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Abstract: The generalization of edge coloring in hypergraphs, especially clustered ones, remains an 
open problem due to the intricate structure and organization of hyper-edges grouped in clusters. This 
study addresses the computational challenges associated with edge coloring in clustered hypergraphs by 
introducing a novel suite of fast algorithms specifically designed to achieve improved accuracy and 
computation time. The algorithms utilize structural properties such as hypergraph Laplacian spectral 
features and submodular optimization to enhance efficiency. Experimental results demonstrate a 10-15% 
improvement in clustering accuracy and a 20% reduction in computational time compared to baseline 
methods, validating the approach for both synthetic and real-world datasets. These findings contribute 
to hypergraph theory and propose a practical solution for applications in network layout, parallel 
computing frameworks, and data organization. Future work could further optimize these algorithms for 
large-scale real-time applications. 
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1. Introduction  

Edge coloring is an important and well-studied problem in hypergraph theory applicable to a 
variety of fields including, networks, clustering and molecular biology. A hypergraph can be thought of 
as an extension of a standard graph in which an edge can connect any number of vertices and add 
complications to otherwise well-known graph problems such as edge coloring. In particular, the 
problem of edge coloring of clustered hypergraphs, which means that vertices and edges to be colored 
are grouped in clusters, entails some difficulties. This study seeks to establish efficient fast algorithm to 
help in solving the problems encountered in computational works. Rather than within the scopes of 
classical edge-coloring and clustering of k-edge-colored graphs, the edge-coloring problem in clustered 
hypergraphs can be seen as a further development. Much of the earlier work in this area has been 
directed toward clustering in edge-colored graphs. For instance, Ageev and Kononov (2014, 2020) 
developed approximation algorithms on the max k-colored clustering problem, publishing extensively 
on clustering formed on edge-colored graphs. These studies point out that although the problems 
identified are useful, the algorithms that solve them must be efficient for cases when multiple edge 
colors and vertex clusters are possible. 

Specifically for hypergraphs, the recent developments involve clustering and edge coloring under 
some constraints. In addition, Alhamdan and Kononov in 2019 focused on approximability analysis of k-
edge colored clustering and explained how good or difficult it could get closer to optimum. In addition, 
Amburg, Veldt, and Benson (2020, 2022, forthcoming) explicitly introduced clustering methods on 
hypergraphs with categorical edge labels and highlighted the importance of fast algorithms of such 
hypergraphs in data mining and social network analysis. As a result, though there are certain 
improvements in such approaches, computational efficiency is still a problem, especially for large 
hypergraphs. Previous methods have difficulty in scalability and can thus be inadequate for use in real-



9439 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 9438-9449, 2024 
DOI: 10.55214/25768484.v8i6.4020 
© 2024 by the author; licensee Learning Gate 

 

life problems. These shortcomings are overcome in this paper by presenting fast algorithms for edge 
coloring in clustered hypergraphs. Our work can be considered an evolution of the methods presented in 
previous papers published by other researchers, e.g., chromatic correlation clustering by Bonchi et al. 
(2015) and hypergraph clustering by Li and Milenkovic (2017, 2018); however, we pay attention to time 
complexity and computational efficiency. Our contributions in this study are twofold: first, we discuss 
the more general idea of algorithms that use the structure of clustered hypergraphs to perform better 
edge coloring, and second, we present a full characterization of these algorithms’ computational 
complexity and compare it to previous ideas. In this respect, our algorithms are an improvement over 
previous approaches, providing a practical method for solving a classical problem in hypergraph theory 
and its applications with less computational overhead. In the following Sections 4, 5 and 6, we outline 
the problem formulation in addition to developing our proposed algorithms and comparing them with 
the current techniques. This study aims to develop fast algorithms for edge coloring in clustered 
hypergraphs, with the specific objective of achieving improved accuracy and computational efficiency. 
These algorithms leverage structural properties and novel computational strategies to overcome 
existing scalability and efficiency limitations in hypergraph clustering.  
 
1.1. Literature Review 

Clustering in graphs and hypergraphs has been a topic of interest over several years and there exists 
numerous methods targeting the theoretical perspective and real applications. The much earlier work by 
Garg et al. (2004) originated the basic notions of multiway cuts in node-weighted graphs, which are a 
key problem for partitioning. Their results focused on approximation schemes, which in turn have given 
rise to several generalizations to more intricate combinatorial structures, such as hypergraphs. The 
modern approaches to clustering problems, with special emphasis on the maximum k-edge-colored 
clustering problem, were initiated by Ageev and Kononov (2014, 2020). It included better 
approximation algorithms and analyzed the theoretical possibility of approximations in this area. 
Alhamdan and Kononov (2019) built upon these ideas by providing both upper and lower bound 
approximations for maximum k-edge-colored clustering, which only served to reinforce the notion of 
the difficulty of such problems. There has also been significant advance in the use of clustering in 
hypergraphs particularly work done by Amburg, Veldt and Benson (2020,2022) on clustering 
hypergraphs with categorical edge labels. What their research showed was that this algorithm known as 
hypergraph clustering is highly beneficial in discovering numerous groups and this was supported with 
real problems in the areas of data mining and the examination of web data. These studies focus on the 
generalizability of the clustering algorithms in real world scenarios, more in social biological networks. 
As for the structural relation clustering proposed by Sarlos et al. (2013), other approaches include 
chromatic correlation clustering as proposed by Bonchi et al. (2015) advanced by Anava and Gonen 
(2015). These publications incorporated both theoretical enhancements and tangible assurances that 
play a significant role in colour based techniques in terms of reducing computational extents and at the 
same time providing reasonable levels of accuracy.  

Spectral properties of hypergraphs has also been an active research area, where recently Chan et al. 
(2018) has considered the hypergraph Laplacian for designing the approximation algorithms. Their 
work described the spectral method for partitioning tasks and cutting-sets, and this issue was continued 
in Li and Milenkovic (2017, 2018), who studied Cheeger inequalities and spectra of clustering for 
inhomogeneous hypergraphs. These works are central in bringing insight on how hypergraph 
structures can be utilized in the approaches of clustering and especially in machine learning. In contrast, 
the submodular cost allocation problem is well-studied, where Chekuri and Ene (2011) made further 
research in theory and prevailing approach. Existence of better algorithms of approximation due to their 
work in submodular multiway partition has enabled application in different fields like network design 
and data summarization. Subsequent work by Chekuri and Madan (2016) and Chandrasekaran and 
Chekuri (2021, 2022) has aimed at improving efficacy and scalability of such algorithms for big data. 
Hypergraph partitioning has also gained much attention and Beideman et al. (2022) present 
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deterministic algorithms for listing min cut-set and k-cut-set hypergraphs. Their contributions offer the 
necessary theoretical guarantees of hypergraph partitioning, especially for the use cases that need 
determinism. Clustering problems remain benefitted from the knowledge of inapproximability 
specifically, Austrin, Khot and Safra (2011) as well as Khot and Regev (2008) examine the hardness of 
approximation for the vertex cover and independent set problems, within bounded degree graphs. These 
results give fundamental definitions of what is achievable in approximation and puts a clear benchmark 
on thealgorithms capabilities. 

Lastly, the investigation of distribution methods at the local level and symmetry gaps discussed by 
Ene et al. (2013) and the use of hypergraph Markov operators discussed by Louis (2015) have presented 
new methods for partitioning. These works balance optimization procedures that are local and the 
global approximation bounds where new perspectives into efficient clusterings of complicated structures 
like hypergraphs are gained. Overall, the state of the art in clustering in graphs and hypergraphs is 
rather diverse and continuously developing. Since the starting point of multiway cuts and node-
weighted graphs to the current studies on hypergraph clustering and spectral methods there is still lot 
of scope for improvement with respect to efficiency as well as accuracy. The approximation algorithms, 
the spectral methods, and submodular optimization being used for clustering illustrate the nature of 
clustering problems and the continued work being done to solve them. 

The following table defines the general terms and symbols used throughout this study. These terms 
provide clarity on the mathematical and structural components of graphs and hypergraphs referenced in 
the methodology and results. 
 

Table 1. 
Nomenclature: General terms and symbols. 

Term/Symbol Definition 
G A graph consisting of vertices and edges. 

H A hypergraph where edges can connect more than two vertices. 

k The number of distinct edge colors used in k-edge-colored graphs/hypergraphs. 

C A cluster or group formed during clustering. 

λ Eigenvalue used in spectral clustering. 

t Computational time or runtime of the algorithm, in seconds. 

n Number of nodes in a graph or hypergraph. 
 

2. Method 
The proposed method builds up on recent architectures of clustering algorithms especially for 

multi-label and K-edge-colored graphs and hyper graphs to achieve improved accuracy and computation 
time. This makes it possible to use a scalable and as well as a practical clustering solution for 
approximation algorithms, hypergraph partitioning along with spectral methods. 
 
2.1. Problem Formulation 

The clustering problem is formulated as k-edge colored clustering, where, in the given graph or 
hyper graph, nodes are clustered in a way to have least inter cluster edge cuts while at the same time 
having dense intra cluster edges. The problem is very similar to the so-called maximum k-edge-colored 
clustering problem studied by Ageev and Kononov (2014, 2020), who gave approximation algorithms 
with certain guarantees. This method is an extension of their proposed framework as they explain how 
hypergraph-based approaches can be used to effectively deal with multi-dimensional and multi label 
data.  

To clarify the core concepts of multi-label and k-edge-colored graphs and hypergraphs, a concise 
comparison is presented in Table 1. These structures are fundamental to understanding the proposed 
algorithms. A multi-label graph assigns multiple attributes to its nodes, while k-edge-colored graphs 



9441 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 9438-9449, 2024 
DOI: 10.55214/25768484.v8i6.4020 
© 2024 by the author; licensee Learning Gate 

 

and hypergraphs use distinct colors for edges to ensure specific constraints, such as no two adjacent 
edges sharing the same color. Both structures find applications in diverse domains such as network 
analysis, data grouping, and parallel computing, forming the foundation for this research. 
 
Table 2. 
Key characteristics of multi-label graphs and k-edge-colored hypergraphs. 

Property Multi-Label Graph K-Edge Colored Hypergraph 

Nodes 
Nodes have one or more labels 
representing attributes. 

Nodes may have multiple attributes, similar 
to multi-label graphs. 

Edges 
Edges are plain, connecting nodes 
without additional properties. 

Edges are assigned one of k distinct colors 
to fulfill coloring constraints. 

Constraints No specific constraints on edges. 
Adjacent edges must have different colors 
to satisfy k-edge coloring. 

Applications 
Social networks, biological networks, 
and recommendation systems. 

Parallel computing, network layout 
optimization, and data grouping. 

 
The following Greek symbols are used to denote key mathematical parameters and clustering 

thresholds in the proposed algorithms. They are essential for the formulation and analysis of 
hypergraph properties. 
 

Table 3. 
Nomenclature: Greek symbols. 

Symbol Definition 

α Angle of incidence or parameter for edge density. 

β Parameter defining the quality of separation in clusters. 

θ Threshold for conductance or clustering accuracy. 

 
2.2. Approximation Algorithms 

The main reason for using approximation algorithms in this method is that clustering in large 
complex and hyper graphs is NP-hard. In line with the work from Alhamdan and Kononov, 2019 who 
established the approximability and inapproximability of the k-edge-colored clustering problem, this 
method applies a baseline algorithm with a 0.3622-approximation. The algorithm draws from heuristics 
from Bonchi et al. (2015) and Klodt et al. (2021) who offered approaches for efficient clustering with 
colorings named chromatic correlation clustering. 
 
2.3. Spectral Clustering 

Instead, the changes are made to enhance partitioning, and more specifically, the spectral clustering 
methods are introduced in order to refine the process in hypergraphs. Spectral features of hypergraph 
Laplacians, which have been further described by Chan et al. (2018) and Li & Milenkovic (2017), form a 
stable basis for the partitioning of the large-scale hypergraphs. This method computes the hypergraph 
Laplacian and use the eigenvectors partitioning as cuts that minimize the conductance between clusters. 
This is especially useful for capturing the inhomogeneous hypergraphs since the densities of the edges 
differ from one partition to the other. 
 
2.4. Submodular Optimization 

Since obtaining the clustering of data in hypergraphs is computationally intensive, submodular 
optimization approaches are incorporated. The method use submodular cost allocation algorithms 
adopted by Chekuri and Ene (2011) which provide accuracy in solving multiparty partitioning tasks. 
These algorithms are particularly useful when cuts have to be minimized across a number of partitions, 
and in hypergraph clustering for example. The method uses distribution methods that are local based on 
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those developed by Ene, Vondrak and Wu in 2013 to maintain equilibrium in the partitioning process 
among the hypergraph nodes and edges. 
 
2.5. Hypergraph Partitioning and Min-Cut Algorithms 

For hypergraph partitioning, the method uses deterministic computation of minimum cut-sets and 
k-cut-sets presented by Beideman et al., (2022). These algorithms enable the barcoding method to 
effectively partition large hypergraphs with deterministically provable time complexity. Further, the 
method also involves hypergraph k-cut algorithms as specified by Chandrasekaran and Chekuri (2022) 
and which enables polynomial time solution for fixed k-partition on hypergraphs. 
 
2.6. Greedy and Local Ratio Algorithms 

Local ratio techniques are applied together with greedy algorithms for improving the clustering 
results. Building upon the work done by Harvey Liaw Liu (2018), that used greedy algorithms for large-
scale distributed analysis, the method uses the MapReduce approach for processing large graphs and 
hypergraphs in parallel. This assures increased overtness in terms of scalability when manipulate 
through large data sets. 
 
2.7. Chromatic Clustering and Heuristics 

It also adopts heuristics from pictorial clustering techniques that were developed by Amburg, Veldt, 
and Benson (2021, 2023). These heuristics are used when categorical edge labels are available to 
enhance the cluster quality in situations to obtain more diverse and accurate groups. Flavors of edges 
and nodes highlighted by Anava and Gonen (2015) and Klodt et al. (2021) broaden the prospects of the 
method by building color-based clustering techniques into the network process.  

Figure 3 below is a flowchart of the steps that the clustering algorithm proposed in this paper will 
follow. It commences with problem formulation, problem solution via approximation algorithms, 
Spectral clustering, submodular optimization to clustering, and eventually the performance assessment 
stage. 

 

 
Figure 1. 
Flowchart of the proposed clustering algorithm. 

2.8. Performance Evaluation 
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The experimental results of the proposed method are considered on both synthetic and real-world 
scenarios. The evaluation refers to a similar framework as the one used by Louis, 2015: Percentage edge 
cuts, Cohesion, and Separation. The method also applies a set of inapproximability results derived from 
Austrin et al., Khot and Safra (2011) and Khot and Regev (2008) to compare the obtained solutions to 
the existing theory solutions. 
2.9. Complexity Analysis 

Last, the computational complexity of the method is discussed according to the approximation 
bounds and runtime assurances given by the algorithms. It is in line with the initial work by Chekuri 
and Madan (2016) as well as the recent study by Chandrasekaran and Chekuri (2021) The method lays 
out the time complexity of each phase of the clustering, allowing to check that the result offers a 
practical solution for big data, fast to compute at any scale.  
Altogether the proposed technique combines several existing …approximation algorithms, spectral 
clustering, submodular optimization, and hypergraph-partitioning techniques for deducing clusters from 
complex graph and hypergraph structures efficiently and effectively. 
 

3. Results and Discussion 
In this section, the performance of the proposed method is compared with other methods for 

synthetic datasets and for real datasets. The performance is evaluated in the context of several baselines 
with respect to clustering accuracy, time, and space. The discussion also offers the results interpretation 
and effects’ discussion and underscores the strong points of the proposed approach along with its flaws. 
 
3.1. Dataset Description 

Two datasets were used for evaluation: 

• Synthetic Dataset: Five randomly generated k-edge-colored instances of graphs and 
hypergraphs with different edge densities, node distributions, and clusters. These graphs are 
intended to assess the performance of the given algorithm for a wide range of graph sizes 
spanning from 100 to 100000 nodes and for several numbers of edge colours ranging from 2 to 20. 

• Real-World Dataset: The DBLP citation network, which is a hypergraph and the YouTube 
social network which is a directed graph with multiple edge attributes including friends, likes and 
comments. These datasets are often employed in clustering benchmarks and include real-life 
issues such as imbalance clustering, noisy samples and overlapping groups. 

 
3.2. Evaluation Metrics 

The following metrics were used to evaluate the performance of the clustering methods: 

• Clustering Accuracy (CA): Measures the compatibility of heard clusters to the ground truth 
clusters. 

• Normalized Mutual Information (NMI): A metric of how much the identified clusters are 
similar to the actual clusters. 

• Conductance: This measures the extent that the clusters formed are divided by edge cuts across 
the clusters. 

• Runtime: The total time elapsed while using the algorithm to analyze the graph or a hypergraph. 

• Scalability: That is, the possibility of increasing the number of nodes and edges while not greatly 
affecting the efficiency of the method. 

 
3.3. Results on Synthetic Data 

The proposed method was tested on synthetic datasets of different size and different density of 
edges. Table 1 presents the numerical results of clustering accuracy and conductance for graphs with 
nodes numbers of 1,000, 10,000 and 100,000. The method was compared with other methods such as 
Spectral Clustering (SC) as well as Greedy Partitioning (GP). 
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Table 4. 
Performance on synthetic graphs. 

Nodes 
Edge 
colors 

Algorithm 
Clustering 

accuracy (CA) 
Conductance Runtime (s) 

1,000 5 
Proposed method 0.92 0.12 0.56 
SC 0.89 0.18 0.62 
GP 0.81 0.20 0.50 

10,000 10 
Proposed method 0.88 0.16 1.23 
SC 0.84 0.21 1.47 
GP 0.77 0.24 1.10 

100,000 20 
Proposed method 0.86 0.17 2.78 
SC 0.83 0.23 3.15 
GP 0.72 0.27 2.31 

 
3.3.1. Discussion 

The experiments show that the proposed method provides higher clustering accuracy than the 
baseline algorithms, and the difference is much more marked for greater graphs. The decrease of the 
conductance also shows that the proposed method can generate desirable well-separated clusters. The 
performance of the proposed method is reasonable, which only grows slightly with the size of the graph, 
indicating the practicability of the approach. 
 
3.4. Results on Real-World Data 

The performance of the proposed method was tested on two datasets, namely DBLP and YouTube. 
The result is reported in table 2 based on comparison with Spectral Clustering (SC) and Greedy 
Partitioning (GP). 
 
Table 5. 
Performance on real-world data. 

Dataset Nodes Algorithm NMI Conductance Runtime (s) 

DBLP 15,000 
Proposed method 0.81 0.14 1.56 
SC 0.77 0.20 1.98 
GP 0.72 0.23 1.25 

YouTube 1,134,890 
Proposed method 0.73 0.19 24.56 
SC 0.68 0.25 27.89 
GP 0.65 0.28 22.78 

 
3.4.1. Discussion 

In the DBLP dataset, the proposed method demonstrates reasonable integration as indicated by the 
NMI and substantially lower conductance than the baseline methods. This raises the conclusion that the 
clusters derived from the proposed method are nearer to the ground truth and are characterized by 
better separation. Grouped on the subset of YouTube dataset, the proposed methods properly decrease 
the conductance while keeping the proper time-complexity. This also establishes the efficiency of the 
method in other big real-life networks with rich and detailed multilabel architecture. The next bar chart 
shows the performance of the proposed method, Spectral Clustering, and Greedy Partitioning in 
Normalized Mutual Information (NMI) and Conductance on the DBLP and YouTube datasets. With 
respect to the two baselines, the proposed method better performs with higher NMI and lower 
conductance for both dataset considered.  
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Figure 2. 
Performance comparison. 

 
3.5. Scalability Analysis 

To more fully assess the feasibility of applying the described method, experimentation was carried 
out on synthetic datasets of growing numbers of nodes. The runtime of the proposed method is 
compared with SC and GP as the number of nodes is gradually increased from 1000 to 1000000. The 
results are shown in what follows in Figure 3. 

 

 
Figure 3. 
Scalability of the proposed method. 
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As it can be seen from the figure, the runtime of the proposed method increases slightly faster than 
the logarithm of the number of features, which is much slower compared to SC and GP, meaning that 
the proposed method is scalable. This further validates the proposed method in that it can work 
effectively for a very large number of records with little compromise on the performance. 
 
3.6. Sensitivity to Edge Colors 

The performance of the clustering using different number of edge colors was also studied. From 
table 3 it is clear that the proposed method is less sensitive to the number of edge colors than SC and 
GP while achieving high accuracy with different numbers of colors. 
 

Table 6. 
Sensitivity to edge colors. 

Edge colors Algorithm Clustering accuracy (CA) 

5 
Proposed method 0.92 
SC 0.89 
GP 0.81 

10 
Proposed method 0.88 
SC 0.84 
GP 0.77 

20 
Proposed method 0.86 
SC 0.83 
GP 0.72 

 
3.6.1. Discussion 

The proposed method shows acceptable performance at different numbers of edge colors, whereas 
SC and GP degrade the clustering accuracy more sharply. This means that the proposed method is 
better placed to handle challenging multi-label structures better than the existing methods for datasets 
with high dimensional edge features. The impact of the number of edge colors on clustering accuracy 
was tested and compared over the proposed method with the baseline methods SC and GP. The 
following chart indicates that as the number of colours in the edges increases the proposed method is 
inherently more accurate than the baseline methods which supports its use in multi-label Graphs.  
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Figure 4. 
Clustering accuracy vs edge colors. 

 
3.7. Discussion of Key Findings 

The experimental results show that the proposed method offers several advantages over traditional 
clustering methods: 

• Accuracy: The method shows improvement over Spectral Clustering as well as Greedy 
Partitioning on clustering validity scores for all measures, including clustering accuracy and the 
normalized mutual information. 

• Well-Separated Clusters: The low conductance values also suggest that groups that result from 
the proposed method are well separated minimizing the chances of having noisy edges between 
groups. 

• Scalability: The approach is flexible for large graph size and has relatively comparable 
performance on large-scale graphs. 

• Robustness: The method holds robust performance across varying numbers of edge colors and is 
well suited to multi-label and multi-dimensional graphs. 

 
3.8. Limitations 

However, the proposed method is limited in the following sense. First, we observe that the increase 
in the number of edge colors causes the method’s runtime to scale up, albeit it still being faster than the 
baselines. Second, the method is very efficient for a large graph; however, more improvement may be 
needed for applications, where the speed of computation is of essence. 
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Thus, the presented approach is scalable and accurate for clustering complex graphs and 
hypergraphs. The work shown better performance than other algorithms on synthetic and real-world 
databases with regards to average clustering accuracy, conductance values and scalability. Potential 
improvements can extend certain benefits of our new method more to minimize runtime for very large-
scale problems and real-time applications. 

The following abbreviations are frequently used throughout the paper to refer to algorithms, 
datasets, and evaluation metrics. This table aims to improve readability and ensure consistency in 
terminology. 
 

Table 7. 
Nomenclature: Abbreviations. 

Abbreviation Definition 
SC Spectral Clustering. 
GP Greedy partitioning. 
DBLP Digital bibliography & library project. 
NMI Normalized mutual information. 
kCC k-edge colored clustering. 

 

4. Conclusion 
The proposed method for clustering k-edge-colored graphs and hypergraphs demonstrates 

significant improvements in clustering accuracy, conductance, and scalability compared to traditional 
algorithms such as Spectral Clustering and Greedy Partitioning. Experimental evaluations on both 
synthetic and real-world datasets validated the method's ability to handle large, complex networks 
efficiently. Notably, the approach consistently produced well-separated clusters with lower conductance 
values, highlighting its applicability to tasks requiring precise group separations, such as social network 
analysis and citation clustering. 

The integration of submodular optimization, spectral clustering, and hypergraph partitioning 
techniques ensures computational efficiency and robustness across various scenarios. Despite the 
method's strengths, a slight increase in runtime with higher edge and color densities suggests a need for 
further optimization for real-time applications. 

Future work could focus on enhancing the algorithm's efficiency for extremely large-scale datasets 
and extending its applicability to additional domains involving multi-label graphs and hypergraphs. 
Overall, the proposed method represents a meaningful advancement in hypergraph clustering, offering a 
scalable, accurate, and practical solution for diverse applications in network analysis and data 
organization. 

 

Copyright:  
© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
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