall performance in this scenario. Table 3 shows the obtained FND, HND, and LND of each 
method. Moreover, Figures 7, 8, and 9 depict the WSN in the first four rounds of this scenario using 
WOA, GOA, and BA, respectively. 
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Table 3. 
The obtained results of the second scenario. 

 FND HND LND 
WOA 683 1388 2022 
GOA 637 1386 1917 
BA 394 1242 1767 

 

 
Figure 7. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving 
the proposed cost function using the WOA algorithm and K-means in the second scenario. 
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Figure 8. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving 
the proposed cost function using the GOA algorithm and K-means in the second scenario. 
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Figure 9. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving 
the proposed cost function using the BA algorithm and K-means in the second scenario. 

 
4.5. Scenario 3: Base Station Located at a Distant Corner of the Area 

In this most challenging scenario, the base station (BS) is located at a distant corner of the area, at 
the coordinates (170,180). This positioning creates significant challenges for nodes that are far from the 
BS, as they require more energy for communication, leading to faster energy depletion. Figure 10 shows 
the lifetime curves of all three methods in this scenario. 
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Figure 10. 
The lifetime curves of WOA, GOA, and BA using the proposed method in the third scenario. 

 
According to the obtained results, WOA shows resilience even in this demanding scenario, with the 

FND occurring at 683 rounds. This indicates that WOA manages to delay the first node’s failure despite 
the increased energy demands. The HND is recorded at 1388 rounds, meaning that half of the network’s 
nodes remain operational for a significant duration after the first failure. The LND occurs at 2022 
rounds, demonstrating that WOA effectively sustains the network for an extended period, even under 
the most challenging conditions. WOA’s performance here highlights its ability to balance energy 
consumption across the network, leading to the longest network lifespan in this scenario. Moreover, 
GOA also performs well in this scenario, but with some differences compared to WOA. The FND is 
observed at 637 rounds, earlier than WOA, indicating a quicker initial energy depletion. However, GOA 
closely follows WOA in terms of HND, with the half node dying at 1386 rounds—only 2 rounds earlier 
than WOA. The LND occurs at 1917 rounds, which is 105 rounds shorter than WOA. This difference 
suggests that while GOA effectively manages energy during the middle stages, it is slightly less efficient 
at conserving energy in the later stages of the network’s operation compared to WOA. 

BA exhibits the most rapid decline in performance in this scenario. The FND occurs significantly 
earlier at 394 rounds, indicating that nodes start failing much sooner than with WOA and GOA. BA's 
HND is recorded at 1242 rounds, a noticeable decline compared to the other algorithms, showing that 
half of the network’s nodes deplete their energy relatively quickly. Finally, the LND is observed at 1767 
rounds, marking the shortest network lifespan among the three algorithms in this scenario. The 
differences in BA's performance suggest that it struggles to manage energy efficiently in such a 
challenging environment, leading to earlier node failures and a quicker overall network decline. 

In a nutshell, WOA stands out as the best-performing algorithm in this most challenging scenario, 
with the longest network lifespan (LND) at 2022 rounds. The difference of 105 rounds between WOA 
and GOA underscores WOA's superior ability to extend the network’s life, particularly during the later 
stages of operation. GOA, while performing strongly in the early and middle stages, shows a quicker 
decline towards the end, reflecting a slightly less effective energy management strategy compared to 
WOA. BA, with the earliest FND and shortest LND, demonstrates a much more rapid energy depletion, 
making it less suitable for highly demanding scenarios like this one. Despite the challenging conditions, 
all three algorithms demonstrate their capabilities, with WOA emerging as the most resilient in 
sustaining the network over time. Table 4 illustrates the summary of the mentioned analysis. 
Furthermore, Figures 11, 12, and 13 show the WSN structure in the first four rounds of the third 
scenario using WOA, GOA, and BA, respectively. 
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Table 4. 
The obtained results of the third scenario. 

 FND HND LND 
WOA 718 1729 2492 
GOA 716 1704 2410 
BA 707 1440 2178 

 

 
Figure 11. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving the proposed cost function 
using the WOA algorithm and K-means in the third scenario. 
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Figure 12. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving the 
proposed cost function using the GOA algorithm and K-means in the third scenario. 
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Figure 13. 
The structure of the WSN in (a) round 1, (b) round 2, (c) round 3, and (d) round 4 of solving the 
proposed cost function using the BA algorithm and K-means in the third scenario. 

 

5. Discussion 

The findings of this study underscore the significance of algorithm selection in optimizing energy 
consumption and prolonging network lifespan in WSN. By evaluating the performance of three 
optimization algorithms—GOA, WOA, and BA—across varying scenarios, several key insights have 
emerged. In the first scenario, where the base station (BS) is centrally located, the GOA demonstrates a 
slight edge over WOA, performing marginally better in terms of network longevity. This outcome 
suggests that in environments where sensor nodes are equidistant from the BS, the swarm-based 
mechanisms of GOA are particularly effective at balancing load distribution and managing energy 
consumption. WOA, while close in performance, may benefit from additional refinement in such 
balanced topologies. BA, though competitive, does not achieve the same level of efficiency as GOA and 
WOA, indicating potential limitations in its search capabilities in this scenario. As the placement of the 
BS becomes more challenging, as seen in Scenarios 2 and 3, the differences between the algorithms 
become more pronounced. WOA emerges as the most robust solution, consistently outperforming both 
GOA and BA. Its ability to adapt to more complex and unbalanced node distributions highlights the 
effectiveness of its strategy in managing energy resources under more demanding conditions. GOA, 
while still a strong contender, begins to show a quicker decline in network performance as the scenario 
complexity increases, indicating that its performance may be more sensitive to changes in network 
topology. BA, on the other hand, struggles significantly in these scenarios, with a more rapid depletion 
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of energy and earlier node failures. This pattern suggests that BA may be less suited for WSNs with 
highly uneven node distributions or when the BS is positioned far from the network center. One of the 
critical contributions of this research is the introduction of a novel cost function during the clustering 
phase. By simultaneously considering energy consumption and node distribution, this cost function 
enhances network flexibility, especially in the final rounds of operation. The K-means clustering used 
for initial cluster head placement has also proven beneficial in speeding up convergence and preventing 
the algorithms from being trapped in local optima. The combination of these techniques contributes to 
the overall success of the proposed method. All in all, the results of this study provide a comprehensive 
understanding of how different optimization algorithms perform in WSN clustering tasks under 
varying conditions. WOA, with its superior adaptability, emerges as the most effective algorithm 
overall, particularly in more complex scenarios. However, GOA shows promise in more balanced 
network configurations, and further refinement of these algorithms could lead to even greater 
improvements in WSN performance. Future research should explore additional factors and expand the 
scope of scenarios to continue advancing the state of WSN optimization techniques. 
 
6. Comparison 

This section offers an in-depth comparison between the proposed method and other approaches 
described in the literature. First, each method will be thoroughly explained, and then a brief summary 
of each method will be presented in a table format to facilitate comparison. An energy-efficient and 
reliable routing algorithm based on Dempster-Shafer (DS) evidence theory (DS-EERA) is proposed in 
[21]. DS-EERA first establishes three attribute indices—neighboring nodes’ residual energy, traffic, and 
the proximity of its path to the shortest path—as the evidence. The entropy weight method is then used 
to objectively determine the weight of these indices. After establishing the basic probability assignment 
(BPA) function, the fusion rule of DS evidence theory is applied to merge the BPA function of each index 
value to select the next hop. Each node in the network transmits data through this routing strategy. 
Theoretical analysis and simulation results demonstrate that DS-EERA effectively prolongs network 
lifetime, achieving a lower packet loss rate and improving data transmission reliability. LND of DS-
EERA is 1027 rounds for the BS located at the center of the study area. A novel clustering routing 
algorithm for WSN that combines the Sine Cosine Algorithm (SCA) with Lévy mutation to optimize 
energy efficiency and network lifetime is presented in [22]. The proposed method enhances traditional 
SCA by incorporating Lévy flight, which helps to avoid local optima and improve exploration 
capabilities. The authors evaluate their algorithm against several existing approaches using metrics 
such as network lifetime, energy consumption, and the number of alive nodes. The results demonstrate 
that the proposed method outperforms other algorithms in terms of energy efficiency and prolongs the 
network's operational time, making it suitable for WSN applications where energy conservation is 
critical. The obtained (HND) of this method for the BS located at the edge of interesting area is 945 
rounds. All of the mentioned methods perform satisfactorily in WSN lifetime enhancement. However, all 
three methods proposed in this study outperforms them all due to its initialization using k-means and 
the well-crafted cost function 
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Table 5. 
The comparison of the proposed method with other WSN clustering methods. 

References Method 
HND for BS 
at center 

LND for BS 
at center 

HND for BS 
at edge 

LND for BS at 
edge 

[21] 
DS-EERA (DS 
evidence theory) 

- 1027 rounds - - 

[22] 
Combining sine 
cosine algorithm and 
Lévy mutation 

- - 945 rounds - 

Proposed 
method 

Enhanced cost 
function / K-means 
/ BA 

2858 rounds 3308 rounds 1242 rounds 1767 rounds 

Enhanced cost 
function / K-means 
/ GOA 

2870 rounds 3402 rounds 1386 rounds 1917 rounds 

Enhanced cost 
function / K-means 
/ WOA 

2882 rounds 3364 rounds 1388 rounds 2022 rounds 

 

7. Conclusion 

This Article addresses the critical challenge of energy resource management in WSN by focusing on 
the clustering problem. Through the introduction and comparison of three optimization algorithms—
Grasshopper Optimization Algorithm (GOA), Bat Algorithm (BA), and Whale Optimization Algorithm 
(WOA)—the research aims to optimize energy consumption and extend the network's lifespan. The 
proposed method leverages K-means clustering for the initial placement of cluster heads, combined with 
a novel cost function that considers both energy consumption and node distribution. This approach 
enhances the network's flexibility and efficiency, particularly in the later stages of operation. The 
experimental results across three different scenarios, each with varying base station (BS) locations, 
demonstrate the effectiveness of the proposed method and the relative performance of the algorithms. In 
the least challenging scenario, where the BS is centrally located, GOA performs slightly better than 
WOA, managing to extend the network lifespan further. However, WOA remains competitive, closely 
following GOA in performance. BA, while demonstrating good energy efficiency, falls short compared 
to both GOA and WOA in this scenario. As the complexity of the scenario increases, with the BS 
positioned at the edge of the area, the differences between the algorithms become more pronounced. 
WOA consistently demonstrates superior energy management, delaying the first node dying (FND) and 
extending the last node dying (LND) further than GOA and BA. GOA remains competitive, though it 
shows a quicker decline in network lifespan compared to WOA. BA, on the other hand, struggles in this 
scenario, with earlier node failures and a shorter overall network lifespan. In the most challenging 
scenario, where the BS is located in a distant corner, WOA once again proves to be the most resilient 
algorithm, effectively balancing energy consumption and maintaining network functionality for the 
longest period. GOA, while still performing well, shows a significant decrease in network lifespan 
compared to WOA, particularly in the later stages. BA, facing the greatest challenge in this scenario, 
experiences the fastest energy depletion, resulting in the shortest network lifespan among the three 
algorithms. Overall, the study highlights the importance of efficient clustering and optimization in 
WSNs for prolonging network life and improving energy management. Among the three algorithms 
evaluated, GOA outperforms WOA in the least challenging scenario, while WOA consistently 
outperforms GOA and BA across more complex scenarios, making it the most effective solution for the 
clustering problem in WSNs overall. The integration of K-means clustering and the newly designed 
cost function further enhances the performance of the optimization algorithms, ensuring balanced load 
distribution and reducing energy consumption. This research contributes to the ongoing efforts to 
develop more robust and energy-efficient WSNs, particularly in challenging environments where 
resource management is critical. 



8610 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 8582-8610, 2024 
DOI: 10.55214/25768484.v8i6.3848 
© 2024 by the authors; licensee Learning Gate 

 

Copyright:  
© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
 
References 
[1] Mamalis, B., Gavalas, D., Konstantopoulos, C., & Pantziou, G. (2009). Clustering in wireless sensor networks. In 

RFID and sensor Networks (pp. 343-374). CRC Press. 
[2] Sasikumar, P., & Khara, S. (2012, November). K-means clustering in wireless sensor networks. In 2012 Fourth 

international conference on computational intelligence and communication networks (pp. 140-144). IEEE. 
[3] Subramani, N., Mohan, P., Alotaibi, Y., Alghamdi, S., & Khalaf, O. I. (2022). An efficient metaheuristic-based 

clustering with routing protocol for underwater wireless sensor networks. Sensors, 22(2), 415. 
[4] Saadati, M., Mazinani, S. M., Khazaei, A. A., & Chabok, S. J. S. M. (2024). Energy efficient clustering for dense 

wireless sensor network by applying Graph Neural Networks with coverage metrics. Ad Hoc Networks, 156, 103432. 
[5] Sulthana, N. N., & Duraipandian, M. (2024). EELCR: energy efficient lifetime aware cluster-based routing technique 

for wireless sensor networks using optimal clustering and compression. Telecommunication Systems, 85(1), 103-124. 
[6] Debasis, K., Sharma, L. D., Bohat, V., & Bhadoria, R. S. (2023). An energy-efficient clustering algorithm for 

maximizing lifetime of wireless sensor networks using machine learning. Mobile networks and applications, 28(2), 853-

867. 
[7] Nedham, W. B., & Al-Qurabat, A. K. M. (2023). A comprehensive review of clustering approaches for energy 

efficiency in wireless sensor networks. International Journal of Computer Applications in Technology, 72(2), 139-160. 
[8] El Khediri, S. (2022). Wireless sensor networks: a survey, categorization, main issues, and future orientations for 

clustering protocols. Computing, 1-63. 
[9] Surenther, I., Sridhar, K. P., & Roberts, M. K. (2023). Maximizing energy efficiency in wireless sensor networks for 

data transmission: A Deep Learning-Based Grouping Model approach. Alexandria Engineering Journal, 83, 53-65. 
[10] Mittal, M., de Prado, R. P., Kawai, Y., Nakajima, S., & Muñoz-Expósito, J. E. (2021). Machine learning techniques for 

energy efficiency and anomaly detection in hybrid wireless sensor networks. Energies, 14(11), 3125. 
[11] Dinesh, K., & Santhosh Kumar, S. V. N. (2024). Energy-efficient trust-aware secured neuro-fuzzy clustering with 

sparrow search optimization in wireless sensor network. International Journal of Information Security, 23(1), 199-223. 
[12] Lilhore, U. K., Khalaf, O. I., Simaiya, S., Tavera Romero, C. A., Abdulsahib, G. M., & Kumar, D. (2022). A depth-

controlled and energy-efficient routing protocol for underwater wireless sensor networks. International Journal of 

Distributed Sensor Networks, 18(9), 15501329221117118. 

[13] Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67. 
[14] Nasiri, J., & Khiyabani, F. M. (2018). A whale optimization algorithm (WOA) approach for clustering. Cogent 

Mathematics & Statistics, 5(1), 1483565. 
[15] Meraihi, Y., Gabis, A. B., Mirjalili, S., & Ramdane-Cherif, A. (2021). Grasshopper optimization algorithm: theory, 

variants, and applications. Ieee Access, 9, 50001-50024. 
[16] Qin, P., Hu, H., & Yang, Z. (2021). The improved grasshopper optimization algorithm and its applications. Scientific 

Reports, 11(1), 23733. 
[17] Abualigah, L., & Diabat, A. (2020). A comprehensive survey of the Grasshopper optimization algorithm: results, 

variants, and applications. Neural Computing and Applications, 32(19), 15533-15556. 
[18] Yang, X. S., & He, X. (2013). Bat algorithm: literature review and applications. International Journal of Bio-inspired 

computation, 5(3), 141-149. 

[19] Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE access, 8, 80716-80727. 
[20] Han, Y., Li, G., Xu, R., Su, J., Li, J., & Wen, G. (2020). Clustering the wireless sensor networks: a meta-heuristic 

approach. IEEE Access, 8, 214551-214564. 
[21] Tang, L., Lu, Z., & Fan, B. (2020). Energy efficient and reliable routing algorithm for wireless sensors 

networks. Applied Sciences, 10(5), 1885. 
[22] Guo, X., Ye, Y., Li, L., Wu, R. and Sun, X., 2023. WSN clustering routing algorithm combining sine cosine algorithm 

and Lévy mutation. IEEE Access, 11, pp.22654-22663. 

https://creativecommons.org/licenses/by/4.0/

