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Abstract: This study presents a method for addressing dynamic issues using an elastic half-plane 
subjected to different sorts of boundary disturbances. The motion of the half-plane is governed by wave 
equations that pertain to the scalar and non-zero components of the vector elastic displacement potentials. 
It is assumed that the starting circumstances are zero. An explicit solution to the problem is obtained by 
using the integral relation between the components of displacements and stresses of the half-plane 
boundary. This relation is expressed as a two-dimensional convolution with the influence function 
resulting from the principle of superposition. The properties of the convolution operation in two variables 
and the theory of generalized functions are used to derive the solution in integral form. Simultaneously, 
the acquisition of this solution relies on the technique of decomposing the influence function, whereby it 
is expressed as the multiplication of two components that meet the predetermined essential criteria. 
Hence, to get conclusive outcomes, it is important to factorize the impact function that has the given 
characteristics. The process of obtaining the necessary factorization of the influence function relies on 
describing its image as a multiplication of individual elements. The first derivation of this function was 
accomplished by the use of the joint inversion technique of the Fourier-Laplace transform, relying on 
analytical representations of pictures. Consequently, explicit integral formulae were derived to solve the 
issue and enable the determination of unknown displacements and stresses at any speed range of motion 
of the boundary conditions interface point. An example of a particular sort of boundary condition is 
provided to demonstrate the technique for addressing common situations. 
Keywords: Boundary disturbances, Elastic half-plane, Fourier-laplace transform, Homogeneous isotropic elastic medium, 
Propagation of nonstationary. 

 
1. Introduction  

Continuum dynamics is the most intricate subdivision of mechanics. The study of this subject is 
relevant since all natural events are known to be non-stationary. The commonly used notions of static 
and non-stationary processes are only an approximation, typically justified, of actual occurrences. 
Considering the dynamic characteristics of the environment is often essential, both in terms of quality and 
quantity. Investigating the phenomenon of wave propagation in confined and partially confined 
continuous media is a more intricate undertaking compared to researching the same phenomena in 
unrestricted media. Currently, there is a lack of research on the mechanics of a deformable solid when it 
comes to two-dimensional non-stationary situations involving the propagation of boundary disturbances 
in an elastic half-plane. Simultaneously, the advancement of geology, seismology, metal processing 
technology, and other scientific and technological fields that deal with non-stationary plane problems 
necessitated the investigation of related mixed problems, where disturbances are defined at the boundary 
of the medium. Similar issues also occur when examining the phenomena of impact contact between elastic 
blunt objects and completely rigid or deformable surfaces, as well as in situations involving the effects of 
moving loads on solid deformable objects, and in cases involving fissures. 



8697 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 8696-8708, 2024 
DOI: 10.55214/25768484.v8i6.3857 
© 2024 by the authors; licensee Learning Gate 

 

It is important to consider the impact functions associated with concentrated kinematic or force effects 
while tackling issues of this kind. They are essential solutions of the operators that explain the 
mathematical model of the item being studied. Generally, the combinations of these elements create a 
tensor. The tensor's components serve as kernels in integral equations that solve the associated problems. 
Lamb [1] was the first to address the issue of identifying non-stationary effect functions. The problems 
associated with finding influence functions are crucial for creating solutions to systems of equations for 
non-stationary contact issues. Consequently, several academics from both local and international 
backgrounds have been actively involved in addressing these issues. In 1989, De-sui [2] demonstrated 
the practical use of Ungar's differential transformation in the field of elastodynamics. Kosloff et al. [3] 
developed a Fourier-based approach for two-dimensional forward modeling. To address the free surface 
boundary condition using the Fourier approach, a novel set of wave equations was created. These 
equations use the stresses as unknowns, rather than the displacements. The solution method included a 
process of dividing both the spatial and temporal dimensions into discrete segments. The Fast Fourier 
Transform was used to approximate spatial derivatives, while second-order differencing was used to 
derive temporal derivatives. The numerical technique was validated by comparing it to the analytic 
solution for Lamb's issue in two dimensions. Richards [4] discussed fundamental solutions to Lamb's 
dilemma for a single source point and their significance in three-dimensional investigations of 
spontaneous fracture growth. Steinfeld and coworkers [5] delivered a comprehensive study on the 
propagation of 3D waves in an elastic half-space, specifically focusing on the classical approach and the 
direct boundary element method. Melnikov [6] presented the impact of point sources on perforated 
compound plates with face convection using influence functions. Churchman and colleagues [7] 
performed a study on the impact functions of the edge dislocation in a three-quarter plane.  Tarlakovskii 
and Fedotenkov [8] analyzed the movement of a thin elastic spherical Timoshenko shell in three 
dimensions, caused by nonstationary pressure that is dispersed in an arbitrary manner. A method for 
dividing the set of equations describing the three-dimensional motion of the shell was suggested. The 
solution was developed utilizing integral representations with influence functions as kernels. These 
influence functions were calculated analytically by using series expansions in the eigenfunctions and the 
Laplace transform. A computational method was developed and used to solve the issue of the effect of 
time-varying normal pressure on the shell. The findings obtained have practical applications in the 
building of airplanes, rockets, and several other industrial domains. These applications are particularly 
relevant for thin-walled shell structural components that are subjected to nonstationary operating 
circumstances. Tuan et al. [9], [10] studied how non-stationary kinematic disturbances spread from a 
spherical hollow in the pseudo-elastic Cosserat medium.  

The process of solving planar nonstationary problems with moving borders may be simplified by 
using the superposition principle. This involves studying a two-dimensional boundary integral equation, 
where the integral operators' kernels are the surface functions that represent the effect of interacting 
entities. Mikhailova and Fedotenkov [11] introduced a dynamic and symmetrical issue involving the 
collision of a spherical shell with an elastic half-space. This scenario represents the early phase of their 
interaction. Shmegera [12] presented the first boundary-value mixed problems for an elastic half-plane, 
considering the circumstances of contact friction. Suvorov et al. [13] discussed the issue of a stiff body 
colliding with a half-space that is represented by a Cosserat medium. Tarlakovskii and Fedotenkov [14] 
performed a study on the dynamic interaction of elastic cylindrical or spherical shells in a two-dimensional 
setting. Igumnov et al. [15] introduced a problem involving the motion of a surface load across an elastic 
half-space, which is not stationary. Then, Igumnov and his team [16] presented the use of Boundary-
Element Modeling to analyze the behavior of elastic and viscoelastic bodies and media. His research team 
[17] also devised a boundary element technique for transient anisotropic viscoelastic issues in three 
dimensions. The Wiener-Hopf method [18] was a very successful analytical technique for solving integral 
equations of this kind. To find out the mechanical characteristics as well as the mechanical response of 
structures, there are many different approaches, from analytical methods to approximate methods [19]-
[27]. In this work, the solution is achieved by the use of the approach of splitting fundamental solutions 
[18], which is based on the factorization of the influence function of an elastic half-plane.  
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The rest of this paper is structured as follows: Section 2 presents a formulation of the proposed 
problem. Section 3 introduces a solution method. Some examples are introduced in Section 4. Conclusions 
are summed up in Section 5. 
 
2. Formulation of the Problem  

The process of propagation of a plane progressive wave in the direction of the boundary of a half-
plane occupied by a homogeneous elastic isotropic medium is considered. The rectangular Cartesian 
coordinate system Oxz is selected so that the Oz axis is directed deep into the half-plane, and the Ox axis 
coincides with the boundary of the half-plane z = 0. 

The equation of motion of the medium in the absence of mass forces has the following form: 

( )
2

2
graddiv +

t
   


= + 


u
u u  (1) 

To describe the motion of the medium, we use equations in potentials, in which, due to the two-
dimensionality of the problem, we should put: 

1 2 3( , , ), 0, ( , , )x z t x z t     = =  =  

In this case, we arrive at the following equations for the scalar potential and the non-zero component 
of the vector potential (the dots indicate derivatives with respect to time): 

2 2

1 2

2 2

2 2

, , , 0, 0;x R z t

x z

     =  =    

 
 = +

 

 (2) 

We use dimensionless parameters (they are indicated by a stroke): 
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r
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 

 

 
  

    

 
 

  = = = = = =
+

= = = = = = =
+ − −

  = = =

 

Here iu , ij  - the components of the displacement vector, stress tensor; mc  - the speeds of 

propagation of longitudinal and transverse waves in an elastic medium; , , ,     - parameters Lame, 

Poisson's ratio, density of the medium; *c  - a parameter having the dimension of velocity; L - 

characteristic linear dimension. 
Omitting the strokes in the designation of dimensionless parameters, we obtain relations that describe 

the movement of the half-density through potentials, geometric and physical equations of the medium: 

1 3 2, , 0;u u u
x z z x

      
= − = + 
   

 (3) 

23 3 31 1 1
11 13 33, ,

u u uu u u

x z x z z x
     

    
= + = + = +
     

; 

12 23 22 11 330, ( )
1


    


=  = +

+
 

(4) 

At the initial moment of time and at infinity there are no disturbances: 

0 0 0 0
0;

   
   

= = = =
= = = =  (5) 
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(1), (1),O O z = = → +  (6) 

Let us assume that on the boundary of the half-plane the generalized conditions are satisfied: 

1 1 1 13 10

3 3 3 33 30

( ) ( , );

( ) ( , ),

z

z

u q x

u q x

   

   

=

=

+ =

+ =
 (7) 

where 
2 2 0i i +  . 

All indices here and below take values 1 and 3. If necessary, summation is carried out over them. 
The combination of different parameter values in (7) provides all possible boundary conditions. First 

boundary value problem (kinematic excitation) (when 1 3 1 = =  and 1 3 0 = = ): 

0
( , )j jz

u q x 
=
=  (8) 

Second boundary value problem (dynamic excitation) when 1 3 0 = =  and 1 3 1 = = : 

3 0
( , )j jz

q x 
=
=  (9) 

Mixed excitation of the first type (when 1 3 0 = =  and 1 3 1 = = ): 

1 1 33 30 0
( , ), ( , )

z z
u q x q x  

= =
= =  (10) 

Mixed excitation of the first type (when 1 3 0 = =  and 1 3 1 = = ): 

13 1 3 30 0
( , ), ( , )

z z
q x u q x  

= =
= =  (11) 

 
3. Solution Method 
To solve the problem, we introduce surface influence functions: 

( , , )jl jG x z u =  and ( , , )jkl jkx z   =  

These surface influence functions are similar to displacement and stress and satisfy the relations (2)-

(6), as well as the following conditions on the boundary of the half-plane ( 1,3l = ): 

1 1 1 13 10

3 3 3 33 30

( ) ( ) ( ) ;

( ) ( ) ( )

lz

lz

u x

u x

      

      

=

=

+ =

+ =
 (12) 

where ( )x  - the delta function Dirac. 

Then displacements and stresses in problem (2)-(7) have integral representations: 

( , , ) ( , , )** ( , );j jl lu x z G x z q x  =  (13) 

( , , ) ( , , )** ( , )jk jkl lx z x z q x   =   (14) 

Note that jlG  and jkl  are components of tensors of the corresponding second and third ranks. 

To determine the influence functions, we apply to the equalities (2)-(7) and (12) taking into account 
(5) the integral Fourier transforms with respect to coordinate x and Laplace transforms with respect to 

time τ: 
2

2 2 2
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2
2 2 2

22

2

( , ) 0;
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j j
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
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
− = 
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(15) 
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1 3, ;
FL FL

FL FL FLu iq u iq
z z

 
 

 
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 (16) 
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 (17) 

(1), (1), ;FL FLO O z = = →+  (18) 

1 1 1 13 10

3 3 3 33 30

( ) ;

( ) .

FL FL

lz

FL FL

lz

u

u

   
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=

=

+ =

+ =
 (19) 

The equations (15), which satisfies conditions (18) have the form: 

2 2

1 1 2 2

( , )

( , , ) ( ); ( , , ) ( );

( ) ,j

FL FL

k q s z

j

q z s C E z q z s C E z

E z e

 

−

= =

=
 (20) 

where 1C  and 2C  - integration constants. 

Substituting (20) into (16) and (17) leads to the following equalities for the images of displacements 
and stresses: 

2 2

1 1 1 2 2 2

2 2

3 1 1 1 2 2

( ) ( , ) ( );

( , ) ( ) ( );

FL

FL

u iqC E z k q s C E z

u k q s C E z iqC E z

= − +

= − −
 (21) 

2 2 2 2 2 2

11 2 1 1 2 2 2

2 2 2 2 2 2

13 1 1 1 2 2 2

2 2 2 2 2 2

33 2 1 1 2 2 2

( 2 ) ( ) 2 ( , ) ( );

2 ( , ) ( ) ( 2 ) ( );

( 2 ) ( ) 2 ( , ) ( ).

FL

FL

FL

s q C E z iqk q s C E z

iqk q s C E z s q C E z

s q C E z iqk q s C E z

  

  

  

= − −

= − +

= + +

 (22) 

Substituting these equalities into the boundary conditions (19) leads to a system of linear algebraic 

equations for 1C  and 2C : 

2 2 2 2
11 211 12

2 2 2 2
3221 22

( , ) ( , )
,

( , ) ( , )

l

l

Ciqa q s a q s

Ca q s iqa q s






 −   
=    

−     
 (23) 

where 
2

11 1 1 1

2 2

12 1 2 1 2

2 2

21 3 1 3 2

2

22 3 3 2

( , ) 2 ( , );

( , ) ( , ) ( 2 );

( , ) ( , ) ( 2 );

( , ) 2 ( , ).

a q s k q s

a q s k q s s q

a q s k q s s q

a q s k q s

 

  

   

  

= −

= − +

= − + +

= −

 (24) 

The solution to the system of equations (23) has the form: 
2 2

1 2
1 22 2 2 2

( , ) ( , )
; ,

( , ) ( , )

D q s D q s
C C

D q s D q s

 
= =  (25) 

where 
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 4 2 2

1 3 1 1 3 2 3 1 1 2 1 3 2

2 2 2 2

1 22 1 12 3

2 2 2 2

2 21 1 11 3

1 1 2

2 2

2 2 1 2

( , ) ( , ) ( , ) ( , ) ( , );

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ),

( , ) ( 2 ) 4 ( , ) ( ,

l l

l l

D q s R q s k q s k q s s R q s

D q s iqa q s a q s

D q s a q s iqa q s

R q s q k q s k q s

R q s s q qk q s k q

          

 

 



= − − + +

= − −

= − −

= −

= + − ).s

 (26) 

Note that the function 2( , )R q s  is defined as follows: 

2 2

2 0 2

2
2

0 2 2

2

( , ) ;

( ) (2 ) 4 1 1 , .

s
R q s q R

q

c
R

c




   



 
= − 

 

= − − − − =

 (27) 

Taking into account (25), from (21) and (22) we obtain images of influence functions: 







2
2 2 2 2 2 2 2

1 22 1 2 21 2 12 2

2 2 2 2 2 2

12 1 2 11 2 3

2
2 2 2 2 2 2
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

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 (28) 


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1
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FL

l l
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


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 

 
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+ − + 2 2 2 2 2

2 11 2 32 ( , ) ( , ) ( ) .lk q s q a q s E z  + 

 (29) 

These expressions are significantly simplified for the values of 0

0
( , )jl jl z

G x G
=

=  and 

0

0
( , )jkl jkl z
x 

=
 =   of the influence functions on the boundary of the half-plane: 
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







2
0 2 2 2 2 2 2 2

1 3 1 3 2 2 12 2

2 2 2 2

1 2 1 3

2
0 2 2 2 2

1 3 2 1 12 2

2 2 2 2 2 2 2

1 1 1 2 1 3

( , ) ( , ) ( , )
( , )

2 ( , ) ;

( , ) 2 ( , )
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FL

l l
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FL
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D q s
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
    
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
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 − + 

 (30) 



 



0 2 2 2 2 2

11 3 1 22 2
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1
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FL FL
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D q s

s k q s s k q s

s q s q q k q s k q s

q s q s s k
D q s

  

     

   

  

  = − + 

+ + − −

 − − + + 

 =  = −







2 2

2 2 2 2 2 2 2

3 2 1 1 1 2 3

0 2 2 2 2 2

33 3 1 2 12 2

2 2 2 2 2 2 2

1 2 2 1 2 3

( , )

( , ) 2 ( , ) ;

1
( , ) 2 ( , )

( , )

( , ) ( , ) .

l l

FL

l l

l

q s

R q s i q R q s s

q s i q R q s s
D q s

s k q s R q s

     

   

   

 +

  + + +  

  = − + + 

 + − + 

 (31) 

The calculation of the original influence functions depends significantly on the parameters in (12). 

 
4. Calculation Examples 
4.1. Example 1 

Find the normal displacement 
30 3 0

( , )
z

u x u
=

=  on the boundary of the half-plane under the action of 

a tensile concentrated normal force on the surface of it, varying in time according to the law of the function 
Dirac-delta. 

In this case, we have the second boundary value problem with boundary conditions (9) for 1 0q   and 

3 ( ) ( )q x   . As follows from the definition of influence functions, for the desired displacement the 

following equality is true: 
0

30 33( , ) ( , )u x G x =  (32) 

at 1 3 0 = =  and 1 3 1 = = . 

Its image in accordance with (30) and (26) has the form: 
2 2 2 2 2

2 1
30 2 2

2

( , )
( , ) .

( , )

FL k q s s
u q s

R q s

 
= −  (33) 

It is not possible to construct the original of this function by successive inversion of integral 
transformations. Therefore, we will use the joint inversion algorithm of the Fourier-Laplace transform. 

Carrying out the substitution q s =   in (33), we obtain: 
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30 ( , ) ( ) ( )FL Lu q s g s h = , 

2 2 2

2 1

2

2

( ,1)
( )

( ,1)

k
h

R

  



= − , 

1
( )Lg s

s
= . (34) 

Considering that ( ) ( )g H =  and ( ) ( )g   = , from the circulation table we find an analytical 

representation of the original: 

 

30

1 1
ˆ ( , ) ( )* ( , ) ( , );

2 2

; ( , ) ( , ) ,

u z g z z

z x iy z h z

     
 


   



= − = −


= + =



 (35) 

where 

( )

2
( );

Re 0 0 ; Re 0 0.

y ix
iz z

y y

 


 

= = − +

 → +  → −

 (36) 

The original itself is determined by the following equality: 

30 30 30
0 0
ˆ ˆ( , ) lim ( , ) lim ( , ).

y y
u x u z u z  

→+ →−
= −  (37) 

The function ( , )z   in (36) and the polynomial 
2 2

2 2 ( , )z  +  in the formula for 
2

2 ( ,1)R   in (26) 

are single-valued functions of the complex variable z, and the following relations are valid: 

0
0

2
2 2 2

2 2 20

( , ) lim ( , ) ;

lim 2 ( , ) 2 .

y

y

i
x z

x

z
x


   


   

→

→

= = −

 + = − 

 (38) 

We identify single-valued branches of square roots 2( ,1)jk   using sections of complex density λ 

along the imaginary axis. Taking into account (36) and (38), the limits of these roots are determined as 
follows: 

( )

2
2 2 2

0 2
2

0 2
2 2 2

0 2

при ,

lim ( ,1)

sign sign при .

j j i

j
y

j j i

x
x

k

i x i x x
x


    




    
→


+ = − 


= 

 − + =  − 


 (39) 

Performing limit transitions in (37) and taking into account (38) and (39), we find the original of the 
desired displacement: 

at 
1x  : 

30 0u   (40) 

at 
1 2x    : 
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    (1)

30 30
0 0

1
2

2 2 2 2 2 2 2
2 2 2 22
1 2 2 12 2 2 2 2

1
2

2 2 2 2
2 2 2

2 2 12 2 2 2

1
( , ) ( , ) lim ( , ) lim ( , )

2

sign
2 4 sign

2

2 4 sign

y y
u x u x h z h z

ix

i x
i x

ix x x x x x

i x
x x x x

     


      
   



   
  

→+ →−

−

−

= = − =

  
= − − + − −   

   

   
+ − − − − =   
     

( )
2

2 2 2 2

2 2 2 2

12 2

3

2
.

( , )

x
x

P x

  
 

 

−
= −

 (41) 

at 
2x  : 

2 2 2 2 2 2 2 2 2
2 1(3) 2 2 222

30 30 12 2 2 2

21 3

( , )
( , ) ( , )

( , ) ( , )

x x R x
u x u x x

R x P x

     
   

   

−
= = = −  (42) 

The functions in (41) and (42) are related to each other and are defined by the following functions as 
follows: 

( ) ( )

( ) ( )

( ) ( )( )

( ) ( ) ( )

2
2 2 2 2 2

21 2 2 1 0 2

2
2 2 2 2 2

22 2 2 1 0 2

4
2 2 2 2 2

21 22 2 2 1 2 3

3 2 6 3 4 2 2 2 3

3 32 2 2 2 2

( , ) 2 4 ;

( , ) 2 4 ;

( , ) ( , ) 2 16 ( , );

( , ) 8 8 2 8 1

R x x x x R x

R x x x x R x

R x R x x x x xP x

P x P x x x x

          

          

          

           

= − − − − =

= − − − − =

= − − − − =

= = − + + − +

 (43) 

Formulas (40)-(42) finally lead to the following result: 

( )
2

( )

30 30

1

( , ) ( , )k

k

k

u x u x H x   
=

= −  (44) 

where 

( )
( )

2 2 2 2 2

1(2) (3) (1) 2 2 2

30 30 30 22 2

3

4

,

x
u u u x

P x

   
 

 

−
= − = −  (45) 

In Figure 1a, a space-time graph of the solution to the plane problem Lamb is presented for 1 1 =  

and 2 1,871 = = . The wave Rayleigh fronts are clearly visible on it. Figure 1b demonstrates the 

dependence on time and spatial coordinates of the regular part of the solution ( )2 2 2

30 30Ru x c u= − . At 

the fronts of the wave Rayleigh, the values of this function are finite, and its derivative is infinite. The 

structure of this graph is explained by its sections with planes 0,3 = ; 0,9 =  and 0,2x = ; 0,6x =  

shown respectively in Figure 1d and 1e. 
 



8705 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 8696-8708, 2024 
DOI: 10.55214/25768484.v8i6.3857 
© 2024 by the authors; licensee Learning Gate 

 

 
Figure 1. 
Spatio-temporal graph of normal displacement on the boundary of a half-plane. 

 
4.2. Example 2 

We will find the normal stress 
33 0

( , )
z

x  
=

=  on the boundary of the half-plane in the absence of 

tangential stress and a given concentrated normal surface displacement, which varies with time according 

to the law + . 

In this case, the boundary conditions are mixed excitation of the second type: 

1 0q   và 3 ( )q x + . (46) 

As follows from (14) and (46), the definition of influence functions and the properties of the delta-
function, we have the following equality for the desired stress: 

0

333( , ) ( , )* ,x x    +=   (47) 

with 1 3 0 = =  and 1 3 1 = = . 

The image of the influence function 
0

333 ( , )x   in accordance with (29) and (26) has the form: 

2 2
0 2
333 0 2 2 2 2 2

33 2 1

( , )1
( , ) .

( , ) ( , )

FL

FL

R q s
q s

G q s s k q s 
 = = −  (48) 

Then from (47) and (48), taking into account the properties of the Laplace transform, we obtain: 
2 2

2

2 2 4 2 2

2 1

( , )
( , ) .

( , )

FL R q s
q s

s k q s


 
= −  (49) 
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The original of this function can be found using the joint inversion algorithm of the Fourier-Laplace 
transform, based on analytical representations of images. Here we use the notations for the functions 

( , )jk q s  in (15) and 2( , )R q s  in (26). First, we represent 
FL  as: 

2
2 2 2

2 2

2 22 2 2 2 22 2 2 2 2 2
2 1 2

1 1 1
( , ) 2 4 .FL q q q
q s

s s ss q s q
  

   

    
 = − + − +   
 + +    

 (50) 

Next, using the inverse Laplace transform we get: 

( )
1 1

11 2
2 2 2 2 2 2 1 2

0

1 1
( | | ) ( ) .

F L
L

j j js q K x s x   
 

− −
−−

−

+
   + = = −   

 (51) 

We note that the function ( )
1 2

2 2 2

j s q
−

+  is homogeneous of degree (-1) and using the inverse 

transformation we get: 
1 1

1 1

2 2
2 2

2 2 2 2 2 1 2

2 2 12 22 2 2

1

2 2 2 2
2 2 2 2 2 1 2

2 2 22 2 2 22 2 2

2

1 1
2 2 ( ) ;

1
( ) .

F L

F L

q
x

s xs q

q q
x

s s x xs q


   



 
   



− −

− −

−

+

−

+

    
 + = − −   
 +    

    
 + = − − −   
 +    

 (52) 

Using these equalities, from (50) we finally obtain the following expression for the desired stress: 

( )
2

( )

1

2 2 2 2
(1) 2

2 2 4 2 2 2

2 1

2
(2) 2 2 2

22 2 4

2

, ( , ) ( | |);

( 2 )
( , ) ;

4
( , ) .

k

k

k

x x H x

x
x

x x

x x
x

     

 
 

   


   

 

=

= −

−
= −

−

= − −



 (53) 

 

In Figure 2а the space-time graph constructed at 1 1 =  and 2 1,871 = =  for the normal stress in 

this problem is presented. Due to the parity of the function, its part at 0x   is depicted. In this figure, 
for clarity, due to their large magnitude, the absolute values of the stress in the vicinity of straight line 

x =  are not indicated. Regular part 
4 ( , )x x −  is shown in Figure 2b. 
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Figure 2. 
Space-time graph for normal stress at the boundary of a half-plane. 

 
5. Conclusion 

The suggested technique aims to solve issues related to the propagation of nonstationary two-
dimensional boundary disturbances in a half-plane. The issue may be solved by obtaining explicit integral 
formulae, which allow for the determination of unknown displacements and stresses. The joint inversion 
procedure of the Fourier-Laplace transform is used to seek for the original picture function. Asymptotic 
representations of stresses and displacements around the point where the boundary conditions separate. 
We computed two issues that correspond to two different forms of boundary value problems: kinematic 
excitation and mixed excitation. A space-time graph was generated, displaying the Rayleigh wavefronts 
with clarity. This approach allows us to address issues involving different potential boundary conditions 
about the spread of stationary two-dimensional boundary disturbances in a half-plane.  
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