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Abstract: This paper investigated A_∞-algebras, which are generalizations of associative algebras that 
incorporate higher homotopy structures. We began by revisiting the fundamental definitions and 
properties of A_∞-algebras and their associated homological theories, providing a solid foundation for 
understanding these complex structures. The study included an in-depth analysis of simplicial 
homology as it relates to A_∞-algebras, focusing on significant results, particularly those concerning 
excision theory. In this context, we introduced new insights into the relationship between bar homology 
and simplicial homology, presenting a precise sequence elucidating the interaction between these two 
homological structures. Within this framework, we provided proofs for key results, such as the 
quantitative coherence of certain maps and the interchanging diagram that connects different 
homological categories. We address the specific failure of excision properties and its implications for 
long exact sequences in both homological and homotopical contexts. This paper offered a 
comprehensive overview of current developments in A_∞-algebra theory and simplicial cohomology, 
highlighting classical and contemporary insights into these sophisticated mathematical structures. By 
presenting detailed definitions, examples, and theorems, we strive to contribute to a deeper 
understanding of homology within the framework of advanced algebraic systems. Our analysis sheds 
light on existing theories and paves the way for future research in the field, providing a valuable 
resource for mathematicians interested in the interplay between algebra and topology. 
Keywords: A_∞-algebras, Excision, Hochschild, Homology. 

 
1. Introduction  

As demonstrated by Riemann's solutions to problems involving surface connections, homology is 
pivotal in mathematical investigations. Green's theorem, which relates line integrals over a closed curve 
to double integrals over the enclosed plane region, underpins this principle. The theorem implies that 
certain integrals will yield identical values for any two homologous curves, an idea that permeates 

classical vector spaces and theoretical physics . 
Simplicial homology, a branch of algebraic topology, addresses the study of homology theory in 

associative algebras over a field. Gerhard Hochschild introduced this theory [1], initially focusing on 
algebras over a field. Henri Cartan and Samuel Eilenberg [2] later extended this work to more 

generalized rings . 

In [3], Stasheff developed the concepts of 𝒜∞-spaces and 𝒜∞-algebras during his study of 
topological spaces. These ideas emerged as generalizations of topological groups while maintaining 

continuous, albeit non-associative, multiplication. 𝒜∞-algebras are essentially chain complexes with 
homotopy associative products, satisfying higher homotopy associativity conditions. A prime example of 

an 𝒜∞-algebra is the singular chain complex 𝒞●(𝒳), which illustrates their homotopy-invariant nature. 

Research into 𝒜∞-algebras has advanced significantly due to contributions from mathematicians 
such as Kadeishvili [4], Smirnov [5], and Prouté [6]. J. Huebschmann highlighted the relevance of 

homological perturbation theory and 𝒜∞-structures in homological algebra, especially within 
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topological contexts [7]. Further advancements were made by John D. S. Jones and E. Getzler [8]. 

Kenji Fukaya's exploration of 𝒜∞-categories [9] and Kontsevich's influential 1994 lecture on 
categorical mirror symmetry contributed significantly to the field's development [10]. 

In [11], Keller integrated 𝒜∞-language into ring theory and representation theory, showing that 
the derived category of any Grothendieck category with a compact generator is equivalent to the 

derived category of an 𝒜∞-algebra. Additional studies by P. Seidel on 𝒜∞-structures concerning 

Lefschetz fibrations [12], and research by Alaa H. and Y. Gouda on simplicial cohomology for 𝒜∞-
algebras [13,14] expanded our understanding of these structures. 

The lack of excision in specific contexts leads to long exact sequences in homological categories but 

not in homotopic categories. This paper presents various definitions of homology for 𝒜∞-algebras, 
examining the simplicial homology of these structures and providing reliable results for their excision 

theory. We explored the excision theory of simplicial homology for 𝒜∞-algebras, establishing the 

relationship between bar homology ℋ𝐵𝑛(ℐ) and simplicial homology ℋℋ𝑛(ℐ) through an exact 
sequence: 

…
        
←  𝐻𝑛−1(ℐ)

        
←   ℋ𝐵𝑛−1(ℐ)

        
←  ℋℋ𝑛(ℐ)

        
←  𝐻𝑛(ℐ)

        
←   ℋ𝐵𝑛(ℐ)

        
←  ℋℋ𝑛+1(ℐ)

        
←  ….. 

Additionally, we proved that the quasi-isomorphisms for the following maps:  

𝑖: (ℛ ⊗ ℐ⨂∗, 𝜌∗)⊗ 𝒢 ↪ (ℛ ⊗𝒜⨂∗, 𝜌∗)⊗ 𝒢 , 

𝑖′: (ℛ ⊗ ℐ⨂∗, 𝜌∗
′)⊗ 𝒢 ↪ (ℛ ⊗𝒜⨂∗, 𝜌∗

′)⊗ 𝒢, 
are quasi-isomorphisms, as are the two maps: 

𝜋: (ℬ ⊗𝒜⊗∗, 𝜌∗)⊗ 𝒢
        
→  (ℬ ⊗ℬ⊗∗, 𝜌∗)⊗ 𝒢, 

𝜋′: (ℬ ⊗𝒜⊗∗, 𝜌′∗)⊗ 𝒢
        
→  (ℬ ⊗ℬ⊗∗, 𝜌′∗)⊗ 𝒢, 

These results enable us to construct a commutative diagram, elucidating the intricate relationships 
between these homological structures: 

0
    
0
 
→
 
→
  
(ℐ ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢

|𝑗
𝑘𝑒𝑟 (𝜋)

  
→
      
→
  

(𝒜 ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
| =

(𝒜 ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢

  

→
     
 𝜋 
→

  

(ℬ ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
|𝜋1

(ℬ ⊗𝒜⨂∗ , 𝜌∗) ⊗ 𝒢

  
→
     
→
  
0
    
0

. 

 

2. Homology theory of 𝓐∞-algebras 
In this section, we will explore the fundamentals and definitions related to the homology theory of 

𝒜∞-algebras. We begin by introducing the basic definitions and concepts of 𝒜∞-algebras. Following 

this, we will present the simple homology of 𝒜∞-algebras. 

Firstly, we define an algebra over the field ℛ, focusing on properties.  
 
2.1. Definition [2] 

Over the field  ℛ, algebra is represented by the linear vector space 𝒳, which has the multiplication 

function 𝒯:𝒳 ×𝒳 → 𝒳, (𝓋,𝓊) ↦ 𝓋𝓊, that which 𝒯 is distributed and linear in the two variables. 

That applies for all  𝓋, 𝓊,𝓌 ∈ 𝒳, 𝛼 ∈ ℛ 

▪ 𝓌(𝓋 +𝓊) = 𝓌𝓊 +𝓌𝓊. 
▪ (𝓋 + 𝓊)𝓌 = 𝓋𝓌 +𝓊𝓌. 

▪ 𝛼(𝓋𝓊) = (𝛼𝓋)𝓊 = 𝓋(𝛼𝓊). 
Following, we define graded vector spaces where we specify the vector space 𝒳 and related graded 

vector spaces   𝒳𝚤. We describe how to handle homogeneous elements in these spaces. 
 
2.2. Definition [3] 

Suppose ℐ denotes the set of index. The vector space 𝒳 that has the grade ℐ, known as the ℐ-graded 

vector space, takes the following form 𝒳 =
⨁
𝚤 ∈ ℐ

𝒳𝚤, hence for each  𝚤, and then  𝒳𝚤 would be a vector 
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space. The elements 𝓍 ∈ 𝒳𝚤 are hence known as homogeneous elements with degree 𝚤 and denoted by 

𝑑𝑒𝑔 𝓍 = 𝚤 or |𝓍| = 𝚤. 
Next, we introduce the tensor product of vector spaces 𝒳 and 𝒴 over a field 𝔉. We define the 

bilinear map and discuss the properties of these tensor spaces. 
 
2.3. Definition [3] 

If the vector spaces 𝒳,𝒴 over a field 𝔉 with elements {𝓍𝚤}𝚤∈ℐ and {𝓎ℓ}ℓ∈ℒ; then, the tensor 

product 𝒳 ⊗𝒴 is defined as a vector space over 𝔉 with the symbols {𝓍𝚤 ⊗𝓎ℓ , ∀𝚤 ∈ ℐ , ℓ ∈ ℒ} as its 

basis. Additionally, we define the bilinear map  𝒳 × 𝒴 → 𝒳⊗𝒴 as the two vectors' combined tensor 

product  𝓍 = ∑ 𝒶𝚤𝓍𝚤𝚤   and  𝓎 = ∑ 𝒷ℓ𝓎ℓℓ , which is provided by: 

𝒳⊗𝒴 = (∑ 𝒶𝚤𝓍𝚤𝚤 ) ⊗ (∑ 𝒷ℓ𝓎ℓℓ ) = ∑ 𝒶𝚤𝒷ℓ(𝓍𝚤 ⊗𝓎ℓ𝚤,ℓ ). 
In the following proposition, we will prove the existence of a unique linear map between the tensor 

products of vector spaces. We will demonstrate how to establish this map and its distinctive properties. 
 
2.4. Proposition  

Assume that ℳ is the vector space. A unique linear map ℜ′:𝒳 ⊗𝒴 →ℳ exists for the bilinear 

map  ℜ:𝒳 × 𝒴 →ℳ, such as ℜ = ℜ′ ∘ 𝜙 and 𝜙 is the normal incorporation of 𝒳 ×𝒴 in 𝒳 ⊗𝒴. 
Additionally, the universal characteristic is satisfied by the unique isomorphism in a vector space with a 
bilinear map. 
Proof:   

The relation ℜ′(𝓍𝚤 ⊗𝓎ℓ) = 𝛽(𝓍𝚤, 𝓎ℓ) is a basic 𝒳⊗𝒴 in ℜ′. This map is unique because it 

satisfies the requirement for ℜ = ℜ′ ∘ 𝜙. Now, let 𝒩 be the vector space with the bilinear map 

𝜔:𝒳 × 𝒴 → 𝒩. So, for each bilinear map  ℜ:𝒳 × 𝒴 →ℳ, there is a unique linear map ℜ′, for 

instance ℜ = ℜ′ ∘ 𝜙.  

Suppose that  ℳ = 𝒳⊗𝒴 and ℜ is the map (𝓍, 𝓎) ⟼ 𝓍⊗𝓎. Therefore, through the general 

property of 𝒩, a unique linear map ℜ′:𝒩 → 𝒳⊗𝒴 exists as ℜ = ℜ′ ∘ 𝜙. Likewise, through the 

general property of 𝒳 ⊗𝒴, there exists the unique linear map ℰ′:𝒳 ⊗𝒴 → 𝒩 as  𝜔 = ℰ′ ∘ 𝜙 so 𝜙 =
(ℜ′ ∘ ℰ′) ∘ 𝜙.  

Therefore, ℜ′ ∘ ℰ′ = 𝑖𝑑 and ℜ′ is unique isomorphism  ℜ′:𝒩
  ∼   
→  𝒳⊗𝒴. 

In the following, we define a graded algebra over a field ℛ and how to deal with the resulting 
multiplicity of multiplication maps in this type of algebra. 
 
2.5. Definition [14] 

Suppose ℳ is the graded vector space on the field ℛ, then the graded algebra on ℛ is defined as the 

algebra ℳ such as ℳ =
⊕
𝚤 ∈ ℐ

ℳ𝚤 , and the multiplication map for all 𝓂,𝓃 ∈ ℳ is given by: 

𝑑𝑒𝑔 𝓂𝓃 = 𝑑𝑒𝑔 𝓂 + 𝑑𝑒𝑔 𝓃. 

After that, we will introduce the construction of a tensor algebra from a vector space ℳ, explaining 
how this construction produces a graded algebra defined by the tensor product. 
 
2.6. Definition [15] 

If  ℛ is a field, then the vector space ℳ provides the tensor algebra of ℳ by:  

𝑇(ℳ) = ℛ⊕ℳ⊕ℳ⊗2⊕ℳ⊗3⊕… 
The tensor product's presumed multiplication appears as a graded algebra. 
In the following definition, we define linear morphisms between graded algebras using the tensor 

product and describe the degree-related properties of these morphisms. 
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2.7. Definition [15] 

Suppose that ℳ = ⊗𝑛∈𝑍 ℳ𝑛 is the ℤ-graded vector space. Then, the homeomorphisms of vector 

spaces are linear maps 𝑓:ℳ⊗𝑛 →ℳ. Since the degree of 𝑓, |𝑓| is given by 𝚤, when 𝑑𝑒𝑔 𝑓(𝓂) =
(𝑑𝑒𝑔 𝓂) + 𝚤 for all 𝓂 ∈ ℳ . Obviously, 

|𝑓(𝓂1⊗𝓂2⊗ · · · ⊗𝓂𝑛)| = (|𝓂1| + |𝓂2| + · · ·  + |𝓂𝑛|) + 𝚤. 
We will provide an illustrative example of a graded algebra using a complex sequence over a specific 

field and explaine how to explore homology through this example. 
 
2.8. Example  

Assume the complex over a field known as: 

𝑉• : … 
        
→   𝑉𝑛+1

   𝒹𝑛+1   
→      𝑉𝑛

   𝒹𝑛    
→    𝑉𝑛−1

        
→  …  , 

hence the modules 𝑉𝑛 seem to be, in fact, vector spaces. So 𝑉 = ⨁𝑛𝑉𝑛 is known as the graded vector 

space, where 𝒹:𝑉⊗1 → 𝑉 have a degree −1. 

Following, we define morphisms between 𝒜∞-algebras and explain the conditions and properties 
necessary for these morphisms. 
 
2.9. Definition [13] 

By assuming that 𝛽, 𝛾 are two linear maps of the graded vector spaces 𝒳,𝒴 respectively, such 

that  𝛽:𝒳 → 𝒳  , 𝛾: 𝒴 → 𝒴. Next, the linear maps' tensor product 𝛽 and 𝛾 is denoted by: 

𝛽 ⊗ 𝛾 ∶ 𝒳 ⊗𝒴 → 𝒳⊗𝒴 
(𝓍 ⊗𝓎) ⟼ (−1)|𝛾||𝓎|(𝛽(𝓍)⊗ 𝛾(𝓎)).            (1) 
Remind that the degree of (𝛽 ⊗ 𝛾) is |𝛽| + |𝛾|. 

Remark: The Koszul sign rule states that if two symbols' positions 𝓈 and 𝓇 are switched, the 

outcome is multiplied by (−1)|𝓈||𝓇|, which is the actual cause of the change in sign in the previous 

expression. In the expression above, it is applied as (𝛽 ⊗ 𝛾)(𝓍 ⊗𝓎) = (−1)|𝛾||𝓎|(𝛽(𝓍)⊗ 𝛾(𝓎)), 
where the morphisms acting on the elements are represented by the symbols 𝓍 and 𝓎, which are 
swapped. 

In the following, we describe the concept of differential graded algebras (DGAs) and how to define 
them using the chain complex maps and Leibniz rules. 
2.10. Definition [15]    

The differential graded algebra (DGA) is the complex ℳ with the degree +1 chain map 𝒹:ℳ⊗ℳ
      
→ ℳ so that  𝒹2 = 0, which is unital and associative. The differential graded algebra is simply a 

differential 𝒹 and a graded module equivalent. 

The graded Leibniz rule for all 𝓂,𝓃 ∈ ℳ is denoted by: 

𝒹(𝓂𝓃) = 𝒹(𝓂)𝓃 + (−1)|𝓂|𝒹(𝓃).                                           (2) 
Remark: 

(1) If 𝓂𝓃 = (−1)|𝓂||𝓃|𝓃𝓂, for all 𝓂,𝓃 ∈ ℳ, then the differential graded algebra ℳ is regarded as 
commutative. 

If  1/2 ∈ 𝑘, it is implied that 𝓂2 = 0 holds true if 𝓂 would have an odd degree. 

When ℳ is the commutative graded algebra, therefore the left ℳ-module, and automatically 𝑅 is a 

right ℳ-module, by the formula  𝑟𝓂 = (−1)|𝑟||𝓂|𝓂𝑟. 
(2) Similar definitions are provided for the terms differential graded algebra and derivation. 

Here, we will explain how to handle left models of differential graded algebras and use rules for 
dealing with derivatives in these models. 
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2.11. Definition [16]  

Assume that the differential graded algebra is (ℳ,𝒹). In addition, let 𝑅 be the left graded ℳ-

module and 𝒹𝑅 be the differential of 𝑅, so the complex (𝑅, 𝒹𝑅)and the left multiplication ℳ⊗𝑅 → 𝑅 

combined to create the left differential graded ℳ-module such that the Leibniz rule satisfies for all 𝓂 ∈
ℳ, 𝑟 ∈ 𝑅:   𝒹𝑅(𝓂𝑟) = 𝒹(𝓂)𝑟 + (−1)|𝓂|𝓂𝒹𝑅(𝑟).      
An ℳ-module with differential grading is merely a complex. Similar terms are used to define a right 

differential graded ℳ-module. 
After that, we define graded spaces using morphisms and methods to determine derivatives within 

these graded spaces. 
 
2.12. Definition [16] 

Let 𝐻𝑜𝑚ℳ(𝑅, 𝑆) be a graded vector space that contains ℳ-homomorphisms as of 𝑅 to 𝑆. Graded 

modules:   𝐻𝑜𝑚ℳ(𝑅, 𝑆) ∶=⊕
𝚤∈ℤ

𝐻𝑜𝑚ℳ
𝐺𝑟(𝑅, 𝑆)𝚤, 

using the differential 𝒹𝐻𝑜𝑚 determined to be: 

𝒹𝐻𝑜𝑚(𝒽) = 𝒹𝑆 ∘ 𝒽 − (−1)|𝒽|𝒽 ∘ 𝒹𝑅 ,     ∀ 𝒽 ∈ 𝐻𝑜𝑚ℳ(𝑅, 𝑆).  
In particular, differential graded algebras are used to create the graded vector space  𝐻𝑜𝑚ℳ(𝑅, 𝑅), 
where  𝐻𝑜𝑚ℳ(𝐿, 𝑅) is a differential-graded module over 𝐻𝑜𝑚ℳ(𝑅, 𝑅) differential-graded algebras. 

Next, we will describe how to handle the tensor product of graded spaces and determine the graded 
map's properties in this context. 
 
2.13. Definition [17] 

By the differential  𝒹⊗ and the complex  ℳ, we can define the graded vector space for a tensor 

product  𝑅 ⊗ℳ 𝑆 over ℳ as: 

𝒹⊗(𝑟 ⊗ℳ 𝑠)  = 𝒹𝑅(𝑟) ⊗ℳ 𝑠 + (−1)|𝑟|𝑟 ⊗ℳ 𝒹𝑆(𝑠). 

There is an adjoint property between 𝐻𝑜𝑚ℳ and  ⊗ℳ: 

𝐻𝑜𝑚ℳ(𝐿 ⊗ℳ 𝑅, 𝑆) ≅ 𝐻𝑜𝑚ℳ(𝐿, 𝐻𝑜𝑚ℳ(𝑅, 𝑆)). 
Here, we will define 𝒜∞-algebras and how to handle their fundamental properties, such as the 

Stasheff identity. 
 
2.14. Definition [18]   

A vector space with ℤ grades is an 𝒜∞-algebras on a field 𝑀 such that: 𝒜 =⊕
𝓅∈ℤ

𝒜𝒫, supplied with 

graded maps that are homogenous 𝑀-linear mappings; 

 𝑟𝑛:𝒜
⊗𝑛 → 𝒜,         𝑛 ≥ 1. 

of (|𝑟𝑛| = 2 − 𝑛)-degree, fulfilling the subsequent requirements of Stasheff identities: ∀ 𝑛 ∈
ℕ,    (𝑆𝐿(𝑛)) 
∑(−1)𝑚+𝑠𝑡𝑟𝓆(𝑖𝑑

⊗𝑚 ⊗ 𝑟𝑠⊗ 𝑖𝑑⊗𝑡) = 0                                   (3) 

where the total is applied to all decompositions  𝑛 = 𝑚 + 𝑠 + 𝑡,  𝑚, 𝑡 ≥ 0 and 𝑠 ≥ 1, and 𝓆 = 𝑚 +
1 + 𝑡. Thus, 𝑖𝑑 refers to the identification map of 𝒜. Because of the Koszul sign rule, additional signs 

occur when these formulas get used on elements. 𝒜∞-algebras are known as strongly homotopy 
associative algebras. For example: 

1) 𝑆𝐿(1) means that:  𝑟1 ∘ 𝑟1 = 0. 

where 𝑟1 has a degree of  1, which means that 𝑟1 is a derivative of 𝒜. 

2) 𝑆𝐿(2) says that  𝑟1 is a derivation for  𝑟2, such that: 

 𝑟1 ∘ 𝑟2 = 𝑟2 ∘ ( 𝑟1⊗ 𝑖𝑑 + 𝑖𝑑 ⊗ 𝑟1) 
The degree of  𝑟2 is zero. 

3) 𝑆𝐿(3) indicates that 𝑟2 is associative till the homotopy 𝑟3 can be re-written as: 
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𝑟2 ∘ (𝑖𝑑 ⊗ 𝑟2 − 𝑟2 ⊗ 𝑖𝑑) = 𝜕(𝑟3) 
= 𝑟1 ∘ 𝑟3 + 𝑟3 ∘ (𝑟1⊗ 𝑖𝑑 ⊗ 𝑖𝑑 + 𝑖𝑑 ⊗ 𝑟1⊗ 𝑖𝑑 + 𝑖𝑑 ⊗ 𝑖𝑑 ⊗ 𝑟1) 

where 𝜕 is the differential of 𝐻𝑜𝑚(𝒜⊗3,𝒜) induced by 𝑟1. 

4) Pentagonal homotopy associative algebra (𝒜, 𝑟1, 𝑟2, 𝑟3): 
𝑆𝐿(4): 𝑟2 ∘ (𝑖𝑑 ⊗ 𝑟3 + 𝑟3 ⊗ 𝑖𝑑) = 𝑟3 ∘ (𝑟2⊗ 𝑖𝑑 ⊗ 𝑖𝑑 − 𝑖𝑑 ⊗ 𝑟2 ⊗ 𝑖𝑑 + 𝑖𝑑 ⊗ 𝑖𝑑 ⊗ 𝑟2). 

We will present an example of an 𝒜∞-algebra with degree 0 and analyze its properties through 
specific assignments. 
 
2.15. Example  

Let the associative algebras 𝒜 be an 𝒜∞-algebras focused at degree 0 through all multiplications 

𝑟𝑛 = 0 for 𝑛 ≠ 2. As a result, the associative algebras make a subclass of 𝒜∞-algebras with the 

form (𝒜, 𝑟2). 
We will define morphisms between 𝒜∞-algebras and describe how to handle these morphisms' 

necessary conditions and properties. 
 
2.16. Definition [19] 

Suppose that 𝒜 and ℬ are both 𝒜∞-algebras, then the family of 𝑀-linear graded maps is the 

morphism 𝒽:𝒜 → ℬ of 𝒜∞-algebras such that: 

𝒽𝑛:𝒜
⊗𝑛 → ℬ           𝑛 ≥ 1 

of degree (1 − 𝑛), where the subsequent identities apply for each 𝑛 ≥ 1: 

∑ (−1)𝑚+𝑠𝑡𝒽𝑚+1+𝑡 ∘ (𝑖𝑑
⊗𝑚 ⊗𝑟𝑠 ⊗ 𝑖𝑑⊗𝑡)

𝑚+𝑠+𝑡=1
𝑚,𝑡≥0
𝑠≥1

 

= ∑ ∑ (−1)𝓆𝑟𝑗
′(𝒽𝑖1⊗𝒽𝑖2 ⊗…⊗𝒽𝑖𝑗 )

𝑖1+···+𝑖𝑗=𝑛

𝑛

𝑗=1
,            (𝑀𝐿(𝑛)) 

where:  

𝓆 = (𝑖𝑗−1 − 1) + 2(𝑖𝑗−2 − 1) +⋯+ (𝑗 − 2)(𝑖2 − 1) + (𝑗 − 1)(𝑖1 − 1). 

Assuming 𝒜 and ℬ are both unital 𝒜∞-algebras of stringent units 1𝒜 and 1ℬ respectively, so 𝒽 
additionally needs to fulfill the following unital morphism requirements: 

1) As required for ring morphisms, 𝒽1(1𝒜) = 1ℬ. 

2) If 𝒶𝑖 = 1𝒜 , then 𝒽𝑛(𝒶1⊗…⊗𝒶𝑛) = 0 for all 𝑛 ≥ 2 , 𝑖 ∈ {1,… , 𝑛}. 
3) A stringent morphism over 𝒜∞-algebras is 𝒽:𝒜 → ℬ when 𝒽𝑛 = 0 for all  𝑛 ≥ 2. 

4) When 𝒽:𝒜 → ℬ is a stringent morphism, the morphism identification 𝑀𝐿(𝑛) changes to 

 𝒽1𝑟𝑛 = 𝑟𝑛(𝒽1⊗…⊗𝒽1). 
As a result, ring homeomorphisms and stringent morphisms of 𝒜∞-algebras tend to be identical. 

5) We state that 𝒽 is a stringent isomorphism if 𝒽1 is a vector spaces' isomorphism and 𝒽 is a 
stringent morphism. It proves to be even more significant to take into consideration the homology of 

the 𝒜∞-algebras, similar to how it is conducted via chain complexes. 

Here, we will define strict morphisms and how to handle them within 𝒜∞-algebras, including the 
use of these definitions in analysis. 
 
2.17. Definition [19] 

The morphism 𝒽 is considered stringent if 𝒽𝑖 = 0 for any 𝑖 ≠ 1. The stringent morphism 𝒽 that 

makes 𝒽1 the identity of 𝒜 is the identity morphism. While 𝒽:𝒜 → ℬ is a stringent morphism, the 

identity 𝑀𝐿(𝑛) becomes: 

𝒽1𝑟𝑛 = 𝑟𝑛(𝒽1⊗⋯⊗𝒽1). 
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In classical ring theory, homeomorphisms are similar to strict morphisms. 

Morphism 𝒽 called a strict isomorphism if it is 𝒽 strict and  𝒽1is an isomorphism of vector spaces. 

In this instance, the inverse morphism of 𝒽 is denoted by 𝒽1
−1: ℬ → 𝒜. 

We will explain how to classify 𝒜∞-algebras through equivalence classes and how to handle 
different models of algebras in the following. 
 
2.18. Definition [20] 

Assume that 𝒜 and ℬ are 𝒜∞-algebras and that 𝒽:𝒜 → ℬ is a 𝒜∞-morphism. If 𝒽1 represents a 

quasi-isomorphism of complexes, then we can argue that 𝒽 is a quasi-isomorphism as well. It follows 

that the induced map ℋ(𝒽1):ℋ(𝒜•) → ℋ(ℬ•) is isomorphic. Here, we use the notation 𝒜 ≃ ℬ.  

We will classify two 𝒜∞-algebras as belonging to the same 𝒜∞-algebras if they are quasi-isomorphic. 

In other words, quasi-isomorphism classes of 𝒜∞-algebras will be taken into consideration. A model of 

𝒜 is a representation of a class of 𝒜∞-algebras that are quasi-isomorphic to 𝒜 and satisfy some helpful 

properties. As an illustration, the term "minimal model of 𝒜" refers to a representative 𝒜∞-algebras 

containing a zero 𝑟1. As a result, we can examine 𝒜∞-algebras by taking into consideration alternative 

models of 𝒜. 

Now, we will show that  𝐸𝑥𝑡𝒜
∗ (𝑀,𝑀) is an  𝒜∞-algebra and how to use different solutions in this 

context. 
 
2.19. Theorem [21] 

Assuming 𝒜 is the algebra over  𝑀, then 𝐸𝑥𝑡𝒜
∗ (𝑀,𝑀) is an 𝒜∞-algebras. 

To demonstrate this, we take the projective resolution 𝒫 of 𝑀𝒜
 . H Consequently, the differential 

graded algebra with homology determined by the Yoneda algebra 𝐸𝑥𝑡𝒜
∗ (𝑀,𝑀) is the morphism 

complex ℬ = 𝐻𝑜𝑚𝒜(𝒫,𝒫). 
We will provide an illustrative example of applications of  𝒜∞-algebras and how to use them in 

specific cases of tensor products and maps. 
 
2.20. Example  

The map 𝑟2 is produced by multiplying 𝑅 and the mappings 𝑟𝑛 = 0 for all 𝑛 ≠ 2, The graded space 

𝒜 = 𝑅[𝔷]/(ℰ2) has a trivial 𝒜∞-structures when 𝑅 is an extraordinary algebra for 𝑁 ≥ 1 and  𝔷  is an 

undetermined of degree 2 − 𝑁. We define the distorted multiplication and the linear map 𝒽: 𝑅⊗𝑁 → 𝑅 
as follows: 

𝑟𝑛
′ = {

𝑟𝑛                              𝑛 ≠ 𝑁
𝑟𝑁 + ℰ𝒽                   𝑛 = 𝑁

 . 

The given  𝑟𝑛
′  thus becomes an 𝒜∞-algebras if and only if 𝒽 is a simplicial co-cycle over 𝑅. 

Next, we will define  𝒜∞-algebras using left models and how to handle fundamental properties of 
these models. 
 
2.21. Definition [11] 

Consider 𝒜 as an 𝒜∞-algebras. The ℤ-graded vector space 𝑅 is defined as the left 𝒜∞-module of 

𝒜, equipped with maps: 

𝑟𝑛
𝑅:𝒜⊗𝑛−1⊗𝑅 → 𝑅, 𝑛 ≥ 1           

of degree (2 − 𝑛), fulfilling the identical Stasheff identities 𝑆𝐿(𝑛): 

∑(−1)𝑚+𝑠𝑡𝑟𝑚+1+𝑡(𝑖𝑑
⊗𝑚 ⊗ 𝑟𝑠 ⊗ 𝑖𝑑⊗𝑡) = 0, 

as in the definition of 𝒜∞-algebras. 
We will describe how to define morphisms between left models of algebras and how to construct 

these morphisms to meet specified conditions. 
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2.22. Definition [8] 

Assume the morphism of the left 𝒜∞-modules 𝒽:𝑅 → 𝑆 is defined as the family of the graded maps: 

 𝒽𝑛:𝒜
⊗𝑛−1⊗𝑅 → 𝑆 

of degree  (1 − 𝑛) for all  𝑛 ≥ 1. When 𝒽1 = 𝑖𝑑𝑅 and 𝒽𝑖 = 0 for all 𝑖 ≥ 2, the identity morphism 

𝒽: 𝑅 → 𝑅 is produced. The composition of two morphisms 𝒽: 𝑅 → 𝑆 and ℊ: 𝐿 → 𝑅 is given by: 

(𝒽 ∘ ℊ)𝑛 = ∑𝒽1+𝓌 ∘ (𝑖𝑑⊗𝓌 ⊗ℊ𝓋),            (4) 
where the sum is taken over all decompositions 𝑛 = 𝓋 +𝓌. 

We now classify nested categories and apply functorial transformations between  𝒜∞-algebras. 
 
2.23. Theorem [8] 

Assume that 𝒽:𝒜 → ℬ is a quasi-isomorphism of 𝒜∞-algebras. Then, the equivalent functor for 

triangulated categories that maps ℬ to 𝒜 is: 

𝒽∗:𝒜∞(ℬ) → 𝒜∞(𝒜). 
This theorem shows how to establish correspondences between nested categories of  𝒜∞-algebras 

and how to use these correspondences in practical applications. 
 
2.24. Theorem [22] 

Let (𝒜, 𝒹𝒜) be a differential graded algebra, and let ℭ𝒹ℊ(𝒜) e the category of differential graded 

modules with morphisms between these modules, such that 𝒜𝒹ℊ(𝒜) is the category. Then, the 

equivalence for the triangulated categories: 𝒜𝒹ℊ(𝒜) → 𝒜∞(𝒜) is produced by the inclusion 

functor  ℭ𝒹ℊ(𝒜) → ℭ∞(𝒜). 

Next we define 𝒜∞-algebras using graded algebra properties and examine how to utilize these 
definitions in analysis. 
 
2.25. Definition [14] 

Assuming ℛ is a commutative ring and 𝒜 = ∑ 𝒜𝑛
𝑛∈ℤ  is a graded ℛ-module. Therefore, the 

collection of multiplication maps 𝑟𝑛:𝒜
⨂𝑛 → 𝒜 of degree (2 − 𝑛) is an 𝒜∞-structures on 𝒜, such that: 

∑ (−1)𝑚𝑠+𝑡𝑟𝑚+1+𝑡
 

 
(1⨂𝑚 ⊗ 𝑟𝑠

 
 
⊗1⨂𝑡)

𝑚+𝑠+𝑡=𝑛

= 0, 

for all 𝑛. 

Now, we discuss constructing 𝒜∞-algebras using homology and applying this structure in various 
contexts. 
 
2.26. Theorem [23] 

Assume (𝒞, Ω, 𝜂)  is a differential graded algebra, and ℋ∗(𝒞) is projective over 𝑀 in each degree. 

Then there exists an 𝒜∞-structure 𝑟 on ℋ∗(𝒞) such that: 

(i) 𝑟1 = 0 (minimal case), 

(ii) 𝑟2 is induced by 𝜂, 

(iii) (𝐻∗(𝒞), 𝑟) is quasi-isomorphic to (𝒞, 𝛺, 𝜂). 
Next, we introduce the Maurer-Cartan equation, which allows us to extend 𝒜∞-algebras and 

analyze different applications. 
 
2.27. Definition [24] 

Let ℋ be an 𝒜∞-algebra, and let 𝒶 ∈ ℋ1, we say  𝒶  satisfies the Maurer-Cartan equation if: 

∑±𝑟𝑛(𝒶⨂𝑛)

𝑛∈ℕ

= 0. 

The twisted 𝒜∞-algebras ℋ𝒶 is then defined by:  
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𝑟𝑛
𝒶(𝒾1,⋯ , 𝒾𝑛) = ∑ ±𝑟𝑛+ℓ(𝒶⨂ℓ1 , 𝒾1, 𝒶⨂ℓ2 , 𝒾2,⋯ , 𝒾𝑛, 𝒶⨂ℓ𝑛+1)

ℓ1+⋯+ℓ𝑛+1∈ℕ0

, 

where ℓ = ℓ1 +⋯+ ℓ𝑛+1. 

These formulas also apply to 𝒜∞-bimodules. Hence, if 𝒩 is an 𝒜∞-bimodules over ℋ then, 𝒩𝒶 is 

an 𝒜∞-bimodules over  ℋ𝒶. 

Now, we define simple homology for 𝒜∞-algebras using complexes and their sequences. 
 
2.28. Definition [25] 

Let a space 𝒳 be an 𝒜∞-algebra, and let (𝒳∗ , 𝒹∗) = {𝒳𝑛 , 𝒹𝑛} represent a chain complex such that: 

…
       
→ 𝒳𝑛+1

  𝒹𝑛+1   
→    𝒳𝑛

  𝒹𝑛   
→   𝒳𝑛−1

  𝒹𝑛−1   
→    …

  𝒹1  
→  𝒳0

  𝒹0   
→  0 

Then, the 𝑛𝑡ℎ homology of an 𝒜∞-algebra 𝒳 is defined as: 

ℋ𝑛(𝒳) =
𝑘𝑒𝑟(𝒹𝑛)

𝐼𝑚(𝒹𝑛+1)
.                                                     (5) 

Since  𝐼𝑚 𝒹𝑛+1 ⊂ 𝑘𝑒𝑟 𝒹𝑛, and ℋ𝑛(𝒳) =
𝑛−cycles

𝑛−boundaries
. 

Finally, we define 𝒜∞-algebras using corrections for algebra models and explain how to handle 
derived structures. 
 
2.29. Definition [22] 

Let ℬ be a unital associative algebra, 𝑅 a right ℬ-module, and 𝒫 → 𝑅 the projective resolution. 

Consider 𝒜 = 𝐻𝑜𝑚ℬ(𝒫,𝒫) represent the differential graded endomorphism algebras of 𝒫, with its nth 

component consisting of the morphisms of graded items of degree 𝑛 and its differential being the super 

commutator corresponding to the differential of 𝒫.  

Since 𝒜 is specifically an 𝒜∞-algebra, it includes a minimal model. The homology ℋ∗𝒜, as an algebra 

of  𝑟2, is now isomorphic to the Yoneda algebra 𝐸𝑥𝑡ℬ
∗ (𝑅, 𝑅). 

Next, we explain simple homology for 𝒜∞-algebras and how to use these definitions in various 
applications. 
 
2.30. Definition [26]  

Assume that (𝒜 =⊕𝑗∈ℤ 𝒜𝑗 , (𝜂𝑛)𝑛∈ℕ) is an 𝒜∞-algebras over 𝑀 and let (𝒮 =⊕𝑗∈ℤ 𝒮𝑗,

(𝜇𝑚,𝑠
𝒮 )𝑚,𝑠∈ℕ0) be an 𝒜∞-bimodules over  𝒜. We further denote the index of 𝑟 ∈ 𝒮 by  𝜇(𝑟) ∶= 𝜇𝒮(𝑟). 

Consider the graded 𝑀-bimodule: 

ℋℋ∗(𝒜, 𝒮):=
∞
⊕

𝑛 = 0
𝒮 ⊗𝒜⊗𝑛 , 

with grading on  ℋℋ∗(𝒜, 𝒮) is given by: 

ℋℋ𝑗(𝒜, 𝒮) =⊕𝑛∈ℕ0   ⊕𝑗=𝑛−𝑗0−𝑗1−⋯−𝑗𝑛 𝒮𝑗0 ⊗𝒜𝑗1 ⊗… ⊗𝒜𝑗𝑛 .            (6) 

which corresponds to the simplicial homology of 𝒜∞-algebras. 
After that, we discuss how to handle homology degrees in graded spaces and explain how to 

determine these degrees using advanced definitions. 
 

2.31. Definition [27]   

For 𝒶 ∈ ℋℋ∗(𝒜, 𝒮) we write 𝑑𝑒𝑔(𝒶) = 𝑗  if and only if 𝒶 ∈ ℋℋ𝑗(𝒜, 𝒮) and call it the degree 

of  𝒶. Note that for all 𝓈 ∈ 𝒮, 𝑛 ∈ ℕ0 and 𝒶1, 𝒶2, … , 𝒶𝑛 ∈ 𝒜 the degree of 𝓈 ⊗𝒶1 ⊗…⊗𝒶𝑛 is 
explicitly given by: 

deg(𝓈 ⊗ 𝒶1 ⊗…⊗𝒶𝑛) = 𝑛 − 𝜂(𝓈) −∑𝜂(𝒶𝑗)

𝑛

𝑗=1

 =  −𝜂(𝓈) −∑‖𝒶𝑗‖

𝑛

𝑗=1

 . 
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Remark: The degree on ℋℋ∗(𝒜, 𝒮)  is best understood in terms of the shifted 𝒜∞-algebras 𝒜 [1]. 

We may identify ℋℋ∗(𝒜, 𝒮) as a group, with 
∞
⊕

𝑛 = 0
𝒮 ⊗𝒜⊗𝑛. The degree on ℋℋ∗(𝒜, 𝒮) then 

coincides with the usual product degree of this tensor algebras. 
Next, we describe how to deal with the relative homology of algebras and how to use suitable 

models for analysis in this context. 
 
2.32. Definition [28] 

There is a map for the relative homology of 𝒜 modulo ℐ if 𝒜 is an 𝒜∞-algebras and ℐ is an ideal, 

where 𝒜
        
→  𝒜/ℐ is 𝒜∞-split, such that:  

𝔷:ℋℋ𝑛(ℐ)
        
→  ℋℋ𝑛(𝒜/ℐ), 

If this map is an isomorphism, it is claimed that the ideal  ℐ is the excision of simplicial homology. 
This leads to the following exact sequence: 

…
        
→  ℋℋ𝑛(ℐ)

        
→  ℋℋ𝑛(𝒜)

        
→  ℋℋ𝑛(𝒜/ℐ)

        
→  ℋℋ𝑛−1(ℐ)

        
→  ℋℋ𝑛−1(𝒜)

        
→  … 

Finally, the exact sequence for  𝒜∞-algebras with ideal ℐ includes a boundary map 𝛿, which is 
clearly defined in terms of relative cycles. 
 
2.33. Proposition [29]  

Given 𝒜 be 𝒜∞-algebras and ℐ-ideal since  ℐ ⊂ 𝒜, we have the following exact sequence: 

ℋℋ𝑛(ℐ)
             𝑖∗           
→         ℋℋ𝑛(𝒜)

  
𝛿(−1)                         𝑗∗          

 

  
  

ℋℋ𝑛(𝒜/ℐ) 

 

Actually, in this application of relative homology, the boundary map 𝛿 contains an obvious 

description: The (𝑛 − 1)-homology class provided by [𝛿𝜑] ∈ ℋ𝑛−1(𝒜) is 𝛿[𝜑] if 𝜑 ∈ 𝒞𝑛(𝒴,𝒜) 
denotes a relative cycle. 
 
3. Main Result 

This text explores essential topics in algebraic topology and homology related to  𝒜∞-algebras. It 
covers how isomorphisms between homology groups are preserved under specific conditions, defines 

simplicial and bar homology with module coefficients, and discusses  ℋ-unitarity. The discussion also 
includes the relationships between different homological constructs and the conditions required for 
quasi-isomorphisms, providing a comprehensive view of these concepts and their interconnections. 

The frist theorem discusses the excision theorem for 𝒜∞-algebras, demonstrating how 
isomorphisms between homology groups persist under specific conditions and the inclusion maps. It 
includes proof strategies involving chain complexes and homotopy equivalence. 
 
3.1. Theorem (Excision Theory) 

Suppose that ℰ is a subset of 𝒜∞-algebras such that ℰ ⊂ 𝒜 ⊂ 𝒳. Then, for all 𝑛 the 

isomorphisms  ℋ𝑛(𝒳\ℰ,𝒜\ℰ)
        
→  ℋ𝑛(𝒳,𝒜) that given by the inclusion (𝒳\ℰ,𝒜\ℰ) ↪ (𝒳,𝒜). 

If 𝒳 is covered by the interiors of the spaces 𝒜, ℬ such that 𝒜, ℬ ⊂ 𝒳, then the inclusion (ℬ,𝒜 ∩ ℬ) ↪
(𝒳,𝒜) is the equivalent statement that persuades the isomorphisms  ℋ𝑛(ℬ,𝒜 ∩ ℬ)

      
→ ℋ𝑛(𝒳,𝒜) for 

all 𝑛, where the space ℬ is given by ℬ = 𝒳\ℰ. 

Proof: By using [30], [31] and consider 𝒳 as the combination of 𝒜 and ℬ through interiors 

covering 𝒳. Next, there are maps of natural inclusion.  
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𝒞•(𝒳)

𝚤 ↑
𝒞•(𝒜) + 𝒞•(ℬ)

 

 
 

𝒞•(𝒜)                          𝒞•(ℬ) 
 
 

𝒞•(𝒜 ∩ ℬ) 
We would obtain: 𝒞•(𝒳)/𝒞•(𝒜) = 𝒞•(ℬ)/𝒞•(𝒜 ∩ ℬ), 
where the map 𝜄 remains an isomorphism, which leads to the desired result. However, there are 

terrible simplices that can have non-empty intersections with (𝒜 −𝒜 ∩ ℬ) and (ℬ −𝒜 ∩ ℬ); 
therefore, the fact that the map 𝜄 is not an isomorphism is an issue. Assisted by the chain map 𝜉: 𝒞•(𝒳)       
→ 𝒞•(𝒜) + 𝒞•(ℬ), we would desire to demonstrate how to split up terrible simplices into little good 
ones without changing the homology.  

We demonstrate that 𝒞•(𝒜) + 𝒞•(ℬ) be the distorted retracting of 𝒞•(𝒳), indicating that  𝜉 ∘ 𝚤 =
𝐼𝑑 and 𝚤 ∘ 𝜉 = 𝒹𝔇+𝔇𝒹 for particular chain homotopy 𝔇.  

In order to retain the sub-complexes 𝒞•(𝒜) and 𝒞•(ℬ), we choose 𝔇, indicating that we achieve the 

equivalence: 𝒞•(𝒳)/𝒞•(𝒜)
           
→   𝒞•(ℬ)/𝒞•(𝒜 ∩ ℬ) as chain homotopy equivalence. 

Next, we define simplicial homology isomorphisms in the context of 𝒜∞-algebras, emphasizing the 
behavior of these isomorphisms under inclusions of subspaces. 
 
3.2. Definition  

For the space 𝒳 and ℰ ⊂ 𝒜∞-algebras where ℰ ⊂ 𝒜 ⊂ 𝒳, the simplicial homology isomorphisms 

induced by the inclusion (𝒳\ℰ,𝒜\ℰ) ↪ (𝒳,𝒜) for all 𝑛 is: 

ℋℋ𝑛(𝒳\ℰ,𝒜\ℰ)
        
→  ℋℋ𝑛(𝒳,𝒜). 

By setting the space ℬ = 𝒳\ℰ, let 𝒳 covered by the interiors of the spaces 𝒜,ℬ for 𝒜, ℬ ⊂ 𝒳, then the 

equivalent statement is that the following isomorphisms persuaded by the inclusion (ℬ,𝒜 ∩ ℬ) ↪
(𝒳,𝒜): 
ℋℋ𝑛(ℬ,𝒜 ∩ ℬ)

      
→ ℋℋ𝑛(𝒳,𝒜)    ∀𝑛.                                  (7) 

Now, we introduce the bar homology of 𝒜∞-algebras with coefficients in a module detailing the 
associated boundary maps. 
 
3.3. Definition  

Assuming that ℐ is an 𝒜∞-algebras, which is not necessarily unitary and make ℛ a right ℐ-module. 

Then, the complexes' homology ℋ𝐵∗
′(ℐ, ℛ) is the bar homology of ℐ via coefficients in ℛ: 

(ℛ ⊗ ℐ⨂∗, 𝜌∗
′):= ℛ

       𝜌1
′      

←     ℛ⊗ ℐ
       𝜌2

′      
←     ℛ ⊗ ℐ ⊗ ℐ

       𝜌3
′      

←     ℛ⊗ ℐ ⊗ ℐ ⊗ ℐ
      𝜌4

′      
←     …  

such that a tensor product obtained over 𝒜∞-algebras and a boundary map is provided by: 

𝜌𝑛
′ (𝒶0⊗…⊗𝒶𝑛) = ∑ (−1)𝑖𝒶0⊗…⊗𝒶𝑖𝒶𝑖+1⊗…⊗𝒶𝑛

𝑛−1
𝑖=0 . 

The following definition defines the simplicial homology of complexes and explores the boundary 
maps involved, illustrating their connection to the bar homology definitions. 
 
3.4. Definition  

The homology ℋℋ∗(ℐ, ℛ) of complexes represents the simplicial homology of ℐ via coefficients 

in ℛ: 

(ℛ ⊗ ℐ⨂∗, 𝜌∗): = ℛ
      𝜌1     
←     ℛ ⊗ ℐ

      𝜌2     
←     ℛ ⊗ ℐ ⊗ ℐ

      𝜌3     
←     ℛ ⊗ ℐ ⊗ ℐ ⊗ ℐ

      𝜌4     
←     … , 

 with the boundary map provided by: 
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𝜌𝑛(𝒶0⊗…⊗𝒶𝑛) = 𝜌𝑛
′ (𝒶0⊗…⊗𝒶𝑛) + (−1)𝑛𝒶𝑛𝒶0⊗𝒶1 ⊗…⊗𝒶𝑛−1. 

We present a corollary relating to 𝐻-homology and bar homology, establishing the relationships 

between different homological constructs for 𝒜∞-algebras and discussing exact sequences that arise. 
 
3.5. Corollary  

The 𝒜∞-algebras that are produced from ℐ by adding the value of unity to ℐ be denoted by ℐ̃ =
𝑘 × ℐ. Then the 𝐻-homology 𝐻∗(ℐ) is defined by ℋ∗(ℐ):= ℋ∗(ℐ, ℐ), the bar homology ℋ𝐵∗(ℐ) is 

defined by ℋ𝐵∗(ℐ):= ℋ𝐵∗
′(ℐ, ℐ), and  ℋℋ∗(ℐ): = ℋ̅∗(ℐ, ℐ̃) defines the simplicial homology of  ℐ, where 

ℋ̅𝑛(ℐ, ℐ̃) = ℋ𝑛(ℐ, ℐ̃), ∀ 𝑛 > 0 and  ℋ̅0(ℐ, ℐ̃) = ℋ0(ℐ, ℐ̃)/𝑘. Let the homology ℋℋ∗(ℐ) be the double 
complex' homology such that:  

𝒞𝒞(ℐ)|2| ≔ (ℐ ⊗ ℐ⨂∗, 𝜌∗)
   1−𝑡   
←    (ℐ ⊗ ℐ⨂∗, −𝜌∗

′).                                 (8) 
Consequently, the exact sequence exists as follows: 

…
        
←  𝐻𝑛−1(ℐ)

        
←   ℋ𝐵𝑛−1(ℐ)

        
←  ℋℋ𝑛(ℐ)

        
←  𝐻𝑛(ℐ)

        
←   ℋ𝐵𝑛(ℐ)

        
←  ℋℋ𝑛+1(ℐ)

        
←  …. 

The following definition covers the concept of ℋ-unitarity in 𝒜∞-algebras, focusing on the 

conditions under which a module ℛ is considered ℋ-unitary. 
 
3.6. Definition  

Suppose that ℛ is an ℐ-bimodule since ℐ is an 𝒜∞-algebras. If every 𝒜∞-modules 𝒢 has an exact 

complex (ℛ ⊗ ℐ⨂∗, 𝜌∗)⊗ 𝒢, we can deduce that ℛ is ℋ-unitary. 

One states that ℐ is ℋ-unital when ℛ = ℐ, such ℛ is the left  ℐ-module. It follows logically that ℛ⊗ ℐ is 

ℋ-unitary, if ℐ is ℋ-unital. 
In the following, we examine a theorem on quasi-isomorphisms between complexes in the context of 

𝒜∞-algebras and bimodules, proving the results under specific assumptions about ℋ-unitarity. 
 
3.7. Theorem  

Assume that the extension of 𝒜∞-algebras is given by  0
       
→ ℐ

       
→ 𝒜

       
→ ℬ

       
→ 0, and defines 𝒢 to be a 

𝒜∞-modules and ℛ to be an 𝒜-bimodule. Then we can say that the following canonical inclusions: 

𝑖: (ℛ ⊗ ℐ⨂∗, 𝜌∗)⊗ 𝒢 ↪ (ℛ ⊗𝒜⨂∗, 𝜌∗)⊗ 𝒢,                                     (9) 

𝑖′: (ℛ ⊗ ℐ⨂∗, 𝜌∗
′)⊗ 𝒢 ↪ (ℛ ⊗𝒜⨂∗, 𝜌∗

′)⊗ 𝒢                                   (10) 

are quasi-isomorphisms when the ℐ-bimodule ℛ is ℋ-unitary. 

Proof: By considering the filtration 𝐹0 ⊆ 𝐹0 ⊆ ⋯  of (ℛ ⊗𝒜⨂∗, 𝜌∗) and using [32], [33], assume 

that 𝒢 is an 𝒜∞-modules, such that:   

𝐹ℓ ≔ ℛ
     𝜌1   
←   ℛ ⊗𝒜

    𝜌2   
←   ℛ⊗𝒜⊗2

    𝜌3   
←   …

    𝜌ℓ     
←    ℛ ⊗𝒜⊗𝑝

    𝜌ℓ+1    
←     ℛ ⊗ ℐ ⊗𝒜⊗ℓ

     𝜌ℓ+2    
←      ℛ

⊗ ℐ⊗2 ⊗𝒜⊗ℓ
     𝜌ℓ+3   
←     … 

For all ℓ ≥ 0, we have: 

(𝐹ℓ+1⊗
𝒢

𝐹ℓ
⊗𝒢)

∗
= (ℛ ⊗ ℐ⨂ ∗−ℓ−1, 𝜌∗

′)⊗ ℬ⊗𝒜⊗ℓ ⊗𝒢,                        (11) 

According to theory, this is exact. Taking into consideration the homology of long exact sequence 

for all  𝑛 ≥ 0 connected to  

0
        
→  𝐹𝑛 ⊗𝒢

        
→  𝐹𝑛+1 ⊗𝒢

        
→  

𝐹𝑛+1⊗𝒢

𝐹𝑛⊗𝒢

        
→  0                                 (12) 

As can be seen, the canonical map 𝐹0
        
→  𝐹ℓ represents quasi-isomorphism for every ℓ, 𝑖 is also a quasi-

isomorphism consequently. 

In a similar demonstration, the same applies to 𝑖′. 
Remark:  Note that the theorem (3.7) given above may also be proved in the case when ℐ is a right 

ideal of 𝒜 instead of a two-sided ideal. 
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The following corollary provides further insight into quasi-isomorphisms in the context of 

extensions of 𝒜∞-algebras, focusing on modules and the conditions for ℋ-unitarity. 
 
3.8. Corollary  

Suppose that 0
       
→ ℐ

       
→ 𝒜

       
→ ℬ

       
→ 0 is an extension of the 𝒜∞-algebras where ℐ ⊂ 𝒜 ⊂ ℬ and 𝒢 is 

a 𝑘-module and use [34]. The canonical arrows: 

𝜋: (ℬ ⊗𝒜⊗∗, 𝜌∗)⊗ 𝒢
        
→  (ℬ ⊗ℬ⊗∗, 𝜌∗)⊗ 𝒢, 

𝜋′: (ℬ ⊗𝒜⊗∗, 𝜌′∗)⊗ 𝒢
        
→  (ℬ ⊗ℬ⊗∗, 𝜌′∗)⊗ 𝒢, 

 are quasi-isomorphisms when ℐ is an ℋ-unital. 

Proof: We must take into consideration for all ℓ ≥ 0, the quotient complex �̃�ℓ for (ℬ ⊗𝒜⊗∗, 𝜌∗) 
provided by: 

 �̃�ℓ ≔ ℬ
    𝜌1   
←   ℬ ⊗ℬ

    𝜌2   
←   ℬ ⊗ℬ⊗2

    𝜌3    
←   … 

    𝜌ℓ   
←   ℬ ⊗ℬ⊗ℓ

    𝜌ℓ+1   
←     ℬ ⊗ℬ⊗ℓ ⊗𝒜

    𝜌ℓ+2   
←     ℬ ⊗

ℬ⊗ℓ ⊗𝒜⊗2
    𝜌ℓ+3   
←     … . 

to demonstrate whether 𝜋 is a quasi-isomorphism, consider that the canonical projections 

𝜋ℓ: �̃�ℓ ⊗𝒢
          
→  �̃�ℓ+1⊗𝒢. 

Given that  ℬ(ℓ) = ℬ ⊗ℬ⊗ℓ ⊗ ℐ, the straightforward calculation reveals that: 

𝐾𝑒𝑟(𝜋ℓ) = (ℬ(ℓ)⊗𝒜⊗∗−ℓ−1 , 𝜌∗) ⊗ 𝒢. 

Therefore, according to Theorem (3.7), 𝐾𝑒𝑟(𝜋ℓ) is quasi-isomorphic to: 

(ℬ(ℓ)⊗ ℐ⊗∗−ℓ−1 , 𝜌∗) ⊗  𝒢 = (ℬ(ℓ)⊗ ℐ⊗∗−ℓ−1 , 𝜌∗
′) ⊗ 𝒢,                         (13) 

which is exact by assumption. For 𝜋′, a similar proof applies. 

Now, we conclude with a theorem establishing the equivalence of various conditions related to ℋ-

unitarity, excision, and homology requirements for  𝒜∞-algebras, providing a comprehensive view of 
their interrelations. 
 
3.9. Theorem  

Let the assumption that ℐ is a  𝒜∞-algebras, and then the next propositions are equivalent: 

(1) The 𝒜∞-algebras ℐ remains ℋ-unital. 

(2) The 𝒜∞-algebras ℐ fulfills the 𝐻-homology excision. 

(3) The 𝒜∞-algebras ℐ fulfills the excision requirement of bar homology. 

(4) The 𝒜∞-algebras ℐ fulfills the excision requirement of simplicial homology. 

Proof:  The proposition (1) is equivalent to (2) when we let 0 → ℐ → 𝒜 → ℬ → 0 be an 𝒜∞-

algebras as a pure extension and 𝒢 be a 𝑘-module, and the canonical projection given by: 

𝜋: (𝒜 ⊗𝒜⨂∗, 𝜌∗) ⊗ 𝒢 → (ℬ ⊗ℬ⨂∗, 𝜌∗) ⊗ 𝒢. 
Suppose that the commutation diagram of short exact sequences is as follows: 

0
    
0
 
→
 
→
  
(ℐ ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢

|𝑗
𝑘𝑒𝑟 (𝜋)

  
→
      
→
  

(𝒜 ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
| =

(𝒜 ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢

  

→
     
 𝜋 
→

  

(ℬ ⊗𝒜⨂ ∗, 𝜌∗) ⊗ 𝒢
|𝜋1

(ℬ ⊗𝒜⨂∗ , 𝜌∗) ⊗ 𝒢

  
→
     
→
  
0
    
0

 

According to Corollary (3.8), 𝜋1 indicates a quasi-isomorphism. As a result, 𝑗 is as well. We continue 
the proof using the Theorem (3.7). 

The proposition (1) is equivalent to (3): Comparable to (1) ⟹ (2). 
The proposition (2) and (3) is equivalent to (4): The long exact sequence:  

⋯ ← 𝐻𝑛−1(ℐ) ← ℋ𝐵𝑛−1(ℐ) ← ℋℋ𝑛(ℐ) ← 𝐻𝑛(ℐ) ← ℋ𝐵𝑛(ℐ) ← ℋℋ𝑛+1(ℐ) ← ⋯ 
 gives this simple consequence. 

The proposition (2) is equivalent to (1): Assume that 𝑘-algebra 𝒜 = ℐ ⊕ 𝒢 with 𝑘-module 𝒢 in 
addition to the canonical projection: 

𝜋: (𝒜 ⊗𝒜⨂ ∗, 𝜌∗) → (𝒢 ⊗ 𝒢⨂∗, 𝜌∗), 
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where the product is provided by (𝑢, 𝑣)(𝑢′, 𝑣′) = (𝑢𝑢′, 0). Given that 𝑘𝑒𝑟 (𝜋) is a direct summation of 

the complex 𝒢 ⊗ (ℐ ⊗ ℐ⨂ ∗−1, 𝜌∗
′) ⊕ (ℐ ⊗ ℐ⨂∗, 𝜌∗

′), 

 ℐ satisfy the excision to 𝐻-homology. In such a case, 𝒢 ⊗ (ℐ ⊗ ℐ⨂ ∗−1, 𝜌∗
′) is exact. 

The proposition (3) is equivalent to (1): Comparable to (2) ⟹ (1). 

The proposition (4) is equivalent to (1): Allow 𝒜 and 𝒢 are being in (2) ⟹ (1).   

Let the canonical projection given by �̅�: 𝒞∗∗(𝒜) → 𝒞∗∗(𝒢) and 𝛽 be the sub-complex of 𝑘𝑒𝑟 (𝜋) 
produced by the components (𝒶0⊗⋯⊗𝒶𝑛, 𝒶

′
0⊗⋯⊗𝒶′𝑛−1) that include some 𝒶𝑖 with some 𝒶′n 

in 𝒢. 

So 𝛽 is exact such that 𝑘𝑒𝑟(�̅�) = 𝒞∗∗(ℐ) ⊕ 𝛽 and ℐ fulfills excision instead of simplicial homology. 

Consider the case when ℐ cannot be ℋ-unital. Suppose 𝑥 ∈ 𝒢 ⊗ ℐ⨂𝑛 represents a cycle that does not 

represent a boundary for 𝜌𝑛
′  , it is obvious that (0, 𝑁(𝑥)) in is a cycle of degree 𝑛 + 1 that is not a 

boundary, which is in direct opposition to the exactness of 𝛽. 
 
3.7. Concluding Remarks 

The core focus was on  𝒜∞-algebras, defined by Stasheff identities that ensure homotopy 
associativity. We examined various examples and their applications, highlighting their versatility. 

Morphisms between  𝒜∞-algebras were also analyzed, including strict morphisms and quasi-
isomorphisms. 

Our study further explored the homology of  𝒜∞-algebras, specifically simplicial homology, and 

detailed the relationship between bar homology ℋ𝐵𝑛−1(ℐ) and simplicial homology ℋℋ𝑛(ℐ) as an 
exact sequence. We demonstrated several quasi-isomorphisms and presented a commutative diagram 

illustrating these relationships.  In summary, the homology theory of  𝒜∞-algebras extends traditional 
algebraic concepts into a homotopical framework, offering a deep understanding of their foundational 
aspects and broader implications in mathematical research. 

 
Copyright:  
© 2024 by the authors. This article is an open access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
 
References 
[1] G. Hochschild, “On the Cohomology Groups of an Associative Algebra”, Annals of Mathematics, JSTOR, vol. 46, no. 

1, pp. 58–67. 1945. 
 https://doi.org/10.2307/1969145.  

[2] H. Cartan, and S. Eilenberg, “Homological algebra”, Princeton Mathematical, Princeton University Press, vol. 19, 
1956. Doi.org/10.1515/9781400883844, Isbn 978-0-691 04991-5, MR 0077480. 

[3] J. D. Stasheff, “Homotopy associativity of H-spaces. II”, Transactions of the American Mathematical Society, vol.108, 

no. 2, pp. 293-312, 1963. https://doi.org/10.2307/1993609. 

[4] T.V. Kadeishvili, "The 𝐴∞-algebra structure and the Hochschild and harrison cohomologies," Proc. of A. Razmadze 
Math. Inst., vol. 91, 1988. https://doi.org/10.48550/arXiv.math/0210331.  

[5] B. Keller, “𝐴-infinity algebras, modules and functor categories”, Contemporary Mathematices, vol.406, pp. 67-94, 
2006. http://dx.doi.org/10.1090/conm/406/07654. arXiv:math/0510508. 

[6] A. Prouté, “Algèbres différentielles fortement homotopiquement associatives(a indice l’infini-algèbres),” Ph.D. thesis, 
1986. 

[7] J. Hübschmann, “The homotopy type of 𝐹𝜓𝑞. The complex and symplectic cases. Applications of algebraic 𝐾-theory 
to algebraic geometry and number theory," Part I, II (Boulder, Colo., 1983), 487–518. Amer. Math. Soc., Providence, RI, 

1986. 

[8] E. Getzler, and John D. S. Jones. “𝐴∞-algebras and the cyclic bar complex." Illinois J. Math., vol. 34, no. 2, pp. 256 - 
283, Summer 1990.   
https://doi.org/10.1215/ijm/1255988267 

[9] K. Fukaya, “Morse Homotopy, 𝐴∞-Category, and Floer Homologies," Lecture Notes Ser. vol. 18, pp. 1-102, 1993. 
[10] M. Kontsevich, "Homological Algebra of Mirror Symmetry," Proceedings of the International Congress of 

Mathematicians, pages 120–139, Birkh¨auser, 1995, alggeom/9411018. https://doi.org/10.48550/arXiv.alg-
geom/9411018 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2307/1969145
https://doi.org/10.48550/arXiv.math/0210331
http://dx.doi.org/10.1090/conm/406/07654
https://doi.org/10.1215/ijm/1255988267
https://doi.org/10.48550/arXiv.alg-geom/9411018
https://doi.org/10.48550/arXiv.alg-geom/9411018


9486 

 

 
Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 8, No. 6: 9472-9486, 2024 
DOI: 10.55214/25768484.v8i6.4026 
© 2024 by the authors; licensee Learning Gate 

 

[11] B. Keller, "Introduction to A-infinity Algebras and Modules," Homology Homotopy Appl., vol. 1, 999, vol. 2, 2001. 
https://doi.org/10.48550/arXiv.math/9910179.   

[12] P. Seidel, "Fukaya 𝐴∞-structures associated to Lefschetz fibrations. I," Journal of Symplectic Geometry, vol. 10, no. 3, 
pp. 325-388, September 2012. https://doi.org/10.48550/arXiv.0912.3932. 

[13] A. H. Noreldeen, and Y. Gh. Gouda, “On the simplicial cohomology theory of algebra”, Life Science Journal, vol. 10, 
no. 3, pp. 2639-2644, 2013. Doi: 10.7537/marslsj100313.380 

[14] A. H. Noreldeen, “On the Hochschild cohomology theory of A∞-algebra”, Sci. Afr., vol. 5, 2019, e00115. 
https://doi.org/10.1016/j.sciaf.2019.e00115 

[15] M.R. Adhikari, “Homology and Cohomology Theories”, In: Basic Algebraic Topology and its Applications. Springer, 
New Delhi., 2016. https://doi.org/10.1007/978-81-322-2843-1_10.  

[16] A. H. Noreldeen, “Differential graded algebras and derived E∞-algebras”, Applied Mathematics & Information 
Sciences, vol. 14, no. 4, 673-678, 2020. doi:10.18576/amis/140415 

[17] A. H. Noreldeen, H. M. Ali, and S. Abo Quota, "Some properties in the (co)homology theory of lie algebra," Aust. J. 
Math. Anal. Appl., vol. 17, no. 2, 2020. ISSN: 1449-5910. 
https://api.semanticscholar.org/CorpusID:236770019. 

[18] A. H. Noreldeen, “On the Homology Theory of Operator Algebras”, International Journal of Mathematics and 
Mathematical Sciences, vol. 2012, Article ID 368527, 13 pages, 2012. https://doi.org/10.1155/2012/368527  

[19] A. H. Noreldeen Mohamed, “Perturbation differential A-infinity algebra”, Applied Mathematics & Information 
Sciences, vol. 14, no. 3, pp. 447-451, 2020, http://dx.doi.org/10.18576/amis/140311.  

[20] S. Witherspoon, "Hochschild Cohomology for Algebras," Graduate Studies in Mathematics, vol. 204. Am. Math. Soc., 
Providence 2019 

[21] Y. Gh. Gouda, A. H. Noreldeen and Mahmoud Saad, “Reflexive and dihedral (co)homology of Z/2 Graded Algebras”, 
International journal of Mathematics and statistics Invention (IJMSI), vol. 5, issue 1, PP-23-31, 2017. E-ISSN: 2321–
4767 P-ISSN: 2321-4759. https://www.ijmsi.org/Papers/Volume.5.Issue.1/C05012331.pdf 

[22] S. V. Lapin, “𝐷∞differential A∞-algebras and spectral sequences”, Sbornik Mathematics, Volume 193, Issue 1, pp. 119-
142, 2002.  
https://doi.org/10.1070/sm2002v193n01abeh000623.  

[23] A. H. Noreldeen, “On the cohomology of relative Banach algebras”, Modern Applied Science, vol. 13, no. 10, 2019. 
ISSN 1913-1844 E-ISSN 1913-1852. https://doi.org/10.5539/mas.v13n10p1 

[24] A. H. Noreldeen, W.M. Mahmoud, O. H. Fathy, “The Theory of Pure Algebraic (Co)Homology”, Mathematics and 
Statistics, Vol. 9, No. 5, pp. 639 - 647, 2021. DOI: 10.13189/ms.2021.090503. 

[25] M. Kozae, Samar A. A. Quota, A. H. Noreldeen, “The Relative (Co)homology Theory through Operator Algebras”, 
Mathematics and Statistics, vol. 10, no. 3, pp. 468-476, 2022. DOI: 10.13189/ms.2022.100302. 

[26] R. Penner, (2020). “Long Exact Sequences of K-Groups”, Topology and K-Theory. Lecture Notes in Mathematics, vol 
2262. Springer, Cham., 2020. https://doi.org/10.1007/978-3-030-43996-5_36.  

[27] A. H. Noreldeen, “On the (co)homology with inner symmetry of schemes”, Life Science Journal, vol. 11, no. 12, pp. 
698-703, 2014. Doi: 10.7537/marslsj111214.131 

[28] A. H. Noreldeen, “Excision theory in the dihedral and reflexive (co)homology of algebras”, Cogent Mathematics and 
amp; Statistics, vol. 7 no. 1, 2020 https://doi.org/10.1080/25742558.2020.1868135 

[29] W. Johannes, “Abstract Excision and ℓ1-Homology”, Universität Regensburg, 93040  Regensburg, Germany, Vol. 1, 
2022. https://doi.org/10.48550/arXiv.2203.06120 

[30] M. Wodzicki, “Excision in cyclic homology and in rational algebraic K-theory”, Annals of Mathematics, Vo. 129, No. 
3, pp. 591–639, 1989. https://doi.org/10.2307/1971518. 

[31] M. Wodzicki, “Excision in Cyclic Homology and in Rational Algebraic K-Theory”,  Annals of Mathematics, vol. 129, 
no. 3, 1989, pp. 591–639, 2024. https://doi.org/10.2307/1971518. 

[32] P. Megan, “An Excision Theorem for Persistent Homology”, arXiv:1910.03348v1,  2019.  
https://doi.org/10.48550/arXiv.1910.03348. 

[33] W.M. Mahmoud, A.H. Noreldeen, O.H. Fathy, Samar A.A. Quota, “On the cyclic homology theory of algebras”, 
Scientific African, Vo. 25, September 2024, e02288. https://doi.org/10.1016/j.sciaf.2024.e02288. 

[34] A. H. Noreldeen, Samar A. A. Quota, O. H. Fathy, W. M. Mahmoud, “The triviality of dihedral cohomology for 
operator algebras”, Scientific African, Vo.25, September 2024, e02325. https://doi.org/10.1016/j.sciaf.2024.e02325 

https://doi.org/10.48550/arXiv.math/9910179
https://doi.org/10.48550/arXiv.0912.3932
https://doi.org/10.1016/j.sciaf.2019.e00115
https://doi.org/10.1007/978-81-322-2843-1_10
http://dx.doi.org/10.18576/amis/140415
https://api.semanticscholar.org/CorpusID:236770019
https://doi.org/10.1155/2012/368527
http://dx.doi.org/10.18576/amis/140311
https://www.ijmsi.org/Papers/Volume.5.Issue.1/C05012331.pdf
https://doi.org/10.1070/sm2002v193n01abeh000623
https://doi.org/10.1007/978-3-030-43996-5_36
https://doi.org/10.2307/1971518
https://doi.org/10.48550/arXiv.1910.03348
https://doi.org/10.48550/arXiv.1910.03348
https://doi.org/10.1016/j.sciaf.2024.e02288
https://doi.org/10.1016/j.sciaf.2024.e02325

